相变存储器的加热电极及其制备方法

文档序号:7260677阅读:222来源:国知局
相变存储器的加热电极及其制备方法
【专利摘要】本发明公开了一种相变存储器的加热电极,所述电极包括:第一层,连接到所述相变存储器的相变材料;所述第一层包括由嵌段共聚物氧化形成的图案化绝缘层;所述图案化绝缘层具有空隙结构,其空隙率为10%~65%;第二层,连接到所述第一层,并且透过所述第一层的空隙结构与所述相变材料连接;所述第二层的材料包括钨、钛以及钨或钛的氮化物;本发明还提供了该相变存储器的加热电极的制备方法。本发明通过在加热电极的加热单元与相变材料之间设置一个具有空隙结构的图案化绝缘层,使加热电极的加热单元与相变材料的接触面积大大减小,从而大幅降低了整个器件的功耗;在制备该加热电极的过程中,无需使用昂贵的高精度光刻工艺,降低了制作成本。
【专利说明】相变存储器的加热电极及其制备方法

【技术领域】
[0001] 本发明涉及一种相变存储器,尤其涉及一种相变存储器的加热电极及其制备方 法。

【背景技术】
[0002] 相变存储器作为一种非挥发性存储器,用于替代已经无法再继续集成的闪存。相 变存储器中利用硫族材料的可逆相变而产生的电阻差异的变化来表征两种状态,从而实现 数据的存储。
[0003] 相变存储器的每个存储单元一般包括存储器和驱动电路。通过驱动电路提供的电 流脉冲,存储器内的相变材料从结晶态变为非晶态,反之亦然。存储器内的相变材料可以包 括锗、锑、碲的合金,而驱动电路一般由二级管或金属氧化物场效应(M0S)晶体管构成。
[0004] 存储器内的相变材料从低阻态(结晶态)向高阻态(非晶态)转变时,需要大到足以 融化相变材料的电流流经存储器,而此电流作用时间很短,相变材料在快速冷却的过程中, 从熔化态变为非晶态,使得相变材料呈现高阻态,这种状态转变称为"复位"(Reset)操 作。为了使存储器从高阻态转变为低阻态,需要一个较低的电流流经存储器内的相变材料, 加热使相变材料的温度超过其相变温度,相变材料逐渐结晶并呈现低阻态,这种状态转变 称为"置位"(Set)操作。而为了读取存储器的阻值高低,需要施加一个比置位电流还要小 得多的电流,通过测量存储器的电压值来确定阻值。所以,相变存储器主要是由电流通过相 变材料产生的焦耳热来使材料发生相变从而实现数据的存储。由此带来的问题就是在集成 度逐渐提高的情况下,整个器件的功耗也会较大,且会出现热串扰等不良现象。
[0005] 因此,降低单个相变存储单元的功耗成了业界的主要技术难题。而降低器件的功 耗主要有改进相变材料、改进器件结构和改善驱动电路这三种方法,而其中改进器件结构 方法的宗旨就是不断减小相变材料与加热电极的接触面积,从而减小加热范围,降低器件 功耗。


【发明内容】

[0006] 针对上述提到的现有技术的不足,本发明提出了一种相变存储器的加热电极及其 制备方法,该加热电极的加热单元与相变材料的接触面积大大减小,从而大幅降低了整个 器件的功耗,并且该加热电极的制备方法简单,无需使用昂贵的高精度光刻工艺,降低了制 作成本。
[0007] 为了实现上述目的,本发明采用了如下的技术方案:
[0008] -种相变存储器的加热电极,所述电极包括:
[0009] 第一层,连接到所述相变存储器的相变材料;所述第一层包括由嵌段共聚物氧化 形成的图案化绝缘层;所述图案化绝缘层具有空隙结构,其空隙率为10%?65% ;
[0010] 第二层,连接到所述第一层,并且透过所述图案化绝缘层的空隙结构与所述相变 材料连接;所述第二层的材料包括钨、钛以及钨或钛的氮化物。 toon] 优选地,所述嵌段共聚物为主要由前段聚合物-聚二甲基硅氧烷形成的两段或多 段嵌段共聚物。
[0012] 优选地,所述前段聚合物包括聚苯乙烯、聚乙烯、烯丙基聚氧乙烯醚、聚乙烯基吡 咯烷酮以及聚丁烯中的一种或多种。
[0013] 优选地,所述空隙结构为线条状或孔洞状。
[0014] 优选地,所述空隙结构呈阵列排布。
[0015] 本发明的另一目的是提供如上所述的相变存储器的加热电极的制备方法,其中, 所述相变存储器包括相变材料以及包覆所述相变材料的绝缘层,所述绝缘层上设置有一孔 槽连通至所述相变材料。该方法包括步骤:
[0016] (a)制备嵌段共聚物混合溶液:将前段聚合物-聚二甲基硅氧烷溶于甲苯和庚烷 的混合溶剂中,获得嵌段共聚物混合溶液;
[0017] (b)将嵌段共聚物混合溶液旋涂于所述孔槽上,使嵌段共聚物混合溶液注入所述 孔槽涂覆于所述相变材料上;
[0018] (c)应用溶剂退火工艺使涂覆于所述相变材料上的嵌段共聚物混合溶液形成固体 薄膜;
[0019] (d)应用反应离子蚀刻工艺对所述固体薄膜进行刻蚀,形成具有空隙结构的固体 薄膜;
[0020] (e)应用氧等离子刻蚀工艺使所述具有空隙结构的固体薄膜氧化,形成图案化绝 缘层,获得所述电极的第一层;
[0021] (f)在所述第一层上应用沉积工艺制备所述第二层,所述第二层的材料包括钨、钛 以及鹤或钦的氣化物。
[0022] 优选地,所述前段聚合物包括聚苯乙烯、聚乙烯、烯丙基聚氧乙烯醚、聚乙烯基吡 咯烷酮以及聚丁烯中的一种或多种。
[0023] 优选地,所述溶剂退火工艺是在一密闭的容器中,并在常温下进行,退火的时间 为3?4小时;所述溶剂为所述嵌段共聚物混合溶液。
[0024] 优选地,通过改变所述混合溶剂中的甲苯的体积分数来调节所述图案化绝缘层的 形貌类型。
[0025] 优选地,所述甲苯的体积分数的范围是50%?100%。
[0026] 优选地,在进行溶剂退火工艺时,通过改变溶剂表面积S与腔室体积V的比值S/ V来调节所述图案化绝缘层的线宽或直径;其中,所述溶剂表面积S指的是将相变存储器器 件放入装有反应溶剂的反应腔室后,所述反应腔室中反应溶剂的表面积;所述腔室体积V 是指整个反应腔室的体积。
[0027] 与现有技术相比,本发明通过在加热电极的加热单元与相变材料之间设置一个具 有空隙结构的图案化绝缘层,使加热电极的加热单元与相变材料的接触面积大大减小,从 而大幅降低了整个器件的功耗;在制备该加热电极的过程中,无需使用昂贵的高精度光刻 工艺,降低了制作成本。

【专利附图】

【附图说明】
[0028] 图1为本发明一实施例中提供的相变存储器的结构示意图。
[0029] 图2为本发明一实施例中提供的加热电极第一层的结构示意图。
[0030] 图3为本发明另一实施例中提供的加热电极第一层的结构示意图。
[0031] 图4为本发明具体实施例中溶剂表面积S与溶剂退火的腔室体积V的比值S/V与 图案化绝缘层的周期、图形线宽或直径以及图形空隙率的关系曲线图。

【具体实施方式】
[0032] 下面将结合附图用实施例对本发明做进一步说明。
[0033] 如前所述,鉴于现有技术存在的不足,本发明提出了一种相变存储器的加热电极, 该加热电极的加热单元与相变材料的接触面积大大减小,从而大幅降低了整个器件的功 耗。
[0034] 参阅附图1-3, 一种相变存储器包括形成于底电极100上的相变材料200以及包 覆所述相变材料200的绝缘层300,所述绝缘层300上设置有一孔槽连通至所述相变材料 200,所述加热电极400、500设置于所述孔槽中并与所述相变材料200相连,以及连接于所 述加热电极上的顶电极600 ;其中,所述加热电极包括第一层400和第二层500 ;所述第一 层400连接到所述相变材料200 ;所述第一层400包括由嵌段共聚物氧化形成的图案化绝 缘层401 ;所述图案化绝缘层401具有空隙结构402,其空隙率为10%?65% ;所述第二层 500连接到所述第一层400,并且透过所述空隙结构402与所述相变材料200连接;所述第 二层500的材料为钨。
[0035] 在另外的实施方式中,所述第二层500的材料也可以是钛或者是钨或钛的氮化 物。
[0036] 本发明通过在加热电极的加热单元与相变材料之间设置一个具有空隙结构的图 案化绝缘层,使加热电极的加热单元与相变材料的接触面积大大减小,从而大幅降低了整 个器件的功耗。
[0037] 其中,所述嵌段共聚物为主要由前段聚合物-聚二甲基硅氧烷形成的两段或多段 嵌段共聚物;所述前段聚合物包括聚苯乙烯、聚乙烯、烯丙基聚氧乙烯醚、聚乙烯基吡咯烷 酮以及聚丁烯中的一种或多种。
[0038] 其中,所述空隙结构402为线条状(如图2所示)或孔洞状(如图3所示)。
[0039] 其中,所述空隙结构呈阵列排布。
[0040] 如图1所示的相变存储器的制造方法包括步骤:
[0041] (1)通过沉积工艺形成底电极100 ;
[0042] (2)通过沉积工艺在底电极100上制备相变材料200,同时对所述相变材料200进 行刻蚀加工获得所需的形状;
[0043] (3)通过沉积工艺在相变材料200上制备绝缘层300,所述绝缘层300包覆所述相 变材料200 ;
[0044] (4)通过刻蚀工艺在所述绝缘层300上设置一孔槽,所述孔槽连通至所述相变材 料200 ;本实施例中,所示孔槽的形状为圆形,直径为100?300nm ;
[0045] (5)在所述孔槽中制备加热电极400、500 ;
[0046] (6)通过沉积工艺在所述加热电极以及所述绝缘层300上制备顶电极600,获得所 述相变存储器;
[0047] 其中,步骤(5)制备加热电极具体包括如下的步骤:
[0048] (a)制备嵌段共聚物混合溶液:首先将前段聚合物-聚二甲基硅氧烷溶于甲苯和 庚烷的混合溶剂中,获得嵌段共聚物混合溶液;所述前段聚合物包括聚苯乙烯、聚乙烯、烯 丙基聚氧乙烯醚、聚乙烯基吡咯烷酮以及聚丁烯中的一种或多种;
[0049] 本实施中采用聚苯乙烯作为前段聚合物进行详细的说明:将分子量为45. 5kg πιοΓ1,聚二甲基硅氧烷的体积分数为33. 5%的聚苯乙烯-聚二甲基硅氧烷嵌段共聚物溶 于甲苯和庚烷的混合溶剂中,所述混合溶剂中甲苯的体积分数为70%?100%,获得聚苯乙 烯-聚二甲基硅氧烷嵌段共聚物混合溶液;其中,嵌段聚合物的浓度为1. 5wt% ;
[0050] 需要说明的是,本实施例仅仅是采用聚苯乙烯作为前段聚合物进行详细的说明。 本发明人经过实验证实,当所述的前段聚合物为聚乙烯、烯丙基聚氧乙烯醚、聚乙烯基吡咯 烷酮以及聚丁烯中的一种或者是聚苯乙烯、聚乙烯、烯丙基聚氧乙烯醚、聚乙烯基吡咯烷酮 以及聚丁烯中的两种以上时,所获得的效果跟采用聚苯乙烯作为前段聚合物是相似的。
[0051] (b)将所示嵌段共聚物混合溶液旋涂于所述孔槽内,使嵌段共聚物混合溶液注入 所述孔槽涂覆于所述相变材料200上;
[0052] (c)应用溶剂退火工艺使涂覆于所述相变材料200上的嵌段共聚物混合溶液形成 固体薄膜;
[0053] 本实施例中溶剂退火工艺是在一密闭的玻璃容器中进行的,所述密闭的玻璃容器 具有一反应腔室;在进行溶剂退火工艺时,先把所述嵌段共聚物混合溶液旋注入到反应腔 室中,然后将已经在孔槽上涂覆嵌段共聚物混合溶液的相变存储器器件浸没于反应腔室 的混合溶液中,并对密闭的容器抽真空使反应腔室具有ΚΓ 1?ΚΓ2的真空度;最后在室温 的条件下进行溶剂退火3?4小时,使涂覆于所述相变材料200上的嵌段共聚物混合溶液 形成固体薄膜,所述固体薄膜的厚度为1?5 μ m ;
[0054] (d)在CF4的气氛中、50W的功率下应用反应离子蚀刻工艺对所述固体薄膜进行刻 蚀,去除固体薄膜中嵌段共聚物的前段聚合物部分,仅保留聚二甲基硅氧烷,形成具有空隙 结构的固体薄膜;
[0055] (e)应用氧等离子刻蚀工艺在90W功率下刻蚀22s,使所述具有空隙结构的固体薄 膜氧化,形成图案化绝缘层401,获得所述电极的第一层400,如图2所示;
[0056] (f)在所述第一层400上应用沉积工艺制备所述第二层500,所述第二层500的材 料为钨,当然,在另外的实施方式中,所述第二层500的材料也可以是钛或者是钨或钛的 氮化物。
[0057] 在本发明中,通过改变所述混合溶剂中的甲苯的体积分数,可以达到调节所获得 的图案化绝缘层的形貌类型,甲苯的体积分数是指甲苯体积占所述混合溶剂总体积的比 例,也可以通过甲苯体积和庚烷体积ν Ηερ的比νΜ/νΗερ来表示;本案发明人经过多次探 索实验,得出了如表1所示的ν Τ()1/ν_的比值与图案化绝缘层的形貌类型的变化规律;
[0058] 需要说明的是,在VM/VHep的比值取值在变化的边界值1或2. 33附近时,图案化绝 缘层的形貌类型并不是单一的一种形状,有可能出现两种形貌类型共存的情况。
[0059] 表 1
[0060]

【权利要求】
1. 一种相变存储器的加热电极,所述电极包括: 第一层,连接到所述相变存储器的相变材料;所述第一层包括由嵌段共聚物氧化形成 的图案化绝缘层;所述图案化绝缘层具有空隙结构,其空隙率为10%?65% ; 第二层,连接到所述第一层,并且透过所述图案化绝缘层的空隙结构与所述相变材料 连接;所述第二层的材料包括钨、钛以及钨或钛的氮化物。
2. 根据权利要求1所述相变存储器的加热电极,其特征在于:所述嵌段共聚物为主要 由前段聚合物-聚二甲基硅氧烷形成的两段或多段嵌段共聚物。
3. 根据权利要求2所述相变存储器的加热电极,其特征在于:所述前段聚合物包括聚 苯乙烯、聚乙烯、烯丙基聚氧乙烯醚、聚乙烯基吡咯烷酮以及聚丁烯中的一种或多种。
4. 根据权利要求1所述相变存储器的加热电极,其特征在于:所述空隙结构为线条状 或孔洞状。
5. 根据权利要求4所述相变存储器的加热电极,其特征在于:所述空隙结构呈阵列排 布。
6. -种如权利要求1所述的相变存储器的加热电极的制备方法,其中,所述相变存储 器包括相变材料以及包覆所述相变材料的绝缘层,所述绝缘层上设置有一孔槽连通至所述 相变材料,其特征在于:该方法包括步骤: (a) 制备嵌段共聚物混合溶液:将前段聚合物-聚二甲基硅氧烷溶于甲苯和庚烷的混 合溶剂中,获得嵌段共聚物混合溶液; (b) 将嵌段共聚物混合溶液旋涂于所述孔槽上,使嵌段共聚物混合溶液注入所述孔槽 涂覆于所述相变材料上; (c) 应用溶剂退火工艺使涂覆于所述相变材料上的嵌段共聚物混合溶液形成固体薄 膜; (d) 应用反应离子蚀刻工艺对所述固体薄膜进行刻蚀,形成具有空隙结构的固体薄 膜; (e) 应用氧等离子刻蚀工艺使所述具有空隙结构的固体薄膜氧化,形成图案化绝缘层, 获得所述电极的第一层; (f) 在所述第一层上应用沉积工艺制备所述第二层,所述第二层的材料包括钨、钛以及 钨或钛的氮化物。
7. 根据权利要求6所述相变存储器的加热电极的制备方法,其特征在于:所述前段聚 合物包括聚苯乙烯、聚乙烯、烯丙基聚氧乙烯醚、聚乙烯基吡咯烷酮以及聚丁烯中的一种或 多种。
8. 根据权利要求6所述相变存储器的加热电极的制备方法,其特征在于:所述溶剂退 火工艺是在一密闭的容器中,并在常温下进行,退火的时间为3?4小时;所述溶剂为所述 嵌段共聚物混合溶液。
9. 根据权利要求6所述相变存储器的加热电极的制备方法,其特征在于:通过改变所 述混合溶剂中的甲苯的体积分数来调节所述图案化绝缘层的形貌类型。
10. 根据权利要求9所述相变存储器的加热电极的制备方法,其特征在于:所述甲苯的 体积分数的范围是50%?100%。
11. 根据权利要求8所述相变存储器的加热电极的制备方法,其特征在于:在进行溶剂 退火工艺时,通过改变溶剂表面积S与腔室体积V比值s/ν来调节所述图案化绝缘层的线 宽或直径;其中,所述溶剂表面积S指的是将相变存储器器件放入装有反应溶剂的反应腔 室后,所述反应腔室中反应溶剂的表面积;所述腔室体积V是指整个反应腔室的体积。
【文档编号】H01L45/00GK104300081SQ201310300397
【公开日】2015年1月21日 申请日期:2013年7月15日 优先权日:2013年7月15日
【发明者】程国胜, 王龙, 孔涛, 卫芬芬, 黄荣, 张 杰 申请人:中国科学院苏州纳米技术与纳米仿生研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1