掺杂金属的染料敏化TiO<sub>2</sub>纳晶薄膜光电极的制备方法

文档序号:7210883阅读:179来源:国知局

专利名称::掺杂金属的染料敏化TiO<sub>2</sub>纳晶薄膜光电极的制备方法
技术领域
:本发明属于染料敏化太阳能电池的Ti02纳晶薄膜光电极的制造
技术领域
,特别涉及由含有光散射效应的大颗粒Ti02和掺杂金属的Ti02纳晶颗粒的胶体制备掺杂金属的染料敏化Ti02纳晶薄膜光电极的方法。
背景技术
:一方面,在染料敏化太阳能电池中,纳米尺度的Ti02半导体由于具有合适的禁带宽度、耐光腐蚀性能好、光电转换效率高等特点而于近年来得到了广泛应用。染料敏化Ti02纳晶薄膜由Ti02纳晶颗粒相互连接形成多孔网络状结构,这种结构既提供了电子输运通道,又提供了供染料吸附的大比表面积。吸附在纳晶薄膜表面的光敏分子染料吸收光能是染料敏化太阳能电池光电转换的前提,提高光吸收效率是提高电池光电转换效率的一个重要关键。另一方面,改进Ti02纳晶多孔薄膜电极以进一步提高染料敏化太阳能电池的光电转换效率也开始成为人们的研究热点。染料敏化太阳能电池中,敏化分子染料受光激发产生电子,光生电子注入到Ti02导带中,然后由导带通过外电路传输从而形成光电流;在此过程中保证电子在纳晶薄膜内的高速传输是影响光电转换效率至关重要的因素。掺杂金属的Ti02纳晶颗粒一方面可以改变半导体的性能,作为施主提供更多的载流子进而提高导电率;另一方面可以改变Ti02能带的位置进而提高光电压。目前文献报道中的金属掺杂广泛应用在光催化领域,如"J.Wolfenstine,J丄.Allen,ElectricalconductivityandchargecompensationinTadopedLi4Ti5012","Zhao.Jl,Wang.XX,Kang.YR,PhotoelectrochemicalactivitiesofW-dopedtitaniananotubearraysfabricatedbyanodization","Kim.SW,Khan.R,Kim.TJ,Synthesis,characterization,andapplicationofZr,Sco-dopedTiO2asvisibleactivephotocatalyst",但是还未曾有人应用到太阳能电池领域。因此本发明的首要出发点是采用含有掺杂金属的Ti02纳晶颗粒的胶体制备纳晶薄膜电极,在此基础上通过添加具有光散射性能的大颗粒Ti02来增加纳晶薄膜的光散射性能,从而提高了Ti02纳晶薄膜电极的吸光效率,进而提高光电转换效率。
发明内容本发明的目的在于用水热合成的方法制备得到掺杂金属的Ti02纳晶颗粒,将其应用到染料敏化太阳能体系中,并通过添加具有光散射性能的大颗粒Ti02来提高光电转换效率,从而提供一种掺杂金属的染料敏化Ti02纳晶薄膜光电极的制备方法。在本发明中,为了把金属掺杂剂掺入到半导体化合物Ti02的晶格中,在钛盐溶液水解的过程中,就加入了金属掺杂剂进行共水解。本发明掺杂金属的染料敏化Ti02纳晶薄膜光电极的制备方法包括以下步骤(1)将钛盐与溶剂混合配制成钛盐溶液,将金属掺杂剂和溶剂混合配制成金属掺杂剂溶液;然后将钛盐溶液与金属掺杂剂溶液混合进行水解反应,其中,混合液中的金属掺杂剂中的金属含量是钛盐质量的0.1%5%,优选为1%;反应后的混合液放入高压釜中,150°C240°C(优选在180°C)下进行水热反应,反应时间是4小时24小时,优选为12小时;将水热反应结束后的乳浊液进行旋转蒸发,直至得到的掺杂金属的Ti02胶体中掺杂金属的Ti02纳晶颗粒的质量百分含量(固含量)达到12%;(2)在步骤(1)制得的掺杂金属的Ti02胶体中,加入是胶体质量1%50X的具有光散射效应粒径为25nm的大颗粒TiO2,优选为10°%,配置成含有光散射效应的大颗粒Ti02和掺杂金属的Ti02纳晶颗粒的胶体;(3)将步骤(2)得到的含有光散射效应的大颗粒Ti02和掺杂金属的Ti02纳晶颗粒的胶体(用涂敷法或其它制膜方法如溅射、电沉积、化学沉积、机械压制或丝网印刷)均匀涂敷到清洗干净的导电基底上,制得Ti02薄膜电极;(4)将步骤(3)制得的Ti02薄膜电极用步骤(l)中的钛盐溶液进行提拉浸洗;然后在温度为450'C下进行热处理30分钟,降温至室温后得到Ti02纳晶薄膜电极;(5)将步骤(4)得到的Ti02纳晶薄膜电极在温度为80'C的烘箱中加热l小时,随后将电极浸入浓度为5xlO—4M的4,4'-二羧酸联吡啶钌(顺二硫氰根-双(2,2,-联吡啶-4,4,-二羧酸)合钌(II))的乙醇溶液中12小时后取出,用无水乙醇冲洗后晾干,即可制得本发明的掺杂金属的染料敏化Ti02纳晶薄膜光电极。步骤(1)的将钛盐与溶剂混合配制钛盐溶液,其中钛盐与溶剂的体积比为5:謂50:100,体积比优选为10:100。步骤(3)的涂敷是在清洗干净的导电基底上涂敷一层或多层含有光散射效应的大颗粒Ti02和掺杂金属的Ti02纳晶颗粒的胶体,构成单层光散射层或多层光散射层。所述的钛盐非限制性地选自异丙氧醇钛,钛酸四丁酯,钛酸四异丙酯,钛酸四已酯,四氯化钛中的一种。优选为钛酸四丁酯。所述的溶剂非限制性地选自正丁醇,异丙醇,无水乙醇,水中的一种或一种以上的混合物。优选为正丁醇。所述的金属掺杂剂非限制性的选自钒(V)、铌(Nb)、钽(Ta)、镧(La)、锡(Sn)、锌(Zn)、钌(Ru)或铑(Rh)的酯化物或氯化物中的一种或一种以上的混合物。优选为钽酸丁酯和氯化锡的混合物。所述的具有光散射效应的大颗粒Ti02的粒径为25nm。非限制性地优选商品Ti02粉末(德国Degussa公司生产的P25或其它非商品纳晶7102颗粒)。所述的导电基底可为惨氟的Sn02导电玻璃(FTO)、掺铟的Sn02导电玻璃(ITO)或钛金属基底。本发明得到的薄膜光电极是由混有掺杂金属的Ti02纳晶颗粒和具有光散射性能的大颗粒Ti02的胶体在导电基底上涂敷并进行热处理后形成的多孔结构纳晶薄膜光电极。一方面,金属掺杂后,不但增加了载流子的数量从而明显提高了导电率,而且可以改变Ti02能带的位置进而提高光电压,另一方面,大颗粒Ti02的引进增强了光散射和氧化还原离子的扩散,进而一定程度上改善了Ti02纳晶薄膜光电极的吸光效率。这种多孔结构纳晶薄膜具有高导电率和好的光散射性能;而且制备方法简单,易于操作,特别适用于染料敏化Ti02纳晶薄膜光电极的工业化生产制备,因而大大扩展了染料敏化Ti02纳晶薄膜太阳能电池的应用前景。所制备的Ti02纳晶薄膜光电极可应用于染料敏化太阳能电池及光催化电极等领域。本发明制备的掺杂金属的染料敏化Ti02纳晶薄膜光电极的光电性能优异,具有高的光电流密度16.75mAcn^和高光电转换效率8.33n/c)。具体实施例方式本发明制备的掺杂金属的染料敏化Ti02纳晶薄膜光电极特别适用于染料敏化纳晶薄膜太阳能电池中作为工作电极。本发明将通过下面的实施例进行举例说明。在列举实施例之前,先对各实施例中均使用的具有共性的方法作以描述,然后在各实施例中就不再对这些共性的方法重复描述了。胶体的涂敷方法将清洗干净的导电基底的两边用胶带纸固定,用玻璃棒蘸取少量胶体并将其均匀地涂到导电基底上,制备Ti02纳晶薄膜光电极。涂膜时用胶带纸的厚薄和重复涂敷的次数控制Ti02纳晶薄膜光电极的厚度。本发明掺杂金属的染料敏化Ti02纳晶薄膜光电极的制备方法将涂好的Ti02薄膜电极在空气中自然晾干。然后在钛盐溶液中提拉浸洗,自然晾干后放入马弗炉中450t:热处理30分钟。将热处理过的Ti02薄膜在温度为80°C的烘箱中加热1小时。随后将电极浸入5xlO"M4,4'-二羧酸联吡啶钌(顺二硫氰根-双(2,2,-联吡啶-4,4,-二羧酸)合钌(II))的乙醇溶液中12小时后取出,用无水乙醇冲洗后晾干,即可制得本发明的掺杂金属的染料敏化Ti02纳晶薄膜光电极。测量方法用染料4,4'-二羧酸联吡啶钌(顺二硫氰根-双(2,2'-联吡咬—4,4'-二羧酸)合钌(II))敏化本发明中制备的掺杂金属的染料敏化Ti02纳晶薄膜光电极作为工作电极,用铂片作为对电极。用含有0.5MLil、0.05M12和0.5M四特丁基吡啶的三甲氧基丙腈溶液作为电解质,组装成染料敏化太阳能电池进行性能测量。电池的光电性能用计算机控制的恒电位仪/恒电流仪(Princeton,Model273,EG&G)在室温下测量。光源使用太阳能模拟器(Newport,Oriel,91160-1000)入射光强100mW/cm2,光照面积0.2cm2。除非另有说明,本发明光电性能的测量都是在室温(25°C)下进行的。测量结果见表1。实施例1(1)将钛酸四丁酯与正丁醇混合配制成钛盐溶液(体积比为10:100),将钽酸丁酯和正丁醇混合配制成金属掺杂剂溶液;然后将钛盐溶液与金属掺杂剂溶液混合进行水解反应,其中,混合液中的金属掺杂剂中的金属钽含量是钛盐质量的1%;反应后的混合液放入高压釜中,180'C下进行水热反应,反应时间是4小时;将水热反应结束后的乳浊液进行旋转蒸发,直至得到的掺杂金属的Ti02胶体中掺杂金属的Ti02纳晶颗粒的质量百分含量(固含量)达到12%;(2)在步骤(1)制得的掺杂金属的Ti02胶体中,加入是胶体质量1%的具有光散射效应粒径为25nm的大颗粒Ti02,配置成含有光散射效应的大颗粒Ti02和掺杂金属的Ti02纳晶颗粒的胶体;(3)将步骤(2)得到的含有光散射效应的大颗粒Ti02和掺杂金属的Ti02纳晶颗粒的胶体用涂敷法均匀涂敷到清洗干净的导电基底上,制得Ti02薄膜电极;(4)将步骤(3)制得的Ti02薄膜电极用步骤(l)中的钛盐溶液进行提拉浸洗;然后在温度为45(TC下进行热处理30分钟,降温至室温后得到Ti02纳晶薄膜电极;(5)将步骤(4)得到的Ti02纳晶薄膜电极在温度为80"C的烘箱中加热l小时,随后将电极浸入浓度为5xlO—4M的4,4'-二羧酸联吡啶钌(顺二硫氰根-双(2,2,-联吡啶-4,4,-二羧酸)合钌(II))的乙醇溶液中12小时后取出,用无水乙醇冲洗后晾干,即可制得本发明的掺杂金属的染料敏化Ti02纳晶薄膜光电极。实施例2(1)将钛酸四丁酯与正丁醇混合配制成钛盐溶液(体积比为10:100),将氯化锡和正丁醇混合配制成金属掺杂剂溶液;然后将钛盐溶液与金属掺杂剂溶液混合进行水解反应,其中,混合液中的金属掺杂剂中的金属锡含量是钛盐质量的5%;反应后的混合液放入高压釜中,24(TC下进行水热反应,反应时间是4小时;将水热反应结束后的乳浊液进行旋转蒸发,直至得到的掺杂金属的Ti02胶体中摻杂金属的Ti02纳晶颗粒的质量百分含量(固含量)达到12%;(2)在步骤(1)制得的掺杂金属的Ti02胶体中,加入是胶体质量10%的具有光散射效应粒径为25nm的大颗粒Ti02,配置成含有光散射效应的大颗粒Ti02和掺杂金属的Ti02纳晶颗粒的胶体;(3)将步骤(2)得到的含有光散射效应的大颗粒Ti02和掺杂金属的Ti02纳晶颗粒的胶体用涂敷法均匀涂敷到清洗干净的导电基底上,制得Ti02薄膜电极;(4)将步骤(3)制得的Ti02薄膜电极用步骤(l)中的钛盐溶液进行提拉浸洗;然后在温度为450'C下进行热处理30分钟,降温至室温后得到Ti02纳晶薄膜电极;(5)将步骤(4)得到的Ti02纳晶薄膜电极在温度为80。C的烘箱中加热1小时,随后将电极浸入浓度为5xlO—4M的4,4'-二羧酸联吡啶钌(顺二硫氰根-双(2,2,-联吡啶-4,4,-二羧酸)合钌(II))的乙醇溶液中12小时后取出,用无水乙醇冲洗后晾干,即可制得本发明的掺杂金属的染料敏化Ti02纳晶薄膜光电极。实施例3(1)将钛酸四丁酯与正丁醇混合配制成钛盐溶液(体积比为10:100),将氯化锡、钽酸丁酯和正丁醇混合配制成金属掺杂剂溶液;然后将钛盐溶液与金属掺杂剂溶液混合进行水解反应,其中,混合液中的金属掺杂剂中的金属锡含量是钛盐质量的1%、混合液中的金属掺杂剂中的金属钽含量是钛盐质量的1%;反应后的混合液放入高压釜中,18(TC下进行水热反应,反应时间是12小时;将水热反应结束后的乳浊液进行旋转蒸发,直至得到的掺杂金属的Ti02胶体中掺杂金属的Ti02纳晶颗粒的质量百分含量(固含量)达到12%;(2)在步骤(1)制得的掺杂金属的Ti02胶体中,加入是胶体质量10%的具有光散射效应粒径为25nm的大颗粒Ti02,配置成含有光散射效应的大颗粒Ti02和掺杂金属的Ti02纳晶颗粒的胶体;(3)将步骤(2)得到的含有光散射效应的大颗粒Ti02和掺杂金属的Ti02纳晶颗粒的胶体用涂敷法均匀涂敷到清洗干净的导电基底上,制得Ti()2薄膜电极;(4)将步骤(3)制得的Ti02薄膜电极用步骤(l)中的钛盐溶液进行提拉浸洗;然后在温度为45(TC下进行热处理30分钟,降温至室温后得到7102纳晶薄膜电极;(5)将步骤(4)得到的Ti02纳晶薄膜电极在温度为80'C的烘箱中加热l小时,随后将电极浸入浓度为5xl(T4M的4,4'-二羧酸联吡啶钌(顺二硫氰根-双(2,2,-联吡啶-4,4,-二羧酸)合钌(II))的乙醇溶液中12小时后取出,用无水乙醇冲洗后晾干,即可制得本发明的惨杂金属的染料敏化Ti02纳晶薄膜光电极。实施例4(1)将钛酸四丁酯与正丁醇混合配制成钛盐溶液(体积比为10:100),将钽酸丁酯和正丁醇混合配制成金属掺杂剂溶液;然后将钛盐溶液与金属掺杂剂溶液混合进行水解反应,其中,混合液中的金属掺杂剂中的金属钽含量是钛盐质量的0.1%;反应后的混合液放入高压釜中,15(TC下进行水热反应,反应时间是4小时;将水热反应结束后的乳浊液进行旋转蒸发,直至得到的掺杂金属的Ti02胶体中掺杂金属的Ti02纳晶颗粒的质量百分含量(固含量)达到12°%;(2)在步骤(1)制得的掺杂金属的Ti02胶体中,加入是胶体质量10%的具有光散射效应粒径为25nm的大颗粒Ti02,配置成含有光散射效应的大颗粒Ti02和掺杂金属的Ti02纳晶颗粒的胶体;(3)将步骤(2)得到的含有光散射效应的大颗粒Ti02和掺杂金属的Ti02纳晶颗粒的胶体用涂敷法均匀涂敷到清洗干净的导电基底上,制得Ti02薄膜电极;(4)将步骤(3)制得的Ti02薄膜电极用步骤(l)中的钛盐溶液进行提拉浸洗;然后在温度为45(TC下进行热处理30分钟,降温至室温后得到Ti02纳晶薄膜电极;(5)将步骤(4)得到的Ti02纳晶薄膜电极在温度为80。C的烘箱中加热l小时,随后将电极浸入浓度为5xlO—4M的4,4'-二羧酸联吡啶钌(顺二硫氰根-双(2,2,-联吡啶-4,4,-二羧酸)合钌(II))的乙醇溶液中12小时后取出,用无水乙醇冲洗后晾干,即可制得本发明的掺杂金属的染料敏化Ti02纳晶薄膜光电极。实施例5(1)将钛酸四丁酯与正丁醇混合配制成钛盐溶液(体积比为10:100),将钽酸丁酯和正丁醇混合配制成金属掺杂剂溶液;然后将钛盐溶液与金属掺杂剂溶液混合进行水解反应,其中,混合液中的金属掺杂剂中的金属钽含量是钛盐质量的1%;反应后的混合液放入高压釜中,180'C下进行水热反应,反应时间是24小时;将水热反应结束后的乳浊液进行旋转蒸发,直至得到的掺杂金属的Ti02胶体中掺杂金属的Ti02纳晶颗粒的质量百分含量(固含量)达到12%;(2)在步骤(1)制得的掺杂金属的Ti02胶体中,加入是胶体质量50%的具有光散射效应粒径为25nrn的大颗粒Ti02,配置成含有光散射效应的大颗粒7102和掺杂金属的Ti02纳晶颗粒的胶体;(3)将步骤(2)得到的含有光散射效应的大颗粒Ti02和掺杂金属的Ti02纳晶颗粒的胶体用涂敷法均匀涂敷到清洗干净的导电基底上,制得Ti02薄膜电极;(4)将步骤(3)制得的Ti02薄膜电极用步骤(l)中的钛盐溶液进行提拉浸洗;然后在温度为450'C下进行热处理30分钟,降温至室温后得到Ti02纳晶薄膜电极;(5)将步骤(4)得到的Ti02纳晶薄膜电极在温度为80"C的烘箱中加热1小时,随后将电极浸入浓度为5xlO'4M的4,4'-二羧酸联吡啶钌(顺二硫氰根-双(2,2,-联吡啶-4,4,-二羧酸)合钌(II))的乙醇溶液中12小时后取出,用无水乙醇冲洗后晾干,即可制得本发明的掺杂金属的染料敏化Ti02纳晶薄膜光电极。实施例6将实施例3中步骤(3)的含有光散射效应的大颗粒Ti02和掺杂金属的Ti02纳晶颗粒的胶体用涂敷法均匀涂敷到清洗干净的导电基底上两遍。制得两层膜结构的Ti02纳晶薄膜电极。将制得的两层膜结构的Ti02纳晶薄膜电极在温度为8(TC的烘箱中加热1小时,随后将电极浸入浓度为5xl0"M的4,4'-二羧酸联吡啶钌(顺二硫氰根-双(2,2,-联吡啶-4,4,-二羧酸)合钌(II))的乙醇溶液中12小时后取出,用无水乙醇冲洗后晾干,即可制得本发明的掺杂金属的染料敏化Ti02纳晶薄膜光电极。实施例7(1)将异丙氧醇钛与异丙醇混合配制成钛盐溶液(体积比为50:100),将钽酸丁酯和水混合配制成金属掺杂剂溶液;然后将钛盐溶液与金属掺杂剂溶液混合进行水解反应,其中,混合液中的金属掺杂剂中的金属钽含量是钛盐质量的1%;反应后的混合液放入高压釜中,18(TC下进行水热反应,反应时间是24小时;将水热反应结束后的乳浊液进行旋转蒸发,直至得到的掺杂金属的Ti02胶体中掺杂金属的Ti02纳晶颗粒的质量百分含量(固含量)达到12%;(2)在步骤(1)制得的掺杂金属的Ti02胶体中,加入是胶体质量50%的具有光散射效应粒径为25nrn的大颗粒Ti02,配置成含有光散射效应的大颗粒Ti02和掺杂金属的Ti02纳晶颗粒的胶体;(3)将步骤(2)得到的含有光散射效应的大颗粒Ti02和掺杂金属的Ti02纳晶颗粒的胶体用涂敷法均匀涂敷到清洗干净的导电基底上,制得Ti02薄膜电极;(4)将步骤(3)制得的Ti02薄膜电极用步骤(l)中的钛盐溶液进行提拉浸洗;然后在温度为45(TC下进行热处理30分钟,降温至室温后得到Ti02纳晶薄膜电极;(5)将步骤(4)得到的Ti02纳晶薄膜电极在温度为80'C的烘箱中加热l小时,随后将电极浸入浓度为5xl(T4M的4,4'-二羧酸联吡啶钌(顺二硫氰根-双(2,2,-联吡啶-4,4,-二羧酸)合钌(II))的乙醇溶液中12小时后取出,用无水乙醇冲洗后晾干,即可制得本发明的掺杂金属的染料敏化Ti02纳晶薄膜光电极。实施例8(1)将异丙氧醇钛与异丙醇混合配制成钛盐溶液(体积比为5:100),将钽酸丁酯和异丙醇混合配制成金属掺杂剂溶液;然后将钛盐溶液与金属掺杂剂溶液混合进行水解反应,其中,混合液中的金属掺杂剂中的金属钽含量是钛盐质量的1%;反应后的混合液放入高压釜中,18(TC下进行水热反应,反应时间是24小时;将水热反应结束后的乳浊液进行旋转蒸发,直至得到的掺杂金属的Ti02胶体中掺杂金属的Ti02纳晶颗粒的质量百分含量(固含量)达到12%;(2)在步骤(1)制得的掺杂金属的Ti02胶体中,加入是胶体质量50%的具有光散射效应粒径为25nm的大颗粒Ti02,配置成含有光散射效应的大颗粒Ti02和掺杂金属的Ti02纳晶颗粒的胶体;(3)将步骤(2)得到的含有光散射效应的大颗粒Ti02和掺杂金属的Ti02纳晶颗粒的胶体用涂敷法均匀涂敷到清洗干净的导电基底上,制得Ti02薄膜电极;(4)将步骤(3)制得的Ti02薄膜电极用步骤(l)中的钛盐溶液进行提拉浸洗;然后在温度为450'C下进行热处理30分钟,降温至室温后得到Ti02纳晶薄膜电极;(5)将步骤(4)得到的Ti02纳晶薄膜电极在温度为80'C的烘箱中加热l小时,随后将电极浸入浓度为5xlO—4M的4,4'-二羧酸联吡啶钌(顺二硫氰根-双(2,2,-联吡啶-4,4,-二羧酸)合钌(II))的乙醇溶液中12小时后取出,用无水乙醇冲洗后晾干,即可制得本发明的掺杂金属的染料敏化Ti02纳晶薄膜光电极表1使用本发明制备的掺杂金属的染料敏化Ti02纳晶薄膜光电极和铂对<table>complextableseeoriginaldocumentpage13</column></row><table>填充因子FF=VmXIm/VocXISC它表示了太阳能电池的输出电能的能力。(其中"Vm代表的是峰值电压,Im代表的是峰值电流,Voc代表的是开路光电压,Isc代表的是短路光电流"。权利要求1.一种掺杂金属的染料敏化TiO2纳晶薄膜光电极的制备方法,其特征是,该方法包括以下步骤(1)将钛盐与溶剂混合配制成钛盐溶液,将金属掺杂剂和溶剂混合配制成金属掺杂剂溶液;然后将钛盐溶液与金属掺杂剂溶液混合进行水解反应,其中,混合液中的金属掺杂剂中的金属含量是钛盐质量的0.1%~5%;反应后的混合液放入高压釜中,在温度为150℃~240℃下进行水热反应,反应时间是4小时~24小时;将水热反应结束后的乳浊液进行旋转蒸发,直至得到的掺杂金属的TiO2胶体中掺杂金属的TiO2纳晶颗粒的质量百分含量达到12%;(2)在步骤(1)制得的掺杂金属的TiO2胶体中,加入是胶体质量1%~50%的具有光散射效应的粒径为25nm的大颗粒TiO2,配置成含有光散射效应的大颗粒TiO2和掺杂金属的TiO2纳晶颗粒的胶体;(3)将步骤(2)得到的含有光散射效应的粒径为25nm的大颗粒TiO2和掺杂金属的TiO2纳晶颗粒的胶体均匀涂敷到清洗干净的导电基底上,制得TiO2薄膜电极;(4)将步骤(3)制得的TiO2薄膜电极用步骤(1)中的钛盐溶液进行提拉浸洗;然后在温度为450℃下进行热处理30分钟,降温至室温后得到TiO2纳晶薄膜电极;(5)将步骤(4)得到的TiO2纳晶薄膜电极在温度为80℃的烘箱中加热1小时,随后将电极浸入浓度为5×10-4M的4,4’-二羧酸联吡啶钌(顺二硫氰根-双(2,2’-联吡啶-4,4’-二羧酸)合钌(II))的乙醇溶液中,取出,用无水乙醇冲洗后晾干,即制得掺杂金属的染料敏化TiO2纳晶薄膜光电极;所述的金属掺杂剂选自钒、铌、钽、镧、锡、锌、钌或铑的酯化物或氯化物中的一种或一种以上的混合物。2.根据权利要求1所述的方法,其特征是步骤(1)的将钛盐与溶剂混合配制钛盐溶液,其中钛盐与溶剂的体积比为5:10050:100。3.根据权利要求2所述的方法,其特征是钛盐与溶剂的体积比为10:100。4.根据权利要求1所述的方法,其特征是步骤(1)混合液中的金属掺杂剂中的金属含量是钛盐质量的1%。5.根据权利要求1所述的方法,其特征是步骤(1)是在18(TC下进行水热反应。6.根据权利要求1所述的方法,其特征是在步骤(1)制得的掺杂金属的Ti02胶体中,加入是胶体质量10%的具有光散射效应的粒径为25nm的大颗粒Ti02。7.根据权利要求1所述的方法,其特征是步骤(3)的涂敷是在清洗干净的导电基底上涂敷一层或多层含有光散射效应的粒径为25nm的大颗粒Ti02和掺杂金属的Ti02纳晶颗粒的胶体。8.根据权利要求1、2或3所述的方法,其特征是所述的钛盐选自异丙氧醇钛,钛酸四丁酯,钛酸四异丙酯,钛酸四已酯,四氯化钛中的一种。9.根据权利要求1、2或3所述的方法,其特征是所述的溶剂选自正丁醇,异丙醇,无水乙醇,水中的一种或一种以上的混合物。10.根据权利要求1所述的方法,其特征是所述的金属掺杂剂是钽酸丁酯和氯化锡的混合物。全文摘要本发明属于染料敏化太阳能电池的TiO<sub>2</sub>纳晶薄膜光电极的制造
技术领域
,特别涉及掺杂金属的染料敏化TiO<sub>2</sub>纳晶薄膜光电极的制备方法。本发明的薄膜光电极是由混有掺杂金属的TiO<sub>2</sub>纳晶颗粒和具有光散射性能的大颗粒TiO<sub>2</sub>的胶体在导电基底上涂敷并进行热处理后形成的多孔结构纳晶薄膜光电极。一方面,金属掺杂后,不但增加了载流子的数量从而明显提高了导电率,而且可以改变TiO<sub>2</sub>能带的位置进而提高光电压,另一方面,大颗粒TiO<sub>2</sub>的引进增强了光散射和氧化还原离子的扩散,进而一定程度上改善了TiO<sub>2</sub>纳晶薄膜光电极的吸光效率。本发明制备方法简单,易于操作,特别适用于染料敏化TiO<sub>2</sub>纳晶薄膜光电极的工业化生产制备。文档编号H01L51/48GK101354971SQ20081022224公开日2009年1月28日申请日期2008年9月12日优先权日2008年9月12日发明者佳刘,张敬波,方艳艳,原林,檀伟伟申请人:中国科学院化学研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1