一种耐高压全固态锂电池界面层及其原位制备方法和应用与流程

文档序号:22921580发布日期:2020-11-13 16:11阅读:213来源:国知局
一种耐高压全固态锂电池界面层及其原位制备方法和应用与流程

本发明涉及锂离子电池技术领域,具体涉及一种耐高压电解质界面层及其原位制备方法和应用。



背景技术:

全固态电池中存在的正极-电解质界面接触及稳定性问题,包括固-固界面接触不良形成空间电荷层增大内阻、界面副反应及高电压下正极材料结构坍塌、颗粒破碎等问题,一直限制了锂离子电池的全方位产业化。目前普遍认为,将含氟的碱金属盐、溶剂/共溶剂、功能添加剂等,添加到有机碳酸酯基电解质体系中能提高电池的耐高压能力,已有研究人员尝试通过引入含氟聚合物制备耐高压固态电解质,然而,受限于二次组装过程形成的接触电阻,含氟固态电解质在高压锂离子电池的性能优化上仍存在较大挑战。原位人工界面层构筑技术凭借技术难度低、工艺兼容性好等优势成为目前研究最广的界面工程技术之一。

cn103682354b公开了一种全固态锂离子电池复合型电极材料及其制备方法和全固态锂离子电池,具体公开了先取0.1~20份聚合物单体、0.1~50份乙二醇衍生物、0.1~10份锂盐、0.1~10份聚合引发剂和50~99.9份增塑剂,配制得到混合溶液,将所述混合溶液通过静电纺丝法、电吹纺丝法、液相喷涂法或印刷法设置在电极活性材料表面,通过热聚合法、电子束聚合法或紫外线聚合法在所述电极活性材料表面聚合生成包覆层,制得全固态锂离子电池复合型电极材料。该技术方法虽然使用了聚合物单体构筑界面层黏结电极与电解质界面,但制备手段主要使用了光、热、电子束引发聚合,在电池的制备中还需要二次组装过程,这一过程容易导致接触不良进而形成空间电荷层及增大接触电阻,还存在改进的空间。

因此,现有技术仍缺少一种能够克服二次组装容易导致接触不良等问题的耐高压电解质界面层制备方法。



技术实现要素:

针对现有技术的以上缺陷或改进需求,本发明提供了一种耐高压电解质界面层的原位制备方法,其目的在于电化学聚合法,在充电过程中引发并完成聚合,不需要二次组装,由此解决接触不良进而形成空间电荷层及增大接触电阻的技术问题。本发明详细技术方案如下所述。

一种耐高压电解质界面层的原位制备方法,包括以下步骤:

(1)将含氟的丙烯酸酯单体、锂盐混合均匀,制成前驱体;

(2)将前驱体、正极、负极和电解质基体组装成电池,前驱体设置于电解质基体与正极之间;

(3)将电池充电使得丙烯酸酯单体聚合,前驱体固化成聚合物电解质层,即可获得耐高压电解质界面层。

所述电化学引发聚合法是通过向工作电极施加引发电压和电流,电极材料向引发剂物质提供电子,引发单体聚合,引发剂产物与电极表面形成共价键。

作为优选,所述充电为恒流充电,充电倍率为0.1-0.5c。

作为优选,所述正极材料为高镍三元正极材料,所述充电的电压窗口为2.8-4.7v。

作为优选,步骤(1)中所述前驱体包括以下质量份数的组成:含氟的丙烯酸酯单体10-90份,锂盐9-50份,引发剂0-5份,优选的,所述丙烯酸酯单体与锂盐的质量比为(1-2):1。

锂盐的添加是离子电导率提升的关键。在本体系中,锂盐可以被电聚合的固态聚合物电解质溶剂化,丙烯酸酯类物质中的醚氧结构可以与锂离子络合。添加锂盐的条件下,带正电荷的锂离子可以弱结合到与包含在重复单元中的负电原子相关的负偶极矩上,但锂盐过多超出体系溶解能力可能析出结晶,影响界面层的稳定,所述丙烯酸酯单体与锂盐的质量比为(1-2):1,选择导离子效果最优解。

作为优选,所述步骤(3)中充电过程温度控制为40-70℃。

作为优选,所述含氟的丙烯酸酯单体包括丙烯酸三氟乙酯、甲基丙烯酸三氟乙酯、多氟烷基丙烯酸酯、多氟烷基乙基丙烯酸酯、多氟烷基乙基甲基丙烯酸酯中的一种或多种的混合,所述锂盐为双氟磺酰亚胺锂、双三氟甲基磺酰亚胺锂、六氟磷酸锂、四氟硼酸锂、高氯酸锂、氯化锂、碘化锂、三(五氟乙基)三氟磷酸锂、二草酸硼酸锂、二氟草酸硼酸锂、二氟二草酸磷酸锂、四氟草酸磷酸锂、碳酸锂、氟化锂中的一种。

作为优选,所述引发剂包括偶氮二异丁腈、偶氮二异庚腈、偶氮二异丁酸二甲酯、过氧化苯甲酰、氧化二苯甲酰、过氧化苯甲酰叔丁酯、过氧化甲乙酮中、2-羟基-2-甲基-1-苯基-1-丙酮、2,2-二甲氧基-2-苯基苯乙酮中的一种或多种的混合;

本发明还保护一种耐高压电解质界面层,根据前面所述的制备方法制备而成。

本发明还保护所述的界面层在全固态锂电池中的应用。

本发明的有益效果有:

(1)本发明电化学聚合法,在充电过程中完成聚合,不需要二次组装,由此解决接触不良进而形成空间电荷层及增大接触电阻的技术问题,降低界面电阻;

(2)本发明的界面层具有良好的物理隔离能力,将固态电解质基体与高压正极材料隔离开,形成界面兼容且稳定的高压全固态电解质电池,电解质涂层前驱体溶液可作为正极材料中的导离子粘结剂参与制备,进一步提高全电池比能量;

(3)本发明聚合后的聚合物层能在形状复杂的电解质-电极界面间实现无缝整合,而且能够在4v以上的高压充电,制备时间短,方法简单,具有良好的机械灵活性且与目前电池生产制备产线设计相适应;

(4)本发明的界面层大大提高了聚氧化乙烯(peo)的氧化分解电位,解决了界面的电化学稳定性问题,提升了高镍三元正极材料的高容量特性,拓宽了电化学窗口,明显提高了循环性能,在正极-电解质界面中建立了有利于li+传输的抗氧化界面层,具有广阔的市场应用前景。

附图说明

图1本发明应用于peo基电解质制备电池前两圈充放电曲线对比;

图2本发明应用于peo基电解质制备电池循环效率对比图;

图3本发明应用于peo基电解质制备电池电化学窗口对比图。

具体实施方式

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。

制备实施例

制备正极。正极活性材料为lini0.8co0.1mn0.1o2(ncm811),导电剂为导电碳黑(superp,timcalltd.),粘结剂为聚偏氟乙烯(pvdf,hsv900,arkema),分散剂为n-甲基-2-吡咯烷酮(nmp),按照lini0.8co0.1mn0.1o2:superp:pvdf=7:2:1的质量比混合研磨,涂于铝箔上,在经过烘干、辊压、冲片,做成电极片,电极表面的活性物质ncm811控制在2mg/cm2

制备醚基电解质基体。在惰性气体保护的手套箱中将聚氧化乙烯(peo)、litfsi按质量比例20:1溶解于溶剂乙腈中,60℃搅拌10h至充分溶解后,倒入模具中,室温静置24h,之后送入80℃烘箱烘干24h进一步去除溶剂,得到peo基电解质基体。

制备负极。负极为锂片。

实施例1

(1)制备前驱体:在惰性气体保护的手套箱中将100g甲基丙烯酸三氟乙酯单体、100g三氟甲烷磺酰亚胺锂litfsi混合,加入3g引发剂偶氮二异丁腈(aibn),搅拌4h直至锂盐充分溶解,手套箱中水含量小于0.1ppm,氧含量小于0.1ppm;

(2)组装电池,将前驱体涂抹在正极和醚基电解质基体之间相对的侧面上,在手套箱内将制备好的正极、负极和醚基电解质基体组装成为电池;

(3)电化学引发聚合,将组装好的电池转移至烘箱内,设置烘箱温度为60摄氏度,保温2小时后,对电池充电,电流倍率设定为0.1c,从起始电压2.8v开始恒流充电,充到4.3v停。

对比实施例1

本实施例与实施例1不同之处在于,没有使用前驱体,没有进行电化学引发聚合。

在手套箱内将制备好的正极、负极和醚基电解质基体组装成为电池,将组装好的电池转移至烘箱内,设置烘箱温度为60摄氏度,保温2小时,获得没有耐高压电解质界面层的锂电池。

测试实施例

将实施例1和对比实施例的电池样品进行电化学性能测试,测试使用新威电化学测试仪。

充放电测试,恒流充放电是以恒定电流对电池进行循环测试的方法,测试体系为lini0.8co0.1mn0.1o2(ncm811)/li,采用恒倍率循环方式,电压窗口设置为2.8-4.3v,充放电倍率0.1c,实验中所有充放电循环测试均在60℃下进行。

测量结果如图1所示,实施例1的第一圈放电容量为180mahg-1(曲线1),第二圈的放电容量为176mahg-1(曲线2),而对比实施例1(peo)的前两圈放电容量分别为148mahg-1(曲线3)、146mahg-1(曲线4)。

循环效率测试,实施例1(ncm811/tfema-peo/li)经过40圈循环,容量保持率77%,而对比实施例1(ncm811/peo/li)在30圈循环后,容量保持率降低到50%以下,测量结果如图2所示。

电化学窗口测试,测量结果如图3所示,对比实施例(peo)在4.3v(详见图3中箭头指示的位置)开始发生氧化反应,而实施例1(peo-ptfema)在5.2v(详见图3中箭头指示的位置)之前能保持电化学稳定状态。

通过对比发现,涂层的构筑,将peo基电解质的氧化分解电位从4.3v提高到5.2v(图3),解决了界面的电化学稳定性问题。在这一条件下,实施例1电池能更好的发挥高镍三元正极材料的高容量特性,在首圈充电中,放电容量高达180mahg-1,远高于对比例的148mahg-1(图1),且经过40圈循环,容量保持率77%(图2)。电化学窗口拓宽,循环性能明显提高,说明涂层确实在正极-电解质界面中建立了有利于li+传输的抗氧化界面层,证明了本发明的可操作性。

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1