复合材料成形体及电抗器的制作方法

文档序号:14204419阅读:254来源:国知局
复合材料成形体及电抗器的制作方法

本发明涉及电抗器。

本申请要求基于2015年8月20日的日本申请特愿2015-163251的优先权,并援用所述日本申请记载的全部记载内容。



背景技术:

例如,专利文献1所示的电抗器使用芯片,芯片由含有磁体粉末和树脂的复合材料(复合材料成形体)构成。该芯片具备:线圈配置部(内侧芯部),其在线圈的内侧插通;以及露出部(外侧芯部),其与线圈配置部一体成形,以覆盖线圈的端面的至少一部分的方式配置于线圈的外侧。该芯片的制造通过将磁体粉末和树脂的混合物填充到模具并使树脂固化(硬化)而进行。模具使用芯片的脱模方向成为沿着线圈配置部的长度方向的方向、即与由线圈励磁的磁通平行的方向的模具。

现有技术文献

专利文献

专利文献1:日本特开2014-239120号公报



技术实现要素:

本发明的复合材料成形体,含有软磁性粉末和以分散的状态内包所述软磁性粉末的树脂,所述复合材料成形体具备:

分型线,其与将所述复合材料成形体成形的模具的分型面对应;以及

内侧芯部,其配置于线圈的内侧,

在将所述内侧芯部的表面中、沿着由所述线圈在所述内侧芯部励磁的磁通的周向的面作为环绕面时,

所述分型线以将所述环绕面的周向切断的方式形成。

本发明的电抗器具备将绕组线卷绕而构成的线圈和配置有所述线圈的磁芯,

所述磁芯的至少一部分具备上述本发明的复合材料成形体。

附图说明

图1示出实施方式1的复合材料成形体,左图是从外端面侧观看的概要立体图,右图是从交链面侧观看的概要立体图。

图2示出实施方式1的电抗器,上图是概要立体图,下图是分解立体图。

具体实施方式

[本发明所要解决的课题]

期望具备由复合材料成形体构成的芯的电抗器的进一步低损失化。

因此,目的之一是提供能构建低损失的电抗器的复合材料成形体。

另外,目的之一是提供具备上述复合材料成形体的电抗器。

[本发明的效果]

本发明的复合材料成形体能构建低损失的电抗器。

本发明的电抗器为低损失。

《本发明的实施方式的说明》

本发明人在使用芯片的脱模方向沿着内侧芯部的长度方向的模具制造的现有的复合材料成形体中调查了低损失化的阻碍原因。其结果,得到以下见解。

(i)在复合材料成形体的与脱模时的模具内表面滑接的滑接区域形成有通过软磁性颗粒延展而使磁性颗粒彼此导通的膜状的导通部。

一般,复合材料成形体的树脂的含量与对软磁性粉末进行加压成形而成的压粉成形体相比要多,因此认为在脱模时通过与模具的内表面滑接不易使软磁性颗粒延展,不易形成如压粉成形体这样的软磁性颗粒彼此导通的膜状的导通部。但是,即使是该该复合材料成形体也形成有导通部。

(ii)复合材料成形体的脱模方向是与用线圈励磁的磁通平行的方向,因此在复合材料成形体的与磁通平行的全部面形成有导通部,涡电流沿着以磁通为中心的周向流动。

(iii)导通部的形成不是对损失增加不带来影响、实质上能忽视的程度,而是对损失增加较大地带来影响、即产生很大的涡流损耗的程度。

(iv)导通部即使在具备比纯铁硬而不易延展的fe基合金颗粒的软磁性粉末的情况下也可形成。

本发明人基于这些见解,通过对复合材料成形体的制造方法、具体为脱模方向进行锐意研讨,从而完成达到完成本发明。最初列记本发明的实施方式进行说明。

(1)本发明的一方式的复合材料成形体,

含有软磁性粉末和以分散的状态内包所述软磁性粉末的树脂,所述复合材料成形体具备:

分型线,其与将所述复合材料成形体成形的模具的分型面对应;以及

内侧芯部,其配置于线圈的内侧,

在将所述内侧芯部的表面中、沿着由所述线圈在所述内侧芯部励磁的磁通的周向的面作为环绕面时,

所述分型线以将所述环绕面的周向切断的方式形成。

根据上述构成,能构建低损失的电抗器。这是因为:在沿着磁通的周向的环绕面不易流过沿着该周向流动的涡电流,进而能将其切断,能减少涡流损耗。脱模方向与磁通平行的内侧芯部是该环绕面的整个面与模具的内表面滑接的滑接区域。因此,软磁性颗粒延展从而软磁性颗粒彼此导通的膜状的导通部形成于环绕面的整个面。通过该导通部,涡电流沿着环绕面的周向流动,因此涡流损耗增大。相对于此,在上述构成中,因为以将环绕面的周向切断的方式形成有分型线,所以环绕面的整个面不成为滑接区域,而隔着分型线在一方和另一方分别形成有不成为滑接区域的非滑接区域。这是因为:脱模方向是与分型线正交的方向。该非滑接区域实质上没有形成导通部,能将沿着环绕面的周向流动的涡电流切断,因此能减少涡流损耗。

(2)作为上述复合材料成形体的一方式可举出,具备在所述分型线上的至少一部分形成的所述树脂的重熔痕迹。

根据上述构成,在将复合材料成形体组装到线圈构建电抗器时,容易抑制重熔痕迹和线圈的接触。因此,容易抑制伴随该接触的线圈的绕组线的导体、有时包覆于其表面的绝缘包覆部的损伤。在此基础上,能充分保持重熔痕迹与线圈之间的间隔,使复合材料成形体与线圈之间容易绝缘。这是因为:重熔痕迹通过对分型线进行热处理而形成,因此与从复合材料成形体的表面朝向外侧突出的分型线的突出高度比较更低。

另外,根据上述构成,容易提高与对复合材料成形体的表面进行覆盖的树脂的贴紧性(接合性)。这是因为:由于重熔痕迹是通过热处理而形成,所以其表面粗糙度与热处理前相比容易变得粗糙,能增大树脂相对于重熔痕迹的接触面积。在使用复合材料成形体作为电抗器的磁芯的情况下,为了提高复合材料成形体的表面与线圈之间的绝缘性而有时在该表面形成树脂模塑部。

进一步地,根据上述构成,能抑制软磁性粉末的锈。这是因为:即使在分型线处软磁性粉末露出,也能通过重熔痕迹形成时的对分型线的热处理使树脂流动,能使该露出的软磁性粉末埋入到树脂。

(3)作为上述复合材料成形体的一方式可举出,具备在所述分型线上的至少一部分形成的断裂痕迹。

根据上述构成,在将复合材料成形体组装到线圈来构建电抗器时,容易抑制线圈或者线圈的绝缘包覆部的损伤,在此基础上容易使复合材料成形体与线圈之间绝缘。另外,容易提高与对复合材料成形体的表面进行覆盖的树脂的贴紧性(接合性)。

(4)作为上述复合材料成形体的一方式可举出,所述复合材料成形体具备:并列地配置的一对所述内侧芯部;以及外侧芯部,其配置于所述线圈的外侧,将这两个内侧芯部连接,形成有所述分型线的所述环绕面与所述一对内侧芯部的并列方向正交。

根据上述构成,涡电流不易流动,能构建低损失的电抗器。

(5)作为上述复合材料成形体的一方式可举出,所述软磁性粉末含有fe基合金的软磁性颗粒,fe基合金含有1.0质量%以上且8.0质量%以下的si。

关于含有1.0质量%以上的si的fe基合金,其电阻率高,容易减少涡流损耗。在此基础上,与纯铁比较更硬,因此在制造过程中不易导入形变,从而容易减少磁滞损耗,所以能更加减少铁损。关于含有8.0质量%以下的si的fe基合金,si的量不过度地多,容易同时实现低损失和高饱和磁化。

(6)作为上述复合材料成形体的一方式可举出,所述软磁性粉末相对于所述复合材料成形体整体的含量为30体积%以上且80体积%以下。

当上述含量为30体积%以上时,磁性成分的比例充分高,因此在使用该复合材料成形体构建电抗器的情况下容易提高饱和磁化。上述含量越高则树脂的含量越少,因此在上述滑接区域容易形成颗粒彼此导通的导通部。但是,通过具有上述非滑接区域,能减少涡流损耗。当上述含量为80体积%以下时,磁性成分的比例不过度地高,因此能提高软磁性颗粒彼此的绝缘性,能减少涡流损耗。

(7)作为上述复合材料成形体的一方式可举出,所述软磁性粉末的平均粒径为5μm以上且300μm以下。

当软磁性粉末的平均粒径为5μm以上时,不易凝结,容易使树脂充分地夹杂在粉末颗粒间,因此容易减少涡流损耗。当软磁性粉末的平均粒径为300μm以下时,不过度地大,因此能减少粉末颗粒自身的涡流损耗,进而能减少复合材料成形体的涡流损耗。在此基础上,可提高填充率,容易提高复合材料成形体的饱和磁化。

(8)本发明的一方式的电抗器,具备将绕组线卷绕而构成的线圈和配置有所述线圈的磁芯,

所述磁芯的至少一部分具备上述(1)至(7)中的任一个记载的复合材料成形体。

根据上述构成,具备能有效地减少涡流损耗的上述复合材料成形体,因此为低损失。

《本发明的实施方式的详情》

以下参照附图说明本发明的实施方式的详情。

《实施方式1》

〔复合材料成形体〕

主要参照图1说明实施方式1的复合材料成形体10。复合材料成形体10是将含有软磁性粉末和树脂的未固化的混合物的树脂固化(硬化)而成的,代表性地构成电抗器具备的磁芯的至少一部分。电抗器详细后述,例如具备图2所示的线圈2和磁芯3。在此,线圈2通过对将绕组线2w卷绕成螺旋状的一对卷绕部2a、2b相互以并列状态进行连接而构成。磁芯3通过将具有相同形状的两个芯部件30组合而构成为环状。这两个芯部件30均由复合材料成形体10构成。复合材料成形体10通过将具有流动性的状态的复合材料从浇口填充到模具的腔内并使树脂固化而制造。复合材料成形体10的特征之一在于如下方面:以将沿着配置于线圈2内侧的内侧芯部11的磁通的周向的环绕面切断的方式形成有分型线15。即,该复合材料成形体10能使用具有与磁通平行的分型面的模具、即脱模方向成为与磁通正交的方向的模具制造。以下说明详情。在此,将芯部件30组装到线圈2来构建电抗器1,以将电抗器1设置于冷却底座等设置对象时的设置对象侧为下、以设置对象的相反侧为上进行说明。图中的相同附图标记表示相同名称的物体。

[整体构成]

复合材料成形体10由一对内侧芯部11和在一对内侧芯部11的一端侧连接两内侧芯部11的外侧芯部12构成。复合材料成形体10从上方观看的形状为大致u字状。在将具有复合材料成形体10的芯部件30组装到线圈2(图2)时,一对内侧芯部11分别配置于一对卷绕部2a、2b内。同样在将具有复合材料成形体10的芯部件30组装到线圈2(图2)时,外侧芯部12从线圈2的端面突出。内侧芯部11和外侧芯部12的上表面11u、12u为大致同一平面。另一方面,外侧芯部12的下表面12d比内侧芯部11的下表面11d突出,在将复合材料成形体10与线圈2组合时,以外侧芯部12的下表面12d与线圈2的下表面成为大致同一平面的方式调整外侧芯部12的大小。在一对内侧芯部11和外侧芯部12遍及大致全周形成有分型线15。

(内侧芯部)

优选各内侧芯部11的形状设为与线圈2的形状(线圈2的内部空间)一致的形状。在此为长方体状,使其角部以沿着卷绕部2a、2b(图2)的内周面的方式圆滑。内侧芯部11的表面中沿着磁通的周向的环绕面(沿着卷绕部2a、2b的周向的面)是与内侧芯部11的磁通平行的平行面,以将环绕面的周向切断的方式形成有分型线15。在此,环绕面由上下左右表面11u、11d、11l、11r这四个平面和将相邻的平面彼此连结的四个曲面构成,在左右表面11l、11r形成有分型线15。内侧芯部11的端面11e与侧面连续地形成,并与磁通交叉(在此为正交)。

在左右表面11l、11r以与磁通平行的方式从该面的一端到另一端形成有分型线15。上下表面11u、11d隔着分型线15彼此相对,并与左右表面11l、11r正交。分型线15详细后述,其与模具的分型面对应。即,左右表面11l、11r中除去分型线15的区域是与模具的内表面滑接的滑接区域,上下表面11u、11d是不与模具的内表面滑接的区域。这是因为:与分型线15正交的方向成为复合材料成形体10成形时的脱模方向。

左右表面11l、11r的滑接区域形成有软磁性颗粒延展从而软磁性颗粒彼此导通的膜状的导通部。因此,是低电阻的区域(以下为低电阻区域)。另一方面,上下表面11u、11d是实质上没有形成上述导通部的高电阻的区域(以下为高电阻区域)。即,使在内侧芯部11的环绕面沿着其周向流动的涡电流不易在高电阻区域(上下表面11u、11d)流动,进而能将其切断。因此,与上下左右全部面由滑接区域构成的复合材料成形体比较,能减少涡流损耗。

左右表面11l、11r的滑接区域(低电阻区域)和上下表面11u,11d(高电阻区域)的表面粗糙度的比率为左右表面的表面粗糙度:上下表面的表面粗糙度=8~15:1程度。该表面粗糙度是指算术平均粗糙度ra。这方面在以下的表面粗糙度中也同样。

在内侧芯部11的端面11e形成有与形成于左右表面11l、11r的分型线15连续的分型线15。端面11e中除去分型线15的区域与左右表面11l、11r的滑接区域同样,是与模具的内表面滑接的滑接区域。端面11e中的滑接区域的表面粗糙度与上述的左右表面11l、11r中的滑接区域同样。通过在端面11e形成有分型线15,从而能用分型线15将在内侧芯部11的端面11e上沿着以磁通为中心的周向流动的涡电流切断,因此能减少涡流损耗。

(外侧芯部)

外侧芯部12的形状为大致梯形柱状。外侧芯部12具备与磁通平行的上下表面12u、12d、和将上下表面12u、12d连接并与磁通平行的外端面12o(内侧芯部11的端面11e的相反侧)。在外端面12o以与磁通平行的方式从其面的一端到另一端形成有分型线15。外端面12o的分型线15和内侧芯部11的分型线15连续地形成。

外端面15o中除去分型线15的区域与左右表面11l、11r的滑接区域同样,是与模具的内表面滑接的滑接区域。外侧芯部12的上下表面12u、12d与内侧芯部11的上下表面11u、11d同样,是不与模具的内表面滑接的区域。外端面12o的滑接区域的表面粗糙度与上述的左右表面11l、11r中的滑接区域同样,外侧芯部12的上下表面12u、12d的表面粗糙度与内侧芯部11的上下表面11u、11d同样。

(分型线)

分型线15与模具的分型面对应。分型线15从复合材料成形体10的表面向外侧突出地形成。关于分型线15的横截面形状,分型线15的底部侧的宽度最宽,且宽度朝向顶端侧慢慢地变窄。分型线15的突出高度、底部的宽度根据模具的分型面的形状、成形条件而定,例如分型线15的突出高度可举出0.05mm以上且10mm以下,分型线15的底部的宽度可举出0.05mm以上且1mm以下。此外,在图1中,为了便于说明,将分型线15表示为强调突出的状态。分型线15实质上由树脂构成。因此,在如上所述形成于内侧芯部11的端面11e的情况下,容易将流过该端面11e的涡电流切断。

分型线15在内侧芯部11的左右表面11l、11r的形成部位可以是上端(与上表面11u侧的曲面的边界)、下端(与下表面11d侧的曲面的边界)、或者中途(上下端之间)的任一个。分型线15在内侧芯部11的端面11e的形成部位、及在外侧芯部12的外端面12o的形成部位可举出设为沿着在内侧芯部11的左右表面11l、11r的形成部位的部位。在此,分型线15在内侧芯部11的左右表面11l、11r的形成部位设为左右表面11l、11r的中途,在内侧芯部11的端面11e和外侧芯部12的外端面12o的形成部位是沿着形成于左右表面11l、11r的分型线15的部位。即,由分型线15包围的假想面形成为与磁通平行(与一对内侧芯部11的并列方向平行)的平面,分型线15以使复合材料成形体10在与磁通正交的方向分离的方式形成。此外,在此分型线15形成为直线状且存在于一个平面上,但是也可以具有一部分形成为台阶状的台阶部或形成为曲线状的曲线部。

复合材料成形体10也可以具备在分型线15上的至少一部分形成的树脂的重熔痕迹及断裂痕迹中的至少一方(均省略图示)。重熔痕迹能利用后述的热处理来形成。断裂痕迹例如能通过用去毛刺刷折取分型线15而形成。

重熔痕迹的形式可举出如下情况:(1)与分型线15比较突出高度低但是从复合材料成形体10的表面朝向外侧突出的情况;(2)与和分型线15邻接的滑接区域为大致同一平面的情况;或者(3)比该滑接区域凹的情况。重熔痕迹的表面粗糙度根据重熔痕迹的形成手法、方式等决定。例如,在利用激光形成的重熔痕迹的形状从表面突出的情况下,可举出上下表面11u、11d及左右表面11l、11r的滑接区域和重熔痕迹的表面粗糙度的比率为1:8~15:16~30程度。

另一方面,断裂痕迹的形式多数是与和分型线15邻接的滑接区域大致为同一平面。断裂痕迹的表面粗糙度比与分型线15邻接的面粗糙。可举出上下表面11u、11d及左右表面11l、11r的滑接区域和断裂痕迹的表面粗糙度的比率例如为1:8~15:16~35程度。

通过具备重熔痕迹、断裂痕迹,从而在将复合材料成形体10的芯部件30组装到线圈2而构筑电抗器1时(图2),容易抑制重熔痕迹、断裂痕迹和线圈2的接触。因此,容易抑制伴随该接触的线圈2的绕组线2w的导体、包覆于其表面的绝缘包覆部的损伤。在此基础上,能充分保持重熔痕迹、断裂痕迹与线圈2之间的间隔,容易将复合材料成形体10与线圈2之间的绝缘性提高。这是因为:重熔痕迹、断裂痕迹如上所述与分型线15的突出高度比较要低。另外,容易提高与对复合材料成形体10的表面进行覆盖的树脂(例如后述的树脂模塑部)的贴紧性(接合性)。这是因为:重熔痕迹、断裂痕迹的表面粗糙度与分型线15相比容易变得粗糙,从而容易增大树脂相对于重熔痕迹、断裂痕迹的接触面积。特别是在具备重熔痕迹的情况下,能抑制软磁性粉末的锈。这是因为:即使在分型线15处软磁性粉末露出,通过重熔痕迹形成时的热处理也能使树脂流动,从而能将该露出的软磁性粉末埋入到树脂。

作为形成重熔痕迹的热处理,有使加热介质直接接触的接触式和使该加热介质不接触的间接式。作为接触式的手法,例如可举出超声波加热、热板加热以及脉冲焊机等。超声波加热是如下手法:用摩擦热加热,该摩擦热是使通过超声波发生器和超声波振荡器产生的超声波振动借由变幅杆(horm,加热介质)传递到分型线15的表面而产生的。热板加热是通过使已加热的金属板(加热介质)与分型线15接触而加热的手法。脉冲焊机是如下手法:将已加压的加热丝(加热介质)设置于分型线15,并用使瞬间的大电流流过加热丝而发热的热将分型线15加热。另一方面,作为间接式的手法,例如可举出光加热等。光加热可举出激光加热、利用温度放射的红外线加热。激光的加工宽度也根据分型线15的宽度而定,例如可举出0.1mm以上且10mm以下。激光的能量密度u(w/mm2)在将激光的平均输出设为p(w)、将激光的照射面积设为s(mm2)时用u=p/s表示,优选该能量密度u满足2w/mm2≦u≦450w/mm2。通过将能量密度u设为2w/mm2以上,从而能使分型线15的树脂充分地重熔。另一方面,通过将能量密度u设为450w/mm2以下,能充分抑制由于过剩熔融引起的软磁性颗粒彼此的接触。

[构成材料]

(软磁性粉末)

软磁性粉末的材质可举出铁族金属、以fe为主要成分的fe基合金、铁氧体、非晶态金属等软磁性材料。软磁性粉末的材质从涡流损耗、饱和磁化的方面出发优选铁族金属、fe基合金。铁族金属可举出fe、co、ni。特别是,fe最好为纯铁(包含不可避免的杂质)。fe因为饱和磁化高,所以越提高fe的含量则越提高复合材料的饱和磁化。fe基合金可举出如下组分:合计含有1.0质量%以上且20.0质量%以下的选自si、ni、al、co以及cr的一种以上元素作为添加元素,剩余部分由fe及不可避免的杂质构成。fe基合金例如可举出fe-si系合金、fe-ni系合金、fe-al系合金、fe-co系合金、fe-cr系合金、fe-si-al系合金(铁硅铝磁性合金)等。特别是,对于fe-si系合金、fe-si-al系合金这样的含有si的fe基合金,其电阻率高,容易减少涡流损耗,在此基础上磁滞损耗也小,可实现复合材料成形体10的低铁损化。例如在fe-si系合金的情况下,si的含量可举出1.0质量%以上且8.0质量%以下,优选为3.0质量%以上且7.0质量%以下。软磁性粉末也可以混合有材质不同的多种粉末。例如,可举出将fe和fe基合金这两种粉末混合而成的物质。

软磁性粉末的平均粒径优选为5μm以上且300μm以下,特别优选为10μm以上且100μm以下。当软磁性粉末的平均粒径为5μm以上时,不易凝结,容易使树脂充分地夹杂在粉末颗粒之间,因此容易减少涡流损耗。当软磁性粉末的平均粒径为300μm以下时,则不会过度地大,因此能减少粉末自身的涡流损耗,进而能减少复合材料成形体10的涡流损耗。在此基础上,可提高填充率,从而容易提高复合材料成形体10的饱和磁化。软磁性粉末也可以是粒径不同的多种粉末混合而成的。在将混合有微细的粉末和粗大的粉末的软磁性粉末使用于复合材料成形体10的材料的情况下,饱和磁通量密度高,容易得到低损失的电抗器1。在使用混合有微细和粉末和粗大的粉末的软磁性粉末的情况下,优选以将一方设为fe、将另一方设为fe基合金的方式设为不同种类材质。当这样将两粉末的材质设为不同种类时,兼备fe的特性(饱和磁化高)和fe基合金的特性(电阻高且容易减少涡流损耗)这两方的特性,饱和磁化的提高效果和铁损的平衡良好。在将两粉末的材质设为不同种类的情况下,也可以将粗粒粉末和微粒粉末中的某种作为fe(fe基合金),但是优选将微粒粉末作为fe。即,优选将粗粒粉末作为fe基合金。那样的话,与微粒粉末为fe基合金、粗粒粉末为fe的情况相比为低铁损。软磁性粉末为了提高绝缘性,也可以在颗粒表面具备绝缘包覆部。软磁性粉末也可以是已实施用于提高与树脂的磨合性、相对于树脂的分散性的表面处理(例如硅烷耦合剂处理等)的粉末

复合材料成形体10中的软磁性粉末的含量在将复合材料成形体10作为100体积%时优选30体积%以上且80体积%以下。通过软磁性粉末为30体积%以上,从而磁性成分的比例充分高,因此在使用该复合材料成形体10构建电抗器1的情况下,容易提高饱和磁化。该含量越多,相对地树脂的含量越少,所以在上述滑接区域容易形成颗粒彼此导通的导通部。但是,因为复合材料成形体10具有上述高电阻区域(上下表面11u、11d),所以即使软磁性粉末的含量多也能减少涡流损耗。当软磁性粉末为80体积%以下时,磁性成分的比例不过度地高,因此能提高软磁性颗粒彼此的绝缘性,能减少涡流损耗。另外,软磁性粉末和树脂的混合物的流动性优良,复合材料成形体10的制造性优良。软磁性粉末的含量可举出50体积%以上、进一步为55体积%以上、特别是60体积%以上。软磁性粉末的含量可举出为75体积%以下、特别是70体积%以下。

(树脂)

树脂例如可举出环氧树脂、酚醛树脂、有机硅树脂、聚氨酯树脂等热硬化性树脂、聚苯硫醚(pps)树脂、聚酰胺树脂(例如尼龙6、尼龙66、尼龙9t)、液晶聚合物(lcp)、聚酰亚胺树脂、氟树脂等热塑性树脂。除此之外,也能使用常温硬化性树脂、在不饱和聚酯中混合有碳酸钙、玻璃纤维的bmc(bulkmoldingcompound:块状模塑料)、混炼型硅橡胶、混炼型聚氨酯橡胶等。

(其他)

在复合材料成形体10中,除软磁性粉末及树脂之外,也可以含有氧化铝、硅石等陶瓷这样的由非磁性材料构成的粉末(填充物)。填充物有助于散热性的提高、软磁性粉末的偏在的抑制(均匀的分散)。另外,填充物为微粒,夹杂在软磁性颗粒之间时,能抑制由于含有填充物而引起的软磁性粉末的比例的下降。填充物的含量在将复合材料作为100质量%时优选为0.2质量%以上且20质量%以下,进一步优选为0.3质量%以上且15质量%以下,特别优选为0.5质量%以上且10质量%以下。

[用途]

复合材料成形体10能适当利用于各种磁部件(电抗器、扼流圈、变压器、电动机等)的磁芯、其原材料。

[制造方法]

复合材料成形体10的制造用注射成形、热压成形、mim(金属注射成形)进行。该制造使用的模具省略图示,使用分型面与复合材料成形体10的磁通平行、且脱模方向成为和磁通正交的方向的模具。

〔复合材料成形体的作用效果〕

根据上述的复合材料成形体10,通过在内侧芯部11的与磁通平行的上下表面11u、11d具备沿着磁通方向的高电阻区域,从而能使在内侧芯部11的侧面沿着以磁通为中心的周向流动的涡电流不易在该高电阻区域流动。因此,能减少涡流损耗,能构建低损失的电抗器。

〔电抗器〕

上述的复合材料成形体10能适当地利用于图2所示的电抗器1的磁芯3的至少一部分。电抗器1如在实施方式1的开头说明的那样,具备:线圈2,其具备一对卷绕部2a、2b;以及磁芯3,其由具有相同形状的两个芯部件30构成。该芯部件30由上述的复合材料成形体10构成。

[线圈]

一对卷绕部2a、2b通过将没有接合部的一根连续的绕组线2w卷绕成螺旋状而成,通过连结部2r连结。绕组线2w能适当地利用在由铜、铝、其合金这样的导电性材料构成的扁平线、圆线等导体的外周具备由绝缘性材料构成的绝缘包覆部的包覆线。在本例中,导体由铜制的扁平线构成,绝缘包覆部利用由漆(代表性地为聚酰胺酰亚胺)构成的包覆扁平线。各卷绕部2a、2b由将该包覆扁平线扁立缠绕的扁绕线圈构成。卷绕部2a、2b的配置形成为以各轴方向平行的方式并列(横向排列)的状态。卷绕部2a、2b的形状是彼此相同的匝数的中空的筒状体(四方筒)。卷绕部2a、2b的端面形状是使矩形框的角部圆滑的形状。连结部2r通过在线圈2的一端侧(图2纸面右侧)将绕组线的一部分折弯成u字状而构成。连结部2r的上表面与线圈2的匝形成部分的上表面为大致同一平面。卷绕部2a、2b的绕组线2w的两端部2e从匝形成部延长。两端部2e与未图示的端子部件连接,通过该端子部件连接有对线圈2进行电力供给的电源等外部装置(未图示)。

[磁芯]

各芯部件30的一对内侧芯部11在组装到线圈2时配置于一对卷绕部2a、2b的内侧。各芯部件30的外侧芯部12同样在将芯部件30组装于线圈2时以从线圈2突出的方式配置。通过将一方和另一方的芯部件30的内侧芯部11的端面11e(交链面)彼此在卷绕部2a、2b内连结,从而形成环状的磁芯3。通过该芯部件30彼此的连结,在对线圈2进行励磁时形成闭合磁路,磁通与内侧芯部11的长度方向平行,且与交链面正交。芯部件30彼此也可以在内侧芯部11的交链面彼此之间不夹着间隔件地连结,而且也可以夹着间隔件地连结。芯部件30彼此的连结能利用粘合剂。也可以在芯部件30彼此之间设置间隙(气隙)。间隔件的材质可举出磁导率比芯部件30低的材质,例如可举出氧化铝、不饱和聚酯等非磁性材料、pps树脂等含有非磁性材料和磁性材料(铁粉等)的混合物等。

[其他]

(树脂模塑部)

磁芯3也可以进一步具备对芯部件30的表面进行覆盖的树脂模塑部。当芯部件30的分型线15具有重熔痕迹、断裂痕迹时,能提高树脂模塑部向芯部件30的贴紧性。树脂模塑部的包覆区域例如能设为芯部件30的表面的全部区域。树脂模塑部的构成材料例如除了与上述的复合材料成形体10的树脂同样的热塑性树脂(例如、pps树脂等)、热硬化性树脂之外,还可举出下面的热塑性树脂、热硬化性树脂。作为该热塑性树脂,可举出聚四氟乙烯(ptfe)树脂、聚对苯二甲酸丁二酯(pbt)树脂、丙烯腈-丁二烯-苯乙烯(abs)树脂等,作为热硬化性树脂,可举出不饱和聚酯树脂等。该构成树脂也可以含有氧化铝、硅石等陶瓷填充物等。那样的话,成为热传导性优良的树脂模塑部,从而提高电抗器1的散热性。

[用途]

电抗器1能适当地利用于搭载于混合动力汽车、插电式混合动力汽车、电动汽车、燃料电池汽车等车辆的车载用转换器(代表性地为dc-dc转换器)、空调机的转换器等各种转换器、电力变换装置的构成部件。

〔电抗器的作用效果〕

根据上述的电抗器1,通过具备复合材料成形体,该复合材料成形体的芯部件在与磁通平行的面具有沿着磁通的高电阻区域,从而能使涡电流不易在高电阻区域流动,因此为低损失。

《试验例》

制作复合材料成形体的试样,该复合材料成形体含有软磁性粉末和以分散的状态内包该软磁性粉末的树脂,对该试样的磁特性进行评价。各试样全部使用相同的构成材料。软磁性粉末使用平均粒径为80μm、具有含有6.5质量%的si、剩余部由fe及不可避免的杂质构成的组分的fe-si合金的粉末。另一方面,树脂使用pps树脂。将该软磁性粉末和树脂混合,使树脂以熔融状态和软磁性粉末融合来制作混合物。混合物中的软磁性粉末的含量设为70体积%。

〔试样no.1-1〕

作为试样no.1-1的复合材料成形体,利用注射成形来制造图1所示的具备一对内侧芯部11和外侧芯部12的u字状的复合材料成形体10。使用具有与磁通平行的分型面的模具、即脱模方向成为与磁通正交的方向的模具,在该模具中填充上述混合物并将其冷却固化,由此进行复合材料成形体的制造。使得模具的分型面成为内侧芯部11的上表面11u与下表面11d之间的大致中间。试样no.1-1的复合材料成形体10的分型线15形成于内侧芯部11的左右表面11l、11r及端面11e和外侧芯部12的外端面12o。该试样no.1-1的复合材料成形体仍然为从模具取出的状态、即仍然为形成有分型线15的状态。

〔试样no.1-2〕

试样no.1-2的复合材料成形体通过对试样no.1-1的复合材料成形体10的分型线15实施激光处理而制造。即,试样no.1-2的复合材料成形体具备形成于分型线上的树脂的重熔痕迹,在这方面与试样no.1-1不同。在此,激光处理在左侧的内侧芯部11遍及左表面11l的分型线15的全长和端面11e的分型线15的全长而实施,在右侧的内侧芯部11遍及右表面11r的分型线15的全长和端面11e的分型线15的全长来实施。激光处理条件是将加工宽度设为3mm,将激光的能量密度u设为5.5w/mm2。试样no.1-2的复合材料成形体在右侧的内侧芯部11的右表面11r的分型线15上和左侧的内侧芯部11的左表面11l的分型线15上形成有树脂的重熔痕迹。

〔试样no.1-101〕

试样no.1-101的复合材料成形体使用模具的分型面的位置与试样no.1-1不同、即脱模方向不同的模具来制造。具体地,使用分型面与磁通正交的模具、即脱模方向与磁通平行的模具。在此,分型面形成为一对内侧芯部和外侧芯部的边界。试样no.1-101的复合材料成形体的分型线遍及两内侧芯部的与外侧芯部的边界的全周(全部区域)而形成。

〔磁特性〕

在使两个各试样的复合材料成形体组合而成的环状的试验片卷绕铜线,制造具备300匝的初级缠绕线圈、20匝的次级缠绕线圈的测定用部件。关于各测定部件,使用ac-bh波形记录仪测定出激励磁通量密度bm为4kg(=0.4t)、测定频率为20khz的铁损w4/20k(w)。将该结果在表1示出。

[表1]

如表1所示,试样no.1-1、1-2的铁损分别是8.9w、8.5w,试样no.1-101的铁损是9.8w。这样,试样no.1-1,1-2与试样no.1-101比较成为低铁损,试样no.1-2与试样no.1-1比较成为低铁损。

认为成为试样no.1-1、1-2的铁损比试样no.1-101的铁损低的结果是因为:试样no.1-1、1-2的复合材料成形体与试样no.1-101比较能有效地减少涡流损耗。试样no.1-1、1-2的复合材料成形体通过使用分型面与磁通平行的模具、即将脱模方向设为与磁通正交的方向的模具来制造,从而能在与磁通平行的上下表面形成高电阻区域,该高电阻区域没有形成导通部。因此,能使在内侧芯部的侧面沿着以磁通为中心的周向流动的涡电流不易在高电阻区域流动。另一方面,试样no.1-101的复合材料成形体通过使用分型面与磁通正交的模具、即将脱模方向设为与磁通平行的方向的模具来制造,从而与磁通平行的全部面成为与模具的内表面滑接的滑接区域,在该平行的全部面形成有低电阻的导通部。因此,涡电流容易在内侧芯部的侧面沿着以磁通为中心的周向流动,不能抑制涡电流的流动。

认为成为试样no.1-2的铁损比试样no.1-1的铁损低的结果是因为:试样no.1-2的复合材料成形体能比试样no.1-1更有效地减少左右的内侧芯部11的端面11e处的涡流损耗。试样no.1-2的复合材料通过对左右的内侧芯部11的端面11e处的分型线15的全长也实施激光处理,从而能使在该端面11e流动的涡电流比试样no.1-1更不易流动。

本发明并不限定于这些例示,而通过权利要求示出,意图包含与权利要求等同的意思及范围内的所有的变更。例如,芯部件的形状能通过磁芯的多个芯部件的组合适当选择。能将多个芯部件的组合设为除上述的u-u型芯之外的、一个内侧芯部与外侧芯部一体化的被称为l-l(j-j)型芯等的形式。另外,能设为具备卷绕部仅为一个的线圈和被称为e-e型芯、e-i型芯等的磁芯的电抗器。

附图标记说明

10复合材料成形体

11内侧芯部

11u上表面11d下表面11l左表面11r右表面

11e端面

12外侧芯部

12u上表面12d下表面

12o外端面

15分型线

1电抗器

2线圈

2a、2b卷绕部2r连结部2w绕组线2e端部

3磁芯

30芯部件

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1