一种柔性石墨烯纤维基非对称超级电容器的制备方法

文档序号:7049653阅读:201来源:国知局
一种柔性石墨烯纤维基非对称超级电容器的制备方法
【专利摘要】本发明公开了一种柔性石墨烯纤维基非对称超级电容器的制备方法,首先通过湿法纺丝、还原以及与高锰酸钾溶液反应得到二氧化锰修饰的石墨烯纤维;再通过湿法纺丝和还原得到石墨烯/碳纳米管复合纤维;最后将两根长度与直径相等的二氧化锰修饰的石墨烯纤维与石墨烯/碳纳米管复合纤维两端分别固定在基底和导电集流体上,表面包覆凝胶电解质后得到一种柔性石墨烯纤维基非对称超级电容器。本发明操作简便、成本低,适于规模化生产,在保证超级电容器高比电容的同时,可扩大超级电容器的工作电压窗口,从而大幅提高超级电容器的能量密度,加之以石墨烯为基础的纤维具有良好的柔性,可用于高能量柔性储能材料、器件领域。
【专利说明】一种柔性石墨烯纤维基非对称超级电容器的制备方法
【技术领域】
[0001]本发明涉及一种柔性石墨烯纤维基非对称超级电容器的制备方法。
【背景技术】
[0002]超级电容器,又称电化学电容器,以其超高的功率密度、循环稳定性成为又一重要的能量储存方式。然而由于能量密度较低,目前商业化的超级电容器仍然只能作为电池的有力补充在快速充放电领域里发挥作用,如何提高超级电容器的能量密度一直是储能领域的一项重要课题。根据公式必=1/2CZ可知,电容值与工作电压是决定电容器能量密度的两大因素。提高超级电容器的比电容是目前提高其能量密度的最常见方法。近来,通过组装非对称超级电容器以扩大工作电压窗口,进而提高其能量密度也越来越受到研究者的关注。
[0003]石墨烯是碳原子以Sp2杂化形式连接而成的二维碳原子层,其厚度只有0.34 nm,是目前发现的最薄的二维纳米材料。自2004年被发现以来,已成为材料科学研究与工业生产领域的重要研究对象。经研究发现,石墨烯具有超高强度、极大的比表面积,高的热导率以及载流子迁移率等多种优异的特质,使其在超级电容器材料领域具有广泛的应用前景。以氧化石墨烯为构筑单元可以制备高性能多功能宏观石墨烯材料。继二维石墨烯薄膜和三维石墨烯气凝胶之后,一维石墨烯纤维也通过氧化石墨烯液晶湿法纺丝连续制备出来。尽管以二维石墨烯薄膜和三维石墨烯气凝胶为基础的非对称柔性超级电容器已被相继报道,但是制备更适用于柔性、微型的器件的一维石墨烯纤维基柔性非对称超级电容器仍然是一个难点。
[0004]

【发明内容】

[0005]本发明的目的是克服现有技术的不足,提供一种柔性石墨烯纤维基非对称超级电容器的制备方法,提高一维纤维状超级电容器的电化学性能。
[0006]一种柔性石墨烯纤维基非对称超级电容器的制备方法步骤如下:
O将氧化石墨烯原料溶于溶剂,得到质量百分含量在0.1%-3%的氧化石墨烯纺丝浆
液;
2)将步骤I得到的氧化石墨烯纺丝浆液以10-2000μ L/min的挤出速度通过直径为10-5000 μ m的纺丝喷头,在5-35°C的凝固液中停留l_3600s,洗涤,真空干燥,得到氧化石
墨烯纤维;
3)将步骤2得到的氧化石墨烯纤维置于还原剂中或高温热处理,得到石墨烯纤维;
4)将步骤3得到的石墨烯纤维浸泡在浓度为0.Ι-lg/L,温度在5-70°C的高锰酸钾水溶液中,反应10min-24h,取出洗漆,真空干燥,得到二氧化猛修饰的石墨烯纤维;
5)将氧化石墨烯和羧化多壁碳纳米管溶于溶剂并搅拌Ih以上,得到氧化石墨烯/碳纳米管复合纺丝浆液;氧化石墨烯和羧化多壁碳纳米管的质量配比为1-297:3,氧化石墨烯与溶剂的质量配比为0.1-3:100 ;
6)将步骤5得到的氧化石墨烯/碳纳米管复合纺丝浆液以10-2000μ L/min的挤出速度通过直径为10-5000 μ m的纺丝喷头,在5-35°C的凝固液中停留l_3600s,洗涤,真空干燥,得到氧化石墨烯/碳纳米管复合纤维;
7)将步骤6得到的氧化石墨烯/碳纳米管复合纤维置于还原剂中或高温热处理,得到石墨烯/碳纳米管复合纤维;
8)将长度与直径相等的步骤4得到的二氧化锰修饰的石墨烯纤维与步骤7得到的石墨烯/碳纳米管复合纤维分别固定在两根导电金属丝上,然后将两根导电金属丝密封在装有电解液的柔性小池子内;或者,将长度与直径相等的步骤4得到的二氧化锰修饰的石墨烯纤维与步骤7得到的石墨烯/碳纳米管复合纤维分别用凝胶电解质包覆、扭绞、再包覆并干燥;从而得到以二氧化锰修饰的石墨烯纤维为正极,以石墨烯/碳纳米管复合纤维为负极的柔性非对称超级电容器。
[0007]进一步地,所述步骤I和步骤5中的溶剂可以由去离子水、N-甲基-2-吡咯烷酮、N, N-二甲基甲酰胺、N,N-二甲基乙酰胺、二甲亚砜、环丁砜中的任意一种或多种按任意配比混合组成。
[0008]进一步地,所述步骤2和步骤6的凝固液为水系凝固剂或有机系凝固剂;所述水系凝固剂的溶剂由乙醇与水按体积比1-9:3组成,溶质为氯化钙或醋酸锰,溶质与溶剂的的质量比为1-10:100 ;所述有机系凝固剂由饱和NaOH的甲醇溶液、饱和NaOH的乙醇溶液、饱和KOH的甲醇溶液、饱和KOH的乙醇溶液、乙醚、乙酸乙酯、丙酮、石油醚的一种或多种按任意配比混合组成。
[0009]进一步地,所述步骤2和步骤6中,用洗涤剂进行洗涤,所述洗涤剂由乙醇、甲醇、丙酮、水的一种或多种按任意配比混合组成。
[0010]进一步地,所述步骤3和步骤7中的还原剂选自碘化氢水溶液、抗坏血酸钠水溶液、水合肼蒸汽;所述碘化氢水溶液和抗坏血酸钠水溶液的体积百分含量为5%-50% ;还原反应温度为85-95°C ;所述高温热处理为惰性氮气或氩气气氛下800-1000°C还原8_12小时。
[0011]进一步地,所述步骤8中,所述的石墨烯纤维、石墨烯/碳纳米管复合纤维直径在5-200微米。
[0012]进一步地,所述步骤4得到的二氧化锰修饰的石墨烯纤维中,二氧化锰层厚度在0.1-1微米。
[0013]进一步地,所述步骤8中,所述的导电金属丝的材料选自金、银、铜、钼、镍等。
[0014]进一步地,所述步骤8中,所述的封装在小池子内的电解质溶液选自:lmol/L硫酸钠水溶液、l_6mol/L氢氧化钾水溶液、lmol/L四乙基四氟硼酸铵的乙腈溶液、lmol/L四乙基四氟硼酸铵的碳酸丙烯酯溶液。
[0015]进一步地,所述步骤8中,所述的凝胶电解质由聚乙烯醇、无水氯化锂和水按质量配比1:2:10混合组成。
[0016]本发明的有益效果是:本发明阐述了一种新型柔性石墨烯纤维基非对称超级电容器的制备方法,这类纤维基电容器由于结合了二氧化锰良好的赝电容性能和石墨烯良好的导电性,因此在电化学性能方面表现为高比电容;且通过组装成非对称电容器扩大了工作电压,因此又表现为高能量密度,是已报道纯石墨烯纤维基电容器能量密度的70倍。该纤维基电容器具有良好的柔韧性及弯折稳定性,在便携设备及器件制备上是传统超级电容器的有力补充。且采用的石墨烯湿法纺丝技术适于大规模、连续化生产,为生产可编织、柔性超级电容器铺平了道路。
【专利附图】

【附图说明】
[0017]图1是本发明制备的柔性石墨烯纤维基非对称超级电容器截面的扫描电子显微镜照片;
图2是本发明制备的柔性石墨烯纤维基非对称超级电容器表面的扫描电子显微镜照
片;
图3是本发明制备的柔性石墨烯纤维基非对称超级电容器中两根电极在硫酸钠电解质中以银/氯化银为参比电极的循环伏安曲线;
图4是本发明制备的柔性石墨烯纤维基非对称超级电容器在不同工作电压窗口下的循环伏安曲线;
图5是本发明制备的柔性石墨烯纤维基非对称超级电容器在1.6V操作电压下不同扫描速率的循环伏安曲线;
图6是本发明制备的柔性石墨烯纤维基非对称超级电容器在1.6V操作电压,电流密度0.1mA/cm2下的恒流充放电曲线;
图7是本发明制备的柔性石墨烯纤维基非对称超级电容器在舒展与弯折状态下的循环伏安曲线,其中的(i)和(ii)分别为舒展和弯折状态下超级电容器的实物照片;
图8是本发明制备的柔性石墨烯纤维基非对称超级电容器在I mA/cm2的恒流充放电条件下的循环性能曲线。
【具体实施方式】
[0018]柔性石墨烯纤维基非对称超级电容器的制备方法的步骤如下:
O将氧化石墨烯原料溶于溶剂,得到质量百分含量在0.1%-3%的氧化石墨烯纺丝浆
液;
所述的溶剂可以由去离子水、N-甲基-2-吡咯烷酮、N, N- 二甲基甲酰胺、N, N- 二甲基乙酰胺、二甲亚砜、环丁砜中的任意一种或多种按任意配比混合组成。
[0019]2)将步骤I得到的氧化石墨烯纺丝浆液以10-2000 μ L/min的挤出速度通过直径为10-5000 μ m的纺丝喷头,在5-35°C的凝固液中停留l_3600s,洗涤,真空干燥,得到氧化石墨烯纤维;
所述的凝固液为水系凝固剂或有机系凝固剂;所述水系凝固剂的溶剂由乙醇与水按体积比1-9:3组成,溶质为氯化钙或醋酸锰,溶质与溶剂的的质量比为1-10:100 ;所述有机系凝固剂由饱和NaOH的甲醇溶液、饱和NaOH的乙醇溶液、饱和KOH的甲醇溶液、饱和KOH的乙醇溶液、乙醚、乙酸乙酯、丙酮、石油醚的一种或多种按任意配比混合组成。
[0020]所述洗涤剂由乙醇、甲醇、丙酮、水的一种或多种按任意配比混合组成。
[0021]3)将步骤2得到的氧化石墨烯纤维置于还原剂中或高温热处理,得到石墨烯纤维; 所述还原剂选自碘化氢水溶液、抗坏血酸钠水溶液、水合肼蒸汽;所述碘化氢水溶液和抗坏血酸钠水溶液的体积百分含量为5%-50% ;还原反应温度为85-95°C ;所述高温热处理为惰性氮气或氩气气氛下800-1000°C还原8-12小时。
[0022]4)将步骤3得到的石墨烯纤维浸泡在浓度为0.Ι-lg/L,温度在5_70°C的高锰酸钾水溶液中,反应10min-24h,取出洗涤,真空干燥,得到二氧化锰修饰的石墨烯纤维;
所述的二氧化锰修饰的石墨烯纤维中,二氧化锰层厚度在0.1-1微米。
[0023]5)将氧化石墨烯和羧化多壁碳纳米管溶于溶剂并搅拌Ih以上,得到氧化石墨烯/碳纳米管复合纺丝浆液;氧化石墨烯和羧化多壁碳纳米管的质量配比为1-297:3,氧化石墨烯与溶剂的质量配比为0.1-3:100 ;
所述的溶剂可以由去离子水、N-甲基-2-吡咯烷酮、N, N- 二甲基甲酰胺、N, N- 二甲基乙酰胺、二甲亚砜、环丁砜中的任意一种或多种按任意配比混合组成。
[0024]6)将步骤5得到的氧化石墨烯/碳纳米管复合纺丝浆液以10-2000 μ L/min的挤出速度通过直径为10-5000 μ m的纺丝喷头,在5-35°C的凝固液中停留l_3600s,洗涤,真空干燥,得到氧化石墨烯/碳纳米管复合纤维;
所述的凝固液为水系凝固剂或有机系凝固剂;所述水系凝固剂的溶剂由乙醇与水按体积比1-9:3组成,溶质为氯化钙或醋酸锰,溶质与溶剂的的质量比为1-10:100 ;所述有机系凝固剂由饱和NaOH的甲醇溶液、饱和NaOH的乙醇溶液、饱和KOH的甲醇溶液、饱和KOH的乙醇溶液、乙醚、乙酸乙酯、丙酮、石油醚的一种或多种按任意配比混合组成。
[0025]所述洗涤剂由乙醇、甲醇、丙酮、水的一种或多种按任意配比混合组成。
[0026]7)将步骤6得到的氧化石墨烯/碳纳米管复合纤维置于还原剂中或高温热处理,得到石墨烯/碳纳米管复合纤维;
所述还原剂选自碘化氢水溶液、抗坏血酸钠水溶液、水合肼蒸汽;所述碘化氢水溶液和抗坏血酸钠水溶液的体积百分含量为5%-50% ;还原反应温度为85-95°C ;所述高温热处理为惰性氮气或氩气气氛下800-1000°C还原8-12小时。
[0027]8)将长度与直径相等的步骤4得到的二氧化锰修饰的石墨烯纤维与步骤7得到的石墨烯/碳纳米管复合纤维分别固定在两根导电金属丝上,然后将两根导电金属丝密封在装有电解液的柔性小池子内;或者,将长度与直径相等的步骤4得到的二氧化锰修饰的石墨烯纤维与步骤7得到的石墨烯/碳纳米管复合纤维分别用凝胶电解质包覆、扭绞、再包覆并干燥;从而得到以二氧化锰修饰的石墨烯纤维为正极,以石墨烯/碳纳米管复合纤维为负极的柔性非对称超级电容器。
[0028]所述的石墨烯纤维、石墨烯/碳纳米管复合纤维直径在5-200微米。
[0029]所述的导电金属丝的材料选自金、银、铜、钼、镍等。
[0030]所述的封装在小池子内的电解质溶液选自:lmol/L硫酸钠水溶液、l_6mol/L氢氧化钾水溶液、lmol/L四乙基四氟硼酸铵的乙腈溶液、lmol/L四乙基四氟硼酸铵的碳酸丙烯酯溶液。
[0031]所述的凝胶电解质由聚乙烯醇、无水氯化锂和水按质量配比1:2:10混合组成。
[0032]下面通过实施例对本发明进行具体描述,本实施例只用于对本发明做进一步的说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的内容做出一些非本质的改变和调整,均属于本发明的保护范围。[0033]实施例1:
1)将氧化石墨烯原料溶于去离子水,得到质量百分含量在0.1%
2)将步骤I得到的氧化石墨烯纺丝浆液以10μ L/min的挤出速度通过直径为10 μ m的纺丝喷头,在35°C的水系凝固液中停留600s,组成水系凝固液的溶剂为体积比为1:3的乙醇与水的混合液,溶质氯化钙与溶剂的质量比为1:100,再用洗涤剂进行洗涤,洗涤剂由乙醇组成,80°C真空干燥,得到氧化石墨烯纤维;
3)将步骤2得到的氧化石墨烯纤维置于肼蒸汽中90°C还原lh,得到石墨烯纤维;
4)将步骤3得到的石墨烯纤维浸泡在浓度为0.lg/L,温度在5°C的高锰酸钾水溶液中,反应24h,取出洗涤,80°C真空干燥,得到二氧化锰修饰的石墨烯纤维;
5)将氧化石墨烯和羧化多壁碳纳米管溶于去离子水并搅拌Ih以上,得到氧化石墨烯/碳纳米管复合纺丝浆液;氧化石墨烯和羧化多壁碳纳米管的质量配比为1:3,氧化石墨烯与溶剂的质量配比为0.1:100 ;
6)将步骤5得到的氧化石墨烯/碳纳米管复合纺丝衆液以10μ L/min的挤出速度通过直径为10 μ m的纺丝喷头,在35°C的水系凝固液中停留600s,组成水系凝固液的溶剂为体积比为1:3的乙醇与水的混合液,溶质氯化钙与溶剂的质量比为1:100,再用洗涤剂进行洗涤,洗涤剂由乙醇组成,80°C真空干燥,得到氧化石墨烯/碳纳米管复合纤维;
7)将步骤6得到的氧化石墨烯/碳纳米管复合纤维置于肼蒸汽中95°C还原lh,得到石墨烯/碳纳米管复合纤维;
8)将长度与直径相等的步骤4得到的二氧化锰修饰的石墨烯纤维与步骤7得到的石墨烯/碳纳米管复合纤维分别固定在两根导电钼丝上,然后将两根导电金属丝密封在装有lmol/L硫酸钠电解液的柔性小池子内,从而得到以二氧化锰修饰的石墨烯纤维为正极,以石墨烯/碳纳米管复合纤维为负极的柔性非对称超级电容器。
[0034]该非对称纤维电容器利用循环伏安法测定10 mV/s扫描速率下的整个电容器面积比电容为23.5 mF/cm2,能量密度为8.1 μ ffh/cm2 ;恒流充放电法测得该电容器在0.1 mA/cm2电流密度下整个电容器面积比电容为17.2mF/cm2,能量密度为4.6 μ Wh/cm2。
[0035]实施例2:
1)将氧化石墨烯原料溶于去离子水,得到质量百分含量在3%的氧化石墨烯纺丝浆液;
2)将步骤I得到的氧化石墨烯纺丝浆液以2000μL/min的挤出速度通过直径为5000 μ m的纺丝喷头,在5°C的有机系凝固液中停留300s,组成有机凝固液的溶剂为丙酮,再60°C真空干燥,得到氧化石墨烯纤维;
3)将步骤2得到的氧化石墨烯纤维置于50%抗坏血酸钠水溶液中85°C得到石墨烯纤
维;
4)将步骤3得到的石墨烯纤维浸泡在浓度为lg/L,温度在70°C的高锰酸钾水溶液中,反应1min,取出洗漆,80°C真空干燥,得到二氧化猛修饰的石墨烯纤维;
5)将氧化石墨烯和羧化多壁碳纳米管溶于去离子水并搅拌Ih以上,得到氧化石墨烯/碳纳米管复合纺丝浆液;氧化石墨烯和羧化多壁碳纳米管的质量配比为99:1,氧化石墨烯与溶剂的质量配比为3:100 ;
6)将步骤5得到的氧化石墨烯/碳纳米管复合纺丝浆液以2000μ L/min的挤出速度通过直径为5000 μ m的纺丝喷头,在5°C的有机系凝固液中停留300s,组成有机凝固液的溶剂为丙酮,再60V真空干燥,得到氧化石墨烯/碳纳米管复合纤维;
7)将步骤6得到的氧化石墨烯/碳纳米管复合纤维置于50%抗坏血酸钠水溶液中85°C得到石墨烯/碳纳米管复合纤维;
8)将长度与直径相等的步骤4得到的二氧化锰修饰的石墨烯纤维与步骤7得到的石墨烯/碳纳米管复合纤维分别用凝胶电解质包覆、扭绞、再包覆并干燥,凝胶电解质由聚乙烯醇、无水氯化锂和水按质量配比1:2:10混合组成;从而得到以二氧化锰修饰的石墨烯纤维为正极,以石墨烯/碳纳米管复合纤维为负极的柔性非对称超级电容器。
[0036]该非对称纤维电容器利用循环伏安法测定10 mV/s扫描速率下的整个电容器面积比电容为21.4 mF/cm2,能量密度为7.3 μ ffh/cm2 ;恒流充放电法测得该电容器在0.1 mA/cm2电流密度下整个电容器面积比电容为15.7 mF/cm2,能量密度为3.9 μ Wh/cm2。
[0037]实施例3:
1)将氧化石墨烯原料溶于去离子水,得到质量百分含量在0.5%
2)将步骤I得到的氧化石墨烯纺丝浆液以250μ L/min的挤出速度通过直径为500 μ m的纺丝喷头,在20°C的水系凝固液中停留1200s,组成水系凝固液的溶剂为体积比为1:3的乙醇与水的混合液,溶质氯化钙与溶剂的质量比为5:100,再用洗涤剂进行洗涤,洗涤剂由乙醇组成,80°C真空干燥,得到氧化石墨烯纤维;
3)将步骤2得到的氧化石墨烯纤维置于25%的碘化氢水溶液中90°C下还原lh,得到石墨烯纤维;
4)将步骤3得到的石墨烯纤维浸泡在浓度为0.5g/L,温度在40°C的高锰酸钾水溶液中,反应5h,取出洗涤,80°C真空干燥,得到二氧化锰修饰的石墨烯纤维;
5)将氧化石墨烯和羧化多壁碳纳米管溶于去离子水并搅拌Ih以上,得到氧化石墨烯/碳纳米管复合纺丝浆液;氧化石墨烯和羧化多壁碳纳米管的质量配比为1:1,氧化石墨烯与溶剂的质量配比为0.5:100 ;
6)将步骤5得到的氧化石墨烯/碳纳米管复合纺丝浆液以250μ L/min的挤出速度通过直径为500 μ m的纺丝喷头,在20°C的水系凝固液中停留1200s,组成水系凝固液的溶剂为体积比为1:3的乙醇与水的混合液,溶质氯化钙与溶剂的质量比为5:100,再用洗涤剂进行洗涤,洗涤剂由乙醇组成,80°C真空干燥,得到氧化石墨烯/碳纳米管复合纤维;
7)将步骤6得到的氧化石墨烯/碳纳米管复合纤维置于25%的碘化氢水溶液中90°C下还原lh,得到石墨烯/碳纳米管复合纤维;
8)将长度与直径相等的步骤4得到的二氧化锰修饰的石墨烯纤维与步骤7得到的石墨烯/碳纳米管复合纤维分别用凝胶电解质包覆、扭绞、再包覆并干燥,凝胶电解质由聚乙烯醇、无水氯化锂和水按质量配比1:2:10混合组成;从而得到以二氧化锰修饰的石墨烯纤维为正极,以石墨烯/碳纳米管复合纤维为负极的柔性非对称超级电容器。
[0038]该非对称纤维电容器利用循环伏安法测定10 mV/s扫描速率下的整个电容器面积比电容为33.6 mF/cm2,能量密度为11.9 μ ffh/cm2 ;恒流充放电法测得该电容器在0.1 mA/cm2电流密度下整个电容器面积比电容为16.8 mF/cm2,能量密度为5.5 μ Wh/cm2。
【权利要求】
1.一种柔性石墨烯纤维基非对称超级电容器的制备方法,其特征在于,步骤如下: O将氧化石墨烯原料溶于溶剂,得到质量百分含量在0.1%-3%的氧化石墨烯纺丝浆液; 2)将步骤I得到的氧化石墨烯纺丝浆液以10-2000μ L/min的挤出速度通过直径为10-5000 μ m的纺丝喷头,在5-35°C的凝固液中停留l_3600s,洗涤,真空干燥,得到氧化石墨烯纤维; 3)将步骤2得到的氧化石墨烯纤维置于还原剂中或高温热处理,得到石墨烯纤维; 4)将步骤3得到的石墨烯纤维浸泡在浓度为0.Ι-lg/L,温度在5-70°C的高锰酸钾水溶液中,反应10min-24h,取出洗漆,真空干燥,得到二氧化猛修饰的石墨烯纤维; 5)将氧化石墨烯和羧化多壁碳纳米管溶于溶剂并搅拌Ih以上,得到氧化石墨烯/碳纳米管复合纺丝浆液;氧化石墨烯和羧化多壁碳纳米管的质量配比为1-297:3,氧化石墨烯与溶剂的质量配比为0.1-3:100 ; 6)将步骤5得到的氧化石墨烯/碳纳米管复合纺丝浆液以10-2000μ L/min的挤出速度通过直径为10-5000 μ m的纺丝喷头,在5-35°C的凝固液中停留l_3600s,洗涤,真空干燥,得到氧化石墨烯/碳纳米管复合纤维; 7)将步骤6得到的氧化石墨烯/碳纳米管复合纤维置于还原剂中或高温热处理,得到石墨烯/碳纳米管复合 纤维; 8)将长度与直径相等的步骤4得到的二氧化锰修饰的石墨烯纤维与步骤7得到的石墨烯/碳纳米管复合纤维分别固定在两根导电金属丝上,然后将两根导电金属丝密封在装有电解液的柔性小池子内;或者,将长度与直径相等的步骤4得到的二氧化锰修饰的石墨烯纤维与步骤7得到的石墨烯/碳纳米管复合纤维分别用凝胶电解质包覆、扭绞、再包覆并干燥;从而得到以二氧化锰修饰的石墨烯纤维为正极,以石墨烯/碳纳米管复合纤维为负极的柔性非对称超级电容器。
2.如权利要求1所述的一种柔性石墨烯纤维基非对称超级电容器的制备方法,其特征在于:所述步骤I和步骤5中的溶剂可以由去离子水、N-甲基-2-吡咯烷酮、N, N- 二甲基甲酰胺、N,N-二甲基乙酰胺、二甲亚砜、环丁砜中的任意一种或多种按任意配比混合组成。
3.如权利要求1所述的一种柔性石墨烯纤维基非对称超级电容器的制备方法,其特征在于:所述步骤2和步骤6的凝固液为水系凝固剂或有机系凝固剂;所述水系凝固剂的溶剂由乙醇与水按体积比1-9:3组成,溶质为氯化钙或醋酸锰,溶质与溶剂的的质量比为1-10:100 ;所述有机系凝固剂由饱和NaOH的甲醇溶液、饱和NaOH的乙醇溶液、饱和KOH的甲醇溶液、饱和KOH的乙醇溶液、乙醚、乙酸乙酯、丙酮、石油醚的一种或多种按任意配比混合组成。
4.如权利要求1所述的一种柔性石墨烯纤维基非对称超级电容器的制备方法,其特征在于:所述步骤2和步骤6中,用洗涤剂进行洗涤,所述洗涤剂由乙醇、甲醇、丙酮、水的一种或多种按任意配比混合组成。
5.如权利要求1所述的一种柔性石墨烯纤维基非对称超级电容器的制备方法,其特征在于:所述步骤3和步骤7中的还原剂选自碘化氢水溶液、抗坏血酸钠水溶液、水合肼蒸汽;所述碘化氢水溶液和抗坏血酸钠水溶液的体积百分含量为5%-50% ;还原反应温度为85-950C ;所述高温热处理为惰性氮气或氩气气氛下800-1000°C还原8_12小时。
6.如权利要求1所述的一种柔性石墨烯纤维基非对称超级电容器的制备方法,其特征在于:所述步骤8中,所述的石墨烯纤维、石墨烯/碳纳米管复合纤维直径在5-200微米。
7.如权利要求1所述的一种柔性石墨烯纤维基非对称超级电容器的制备方法,其特征在于:所述步骤4得到的二氧化锰修饰的石墨烯纤维中,二氧化锰层厚度在0.1-1微米。
8.如权利要求1所述的一种柔性石墨烯纤维基非对称超级电容器的制备方法,其特征在于:所述步骤8中,所述的导电金属丝的材料选自金、银、铜、钼、镍等。
9.如权利要求1所述的一种柔性石墨烯纤维基非对称超级电容器的制备方法,其特征在于:所述步骤8中,所述的封装在小池子内的电解质溶液选自:lmol/L硫酸钠水溶液、l-6mol/L氢氧化钾水溶液、lmol/L四乙基四氟硼酸铵的乙腈溶液、lmol/L四乙基四氟硼酸铵的碳酸丙烯酯溶液。
10.如权利要求1所述的一种柔性石墨烯纤维基非对称超级电容器的制备方法,其特征在于:所述步骤8中,所述的凝胶电解质由聚乙烯醇、无水氯化锂和水按质量配比1:2:10混合组成 。
【文档编号】H01G11/84GK104036970SQ201410233351
【公开日】2014年9月10日 申请日期:2014年5月29日 优先权日:2014年5月29日
【发明者】高超, 郑冰娜 申请人:浙江大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1