电子部件的接合方法和电子部件的接合装置的制作方法

文档序号:8037322阅读:317来源:国知局
专利名称:电子部件的接合方法和电子部件的接合装置的制作方法
技术领域
本发明所属领域本发明涉及的是利用振动使电子部件压接接合在挠性基板上的电子部件接合法和电子部件接合装置。
现有技术一向以来,施加振动使电子部件与陶瓷制的基板相互接合的装置得到了广泛的运用。这些装置所使用的振动子通常都是一个。由于陶瓷制基板材质坚硬,所以即使受到振动也很难发生变形。因此,如果陶瓷制基板进行物理性固定的话,就不会随着电子部件的振动而发生运动。于是,在电子部件和陶瓷制基板之间产生相对运动,从而能够顺利的进行摩擦接合。
但是,在只有一个振动子的情况下,由于只有一个振动方向,所以存在有接合部的形状会在振动方向上形成为长形椭圆状的缺点。,为了解决这一问题,如特许文件1所示,可以采取使用2个振动子,从而拥有2个振动方向的技术。
特许文件1所记载的技术是关于倒装接合SAW(Surface Acoustic Wave)器件等的电子部件而采取的接合法及其装置。它是一边对形成在陶瓷制基板上的电极和由SAW器件等电子部件形成的金属突起加热,一边使这两者压接。目前的技术的特征是,在构成上包含有对陶瓷制基板施加振动的第1振动子和对电子部件施加振动的第2振动子,通过这2个振动子从复数个方向对压接部位施加以超声波,从而使包层部的突起形状呈近圆形。
另一方面,为了使电子部件更加薄,所以大多采取了薄性外壳的简易TCP(Tape Carrier Package)。作为TCP的制造方式,有TAB(Tape AutomatedBonding)方式和COF(Chip On Flexible Circuit Board or Chip On Film)方式。这2种方式中,COF方式较多的被运用于实际倒装中。
但是,因为实际安装有IC接头的磁带是柔软的,也就是说是可弯曲的,所以无法采用振动压接方式,即无法采用利用超声波振动使IC接头等电子部件进行压接的方式。这是因为挠性基板吸收了超声波的能量。因此,在TAB方式和COF方式下接合磁带和电子部件,通常是使用利用了锡焊,金属制突起和锡制突起的Au-Sn接合,利用作为异向导电磁带的ACF(anisotropicconductive film)的方式,利用作为异向导电糊剂的ACP(anisotropicconductive paste)的方式,NCP(non conductive Paste)等各种黏着方式。特开平11-284028号公报(概略)本发明所希望解决的问题因为构成具有弯曲性的树脂基板的磁带材质柔软,所以存在有施加了振动后容易会发生变形的问题。也就是说,在通过压接将电子部件固定在挠性树脂基板上的情况下,挠性树脂基板与电子部件接触的部分会随着电子部件的振动而发生一定程度的振动。因此,会大幅度的减小电子部件表面和与其压接的挠性树脂基板表面之间的相对运动(摩擦)。特别是,在振动频率赫兹高,且振幅为几十微米的小幅振动模式下,这种倾向更强。
因此,目前技术中只使用1个振动子的方法,即使将电子部件与挠性树脂基板相压接,由于黏结强度很小,所以无法予以实际运用。另外,使用2个振动子,使电子部件和挠性树脂基板双方发生振动的方法,与只使用1个振动子的方法相比,压接强度是提高了,但是由于偏差较大所以也无法予以实际运用。因此,利用振动使电子部件和挠性树脂基板压接的接合法至今仍无法予以实际运用。
而且,如上所述的锡焊等现有技术中的接合法与利用振动进行压接的接合法相比,存在有黏结强度低和质量可信性较差的问题。例如,Au-Sn接合法因为存在有固相扩散温度高,热应力大的问题,所以在能够实际运用的对像部件上有很大的制约。
本发明的发明人认为应该对如何在通过压接方式将电子部件固定在挠性树脂基板的情况下不会产生偏差的方法进行研究,并对使用2个振动子情况下的压着强度的偏差进行了持续的分析,研究。结果,发现压接强度和2个振动子各自的频率,各自的振幅之间存在有一定的关联。
然后,就可以明白通过挠性树脂基板,即使只对电子部件施加以超声波振动,也能够获得所需的黏着强度。因此,这种振动压接方式的运用范围得到了扩大。但是,不管是使用2个振动子还是使用1个振动子,搭载有挠性树脂基板的工作平台表面的粗糙度将会转录到树脂基板,从视觉上会觉得树脂基板被划伤了。
例如,如

图13所示,在通过电子部件101侧的振动,使设置在电子部件101下方的金属突起部102向电子部件101侧振动并与设置在挠性树脂基板103上作为电极的引导部104接合的情况下,基板搭载用工作平台105的表面粗糙度将会转录到树脂基板103上。这种被转录了的表面粗糙度,如树脂基板103内面的箭头A和箭头B所示,在视觉上给人以划伤的感觉。
本发明的目的是为解决上述问题点,而提供的能够通过振动将IC接头等电子部件与挠性树脂基板相接合的电子部件接合法和电子部件接合装置。另外,其他发明还提供了即使通过振动将IC接头等电子部件与挠性树脂基板相接合,也不会划伤基板的电子部件接合法和电子部件接合装置。
本发明的技术方案为了达到上述目标,本发明的电子部件的接合方法,其是将支持固定在磁头上的电子部件利用振动压接接合在基板上的方法,其包含有以下工序采用作为上述磁头的振动磁头,且该振动磁头支持固定上述电子部件的工序;将被支持固定的电子部件移动至第1规定位置的工序;上述基板采用树脂制的挠性基板,并将该挠性基板移动至第2规定位置的工序;基板搭载用工作平台支撑固定上述挠性基板的工序;电子部件接近上述挠性基板的工序;在上述磁头的振动频率超过基板搭载用工作平台的振动频率的状态下,使两者一边振动,一边将上述电子部件与挠性基板进行压接接合的工序;上述电子部件从磁头离开的工序;固定支撑在上述基板搭载用工作平台上的挠性基板从基板搭载用工作平台离开的工序。
本发明能够通过振动使IC接头等电子部件与挠性基板黏结。也就是说,当由基板搭载用工作平台施加给树脂制挠性基板的振动频率降低时,该振动也能够有效的传递到挠性基板和电子部件的压接面。另一方面,因为磁头的振动是有范围的,所以即使其频率再高,也能够有效的传递到挠性基板和电子部件的压接面。为了将大能量的振动施加到挠性基板和电子部件间的压接面上,使磁头侧的振动频率高于基板搭载用工作平台侧的振动频率是十分有效的方法。
另外,压接工序也可以采取在上述基板搭载用工作平台的振动振幅大于磁头振动振幅的状态下,使两者一边振动,一边使上述电子部件和挠性基板进行压接接合。即使采取这种方式,也能够通过振动将IC接头等电子部件压接在挠性基板上。
在挠性基板是采取COF磁带的情况下,大多采用聚酰亚胺树脂和PET树脂,它们和陶瓷相比,振动衰减更加显著。进而,因为挠性基板容易发生变形,所以不仅在纵向振动方向上在横向振动方向上的传递效率都很差。像本工序这样,通过使驱动振动衰减显著而且传递效率差的挠性基板产生振动的基板搭载用工作平台的振幅大于磁头的振幅,能够将均衡性良好的振动施加到挠性基板和电子部件间的压接面上。
为了达到上述目标,本发明的电子部件的接合方法,其是将支持固定在磁头上的电子部件利用振动压接接合在基板上的方法,其包含有以下工序上述磁头支持固定上述电子部件的工序;将被支持固定的电子部件移动至第1规定位置的工序;上述基板采用树脂制的挠性基板,并将该挠性基板移动至第2规定位置的工序;由搭载有上述挠性基板的搭载面表面粗糙度为0.01~0.5μm的基板搭载用工作平台支撑固定上述挠性基板的工序;电子部件接近上述挠性基板的工序;在上述磁头的振动频率超过基板搭载用工作平台的振动频率的状态下,使两者一边振动,一边将上述电子部件与挠性基板进行压接接合的工序;上述电子部件从磁头离开的工序;固定支撑在上述基板搭载用工作平台上的挠性基板从基板搭载用工作平台离开的工序。另外,压接工序也可以在上述基板搭载用工作平台的振动振幅大于磁头振动振幅的状态下,使两者一边振动,一边使上述电子部件和挠性基板进行压接接合。
本发明在能够通过振动将IC接头等电子部件压接在挠性基板上的基础上,因为将基板搭载用工作平台的表面粗糙度控制在0.01μm到0.5μm之间,所以在确切的保证了接合的同时,不会对挠性基板有所划伤,或者说即使有划伤那也是十分细微的。
另外,本发明的电子部件的接合方法,其是将支持固定在磁头上的电子部件利用振动压接接合在基板上的方法,其包含有以下工序上述磁头支持固定上述电子部件的工序;将被支持固定的电子部件移动至第1规定位置的工序;上述基板采用树脂制的挠性基板,并将该挠性基板移动至第2规定位置的工序;由搭载有上述挠性基板的搭载面表面粗糙度为0.01~0.5μm的基板搭载用工作平台支撑固定上述挠性基板的工序;通过上述磁头和基板搭载用工作平台中任意一方或者双方的振动,将上述电子部件和挠性基板进行压接接合的工序;上述电子部件由被磁头支撑固定着的状态转变为不受磁头支撑固定状态的工序;上述挠性基板由被基板搭载用工作平台支撑着的状态转变为不受支撑状态的工序。
该发明也能够通过振动将IC接头等电子部件压接在挠性基板上。另外,因为基板搭载用工作平台的表面粗糙度在0.01μm到0.5μm之间,所以在确切的保证了接合的同时,不会对挠性基板有所划伤,或者说即使有划伤那也是十分细微的。
另外,树脂材料如同防止振动用材料一样,材料越厚,振动越难以传递,所以降低树脂制挠性基板的厚度,能够在一定程度上使振动得到良好的传递。因此,树脂制挠性基板的厚度控制在10~200μm之间。如果采取这种组成的话,因为振动能够十分有效的传递到树脂制挠性基板和电子部件间的压接面上,所以能够提高压接强度。而且,将压住挠性基板的基板压板的四角形开口内边和与其接合的电子部件之间的距离控制在0.5到5mm范围内的话,因为振动能够十分有效的传递到树脂制挠性基板和电子部件间的压接面上,所以能够提高压接强度。
进而,使用COF磁带或者TAB磁带作为挠性基板。通过采取这种组成,能够在不划伤磁带的情况下制造TCP。
另外,将挠性基板的厚度控制在10~50μm的范围内。这样的话,仅仅依靠向电子部件侧的振动就能够压接电子部件和挠性基板,同时还能够防止由于振动而带来的不良影响(例如基板开裂等)。
另外,至少对电子部件和挠性基板中的任意一方进行加热。通过这种组成,能够大大加强电子部件和挠性基板间的压接强度。
另外,本发明的电子部件接合装置其具有支撑固定电子部件的磁头、和搭载有基板的基板搭载用工作平台,而且,是通过向上述磁头和基板搭载用工作平台施加振动来将上述电子部件压接接合在基板上的;其中,上述基板能够采用厚度为10~200μm的COF磁带或者TAB磁带。另外,既能够在上述磁头的振动频率大于基板搭载用工作平台的振动频率的状态下,两者能够振动;也能够在上述基板搭载用工作平台的振动振幅大于磁头的振动振幅的状态下,两者能够振动。
这些装置能够通过振动将IC接头等电子部件压接在厚度极薄的挠性基板上。
而且,所说的磁头和基板搭载用工作平台,在水平方向上能够相互呈90度角进行往复振动。因为磁头和基板搭载用工作平台能够相互呈90度方向的进行往返振动,所以在结构上能够提高接合强度。另外,因为这两者是由各自的振动子来驱使振动的,所以能容易的进行振动控制。
另外,本发明的电子部件接合装置其具有支撑固定电子部件的磁头、和搭载有基板的基板搭载用工作平台,而且,是通过向上述磁头和基板搭载用工作平台中的任意一方或双方施加振动来将上述电子部件压接接合在基板上的;其中,上述基板采用磁带状的挠性基板,上述基板搭载用工作平台中,搭载有上述基板的搭载面的表面粗糙度为0.01~0.5μm。
因为本发明的基板搭载用工作平台的表面粗糙度在0.01μm到0.5μm之间,所以在确切的保证了接合的同时,不会对挠性基板有所划伤,或者说即使有划伤那也是十分细微的。另外,通过这种组成,能够解决新近发现的挠性基板划伤问题,能够提供外观漂亮而且可信赖性高的带有电子部件的挠性基板。
另外,挠性基板采用厚度为10~200μm的COF磁带或者TAB磁带,其表面粗糙度为0.05~0.2μm。采用这种组成的话,在能够得到高信赖性的TCP的同时,不会划伤磁带表面或者即使有所划伤也是十分细微。
另外,其还设有使所说的磁头振动的磁头用振动子、和使所说的基板搭载用工作平台振动的基板用振动子,使所说的磁头和基板搭载用工作平台在水平方向内、相互保持90度的方向上进行往复振动,同时,根据所说的磁头和基板搭载用工作平台各自的振动频率或者各自的振动这两者中的至少一方或者双方而进行不同的振动。这种构成因为磁头和基板搭载用工作平台是相互保持90度的进行往返振动,所以提高了接合强度。另外,因为这两者是通过各自的振动子来进行振动的,所以在振动的控制上也变得简单。进而,因为在构成上是通过2种振动子来使振动频率或者振幅中的至少一方在有所不同的情况下来进行振动,所以提升接合强度也变得容易。
进而,所说的磁头能够振动,并且在固定基板搭载用工作平台的状态下,通过超声波振动使支持固定于磁头上的电子部件,在水平方向上进行0.2~3.6μm的往复振动,从而将所说的电子部件压接接合在挠性基板上。这种构成与现在一般采用的构成相比,仅仅是使电子部件侧振动,从而达到了提高装置的质量稳定性和降低成本的目的。另外,因为振动量在0.2到3.6μm的范围内,所以即使基板是薄的磁带也能够进行稳定的接合。
本发明的实施形态以下,参照附图对本发明的电子部件接合法和电子部件接合装置的实施形态进行说明。首先,参照图1至图9对本发明的实施形态1进行说明。
该电子部件接合装置是利用超声波等的振动来进行电子部件的接合的。利用超声波进行接合的超声波接合法是将所要接合的电子部件紧贴安放在基板侧,一边加压,一边发出超声波进行接合。由此,在本说明书中将利用超声波等的振动进行的接合称为压接接合。
压接接合时,在其振动的初期阶段,清除接合界面上的氧化膜和污垢,同时,在接触部分产生摩擦热,当达到了所规定的接合时间或者能量后,则完成了接合。如果界面干净的话则能够得到强力的接合效果。另外,当结晶颗粒之间的距离接近原子间距的话,会产生强烈的引力,完成固相扩散接合。
图1所示的是本发明实施形态1的电子部件接合装置(以下,简称为接合装置)的主要构成部分。接合装置1设有电子部件用振动磁头2(ブランソン公司制造)和基板载置侧部件3。
振动磁头2设有振动珩磨头2a、振动磁头压接部2b、和振动磁头用振动子2c。基板载置侧部件3设有基板用振动子3a、隔热层4、基板加热部5、搭载基板用工作平台6、加热器7、温度传感器8、真空吸附孔9和真空管10。
在振动磁头2和安置基板部件3之间,配置有在从图1的左侧起至右侧间断行进状态下的挠性树脂基板的COF磁带11。在此COF磁带11上安装有电子部件IC接头12。在搭载基板用工作平台6上设置基板压板13。
接合装置1的结构是通过设置在上侧的振动磁头2和设置在下侧的基板载置侧部件3,使IC接头12对COF磁带11进行压接接合而成。
如图1所示,在振动珩磨头2a顶端部的底面上,设置有振动磁头压接部2b;在振动珩磨头2a的后端部,设置有由压电器件组成的振动磁头用振动子2c。振动磁头压接部2b是由超硬材料构成,但并不限于此,也适宜在振动磁头压接部2b的表面覆以氮化钛和炭化钛等。如果进行了这样的表面处理后,不管母材是什么材料,都能够显著的提升其耐久性。
振动磁头用振动子2c的振动在振动珩磨头2a中传递,并在振动磁头压接部2b处收敛。为了使振动磁头压接部2b在垂直方向的振动为0,振动珩磨头2a的安装相对于水平面则保持一定角度,由此,振动磁头压接部2b只能在平行于挠性基板的COF磁带11平面的水平方向上进行振动,其振动频率为10~60KHz。为了IC接头12的吸附、位置校对、后文所述的从相机17起的退避、以及从COF磁带起的退避,设有能够使振动磁头2上下左右移动的驱动装置(图中省略显示)。
振动珩磨头压接部2b上设置有直径为0.8mm的吸附孔,用于真空吸附IC接头12,使其固定在振动磁头2上(图示省略)。设置在振动磁头2上的吸附孔具有与设置在基板搭载用工作平台6上的真空吸附孔9相同的结构。而且,也可以在振动珩磨头2a上嵌入加热IC接头12用的加热器。此时,可以采用与基板加热部5相同的结构。
作为基板用振动磁头的基板载置侧部件3除了具有将由基板用振动子3a激振而产生的振动施加给COF磁带11的功能外,还具备有吸、固定COF磁带11的功能、和加热COF磁带11的功能。
基板用振动子3a使用了能够根据外界所给予的磁场进行伸缩的超磁应变器件,其振动频率为10~30KHz。超磁应变器件的抗热性能很差,因此,在基板振动用振动子3a和基板加热部5之间设置隔热层4,用来防止因基板加热部5产生的热量而使基板用振动子3a过热。而且,超磁应变器件与压电器件一样,能够产生高频振动,但与压电器件相比在低频区域能发其挥优良特性。在电子部件的接合技术领域中,既可以使用压电器件来代替超磁应变器件,也能够使用超磁应变器件来代替压电器件。
隔热层4主要是由多孔陶瓷构成,多孔陶瓷与其他材料相比,在耐高温性、振动的衰减性、较高的强度等综合性能方面是十分优秀的。
基板加热部5设置在隔热层4和搭载基板用工作平台6之间,而且,基板加热部5上设置有加热器7、温度传感器8、和与产生真空的真空源相连的真空管10。在设计上,由基板加热部5产生的热量很难传递到基板搭载用工作平台6之外的地方。其中,加热器7是封装加热器,温度传感器8是热(温差)电偶。
基板搭载用工作平台6除了具有搭载和支撑(吸附、固定)树脂制挠性基板的COF磁带11的功能外,还担负着承受压接时的振动磁头2的重量的功能、和由COF磁带11向加热器7传递热量的功能。在基板搭载用工作平台6上,还设有用于搭载COF磁带11的搭载面6a、和设于COF磁带11行进方向的两端的台部6b。该台部6b上设有4个螺钉接合孔6c、1个小径孔6d和1个长孔6e。
真空吸附孔9如图1和图2所示,具有5根在垂直方向上延伸的垂直部9a、包围IC接头12的2个大小不同的“口”字形槽部9b、9c、和在底侧与5根垂直部9a相连的椭圆状凹部9d。而且,4根垂直部9a的顶端部分别2根一组地设置在槽部9b、9c上,只有中央的垂直部9a是设置在搭载面6a上。
在图1中,基板搭载用工作平台6的上下高度为12mm,槽部9b、9c的深度为0.5mm,凹部9d的深度为1mm。因此,垂直部9a的长度为10.5mm。包围着“口”字形槽部9b的搭载面6a的表面粗糙度、由“口”字形槽部9b和9c包围着的那部分搭载面6a的表面粗糙度、和由小“口”字形槽部9c包围着的部分的表面粗糙度,都是相同的,设定为R MAX0.05~0.2μm。
而且,如后文所述,该数值也可以设定在0.01~0.5μm的范围内。另外,这种镜面加工至少应对由小“口”字形槽部9c包围的部分,也就是说,可以仅在搭载有IC接点12的IC搭载面上。在该实施形态中,对COF磁带11所接触的所有搭载面6a实施上述R MAX0.05~0.2μm的镜面加工。另外,因为现有的装置是不进行该加工的,所以搭载面6a的表面粗糙度是在数μm以上。以下,仅仅就搭载面6a表面粗糙度不同的现有装置的评价数据进行适当的说明。
基板载置侧部件3在将COF磁带11送向图1所示的A箭头方向时,能够在垂直方向上移动,以使基板搭载用工作平台6和COF磁带11不会发生接触。
如图3所示,在基板压板13的中央部设置四角形的开口14,并在其行进方向的前后设有切槽15。该开口14能够放入振动磁头2顶端部底面和振动磁头压接部2b,另外为了防止与振动磁头2发生接触,在开口14的外周进行了大角度的倒角,也就是说形成有越到外侧越厚的斜面13a。
另外,基板压板13能够在垂直方向上移动,其目的是使其在输送COF磁带11时,不会与在COF磁带11上形成的电连接接线柱16(图3、图4中虚线表示的部分)和所接合的IC接点12发生接触而产生损伤。该电连接接线柱16相当于图13所示的现有技术的引导部104。进而,当由基板压板13押压固定COF磁带11时,形成在COF磁带11上的各个电连接接线柱16和与COF磁带11压接接合的各个IC接点12,通过开口14和切槽15而退避开,故不会与基板压板13发生接触。
通过真空吸附孔9的真空吸附和基板压板13的押压,使COF磁带11支撑并与固定在基板搭载用工作平台6上。另一方面,COF磁带11的压接面(图1中为上面)离开基板搭载用工作平台6的距离为COF磁带11的厚度。因为COF磁带11具有挠性,所以即使由基板压板13固定该COF磁带11,与硬陶瓷制的基板不同,也无法使COF磁带11的压接面不动而达到完全固定。也就是说,因为在COF磁带11的上下面之间存在有柔软的树脂部件,所以即使牢固地固定COF磁带11的四周,COF磁带11的开口14的上下面承受了振动的话,会在水平方向上发生伸缩。
进而,COF磁带11的压接面的固定程度,除了上述磁带的厚度外,还与形成基板压板13上的开口14的内侧端面与IC接点12间的距离大小有关。真空吸附孔9的功能主要是为了提高固定COF磁带11的固定强度,COF磁带11既可以通过真空吸附孔9吸附固定,也可以通过基板压板13的押压进行牢固的固定。
在图1和图3中,为了看图的方便,将基板压板13和IC接点12间的距离予以了放大,但是在不与振动磁头2发生接触的范围内,该距离以尽可能小为佳。在本实施形态中,从区分开口14的端面到位于开口14内的IC接点12为止的最小距离是1.5mm,该最小距离宜为0.5mm~5mm,最好是0.8mm~2mm。当该数值超过0.5mm的话,能够不断减小振动磁头2和基板压板13间的接触几率,当该数值在5mm以下时,能够在相当程度上抑制设置在开口14的COF磁带11的移动。
另外,振动磁头压接部2b的振动方向和基板搭载用工作平台6的振动方向,均在水平方向,并且相互垂直相交。这样的垂直相交可以使2个振动不会消除振幅。进而,通过使双方振动频率不同,2个振动的合成矢量并不是仅仅为一定的方向,而是无规则的任意方向。
在COF磁带11上设置IC接点12,使基板搭载用工作平台6和振动磁头用振动子2c的相互垂直相交、并且在水平方向上的振动情况如下所示。
当设定振动磁头用振动子2c的振动频率在40KHz以上时,振动珩磨头2a的振幅为约3μm(微米),IC接点12的振幅为1.8μm,IC接点12的振幅衰减至振动珩磨头2a的60%左右。当设定振动磁头用振动子2c的振动频率在60KHz以上时,振动珩磨头2a的振幅为约1μm(微米),IC接点12的振幅0.2μm,IC接点12的振幅衰减至振动珩磨头2a的20%左右。
如上所述,因为振动频率越高,振动能量越大,但传递中损失也越大,所以要考虑振动的衰减再决定振动频率。而且,作为电子部件的IC接点12的往返振动(振幅)的大小在0.2~3.6μm之间的话,就能够提高接合强度并防止划伤。
图3所示的是COF磁带11和基板压板13关系的平面图。在COF磁带11的两端连续形成有间隔紧凑的作为接合孔输送用的穿孔11a,在中央部形成有配线(图中省略)和电连接接线柱16。COF磁带11被送向图3中箭头A方向。在行进方向前方的切槽15是用来防止设在COF磁带11上的电连接接线柱16与基板压板13发生接触用的退让部,在行进方向后侧的切槽15是用来防止电连接接线柱16或被压接接合的IC接点12与基板压板13发生接触的退让部。
因为COF磁带11具有挠性,所以为了使基板压板13能够稳定押压,不仅仅限于IC接点12的周围,而是大范围地压住COF磁带11,故在设置基板压板13形状时,使其宽度W应为IC接点12的搭载间隔(IC接点12相互间的距离)的2~7倍。
图4是在振动磁头压接部2b被吸附后,用相机17对移动至规定位置(第1规定位置)的IC接点12和被送至规定位置(第2规定位置)的COF磁带11的电连接接线柱16进行拍摄,并进行位置校对工序的说明图。在图4中,将IC接点12吸附到设置在振动珩磨头2a顶端部的底部上的振动磁头压接部2b。而且,图4中省略了基板压板13和基板载置侧部件3。
在相机17的位于开口部14周边部分设置有照明环29(参照图9,在图4中省略),相机17在接受到照明环29的光线后对IC接点12进行拍摄。另外,使用照明环29时也能进行闪光灯拍摄。同样,使用相机17对设置在COF磁带11上的未接合的电连接接线柱16进行拍摄。而且,在图4的COF磁带11上,显示有未接合的电连接接线柱16(图4中就未接合部分在高度方向上予以放大)和被压接了的IC接点12,进而在图4中以箭头A表示COF磁带11的输送方向。
图5是说明相机17内结构的透视图,(a)是平面图,(b)是左视图,(c)是主视图。相机17由能够拍摄上下侧被拍摄体的2个部件组成。相机17由光学系统18和拍摄部19组成。
光学系统18分为2个系统,其中的1个从下侧相机开口20a读取COF磁带11上电连接接线柱16的图像的,通过棱镜21使其由垂直方向向水平方向转90度,然后通过反光镜22a使其再在水平方向内转90度输入CCD(ChargeCoupled Device)23上。通过相机开口20a、棱镜21、反光镜22a和CCD23组成一侧的相机部件。在拍摄部19将输入至CCD23的图像转变为电信号,并将此信号输送至图像处理装置32(参照图9)。在图5中,实线箭头表示了该系统光的行进方向。
光学系统18的另一个从上侧相机开口20b读取吸附在振动磁头压接部2b的IC接点12的图像,通过棱镜21使其由垂直方向往水平方向转90度,再通过反光镜22b使其转90度输入至CCD24(Charge Coupled Device)中。通过相机开口20b、棱镜21、反光镜22b和CCD24组成另一侧的相机部件。在拍摄部19将输入到CCD24的图像转变为电信号,并将此信号输送到图像处理装置32。在图5中,虚线箭头表示了该系统的光行进方向。
图5(b)、(c)显示了下侧和上侧的相机开口20a、20b和棱镜21。如图所示,本实施形态分别由相机开口20a、20b读取上下侧的被拍摄体图像,通过设置在同一平面上的2个光学系统18的各个系统传送图像,通过CCD23、24将该图像转变为数字信号。
在对由振动磁头2支撑着的IC接点12和COF磁带11进行对位,且在相机17退避后,为了将IC接点12压接在COF磁带11上,下降振动磁头12。
通常在对COF磁带11进行对位后,在垂直方向下降振动磁头2,对位精度就会下降。为了防止对位精度的下降,缩短振动磁头2的移动距离是十分有效的方法。因此,本实施形态是减小相机开口20a、20b附近的厚度(垂直方向上的宽度)。为了减小相机开口20a、20b附近部位相机17的厚度,推荐有以下方法,如本实施形态所示可以在同一平面内设置分有2个系统的光学系统18,区分光学系统18和拍摄部19,使光学系统18的厚度薄于拍摄部19。
而且,为了对COF磁带11的位置进行校对,使用了设于COF磁带11上的位置标识(校对标识)的方法。由振动磁头2支撑的IC接点12的对位,使用了在IC接点12上绘制的回路配线晶格。当用电路板代替IC接点12对COF磁带11进行压接时,使用设于电路板上的位置标识。位置标识的形状是直径为0.2mm的○标志,另外,也可以采用其他形状,如四角形,×印等,其尺寸适宜为0.1~5mm图6是关于电子部件(此处指IC接点12)和树脂制挠性基板(此处指COF磁带11)上的电连接接线柱16的对位(位置校对)流程图。而且,以下运转的控制是在接合装置1的装置控制器30(参照图9)上进行的。
首先,由振动磁头2支撑IC接点12的工序开始。也就是说,移动振动磁头2至放有IC接点12的槽(图中未显示),通过将IC接点12吸附固定在振动磁头压接部2b上来支撑振动磁头2(步骤S1)。而且,在通过磁带进行内衬,并且根据时间点对垫片基板进行切割的情况下,内衬磁带是可以代替槽的。
接着,进入将IC接点12移动至第一规定位置的工序。也就是说,为了将IC接点12移动至与COF磁带11进行压接的位置(第一规定位置),将通过吸附固定IC接点12来支撑的振动磁头2移动至第一规定位置(步骤S2)。
接着,进入将COF磁带11移动至第二规定位置的工序。也就是说,通过装置控制器30,在离开基板搭载用工作平台6和基板压板13的自由状态下,将COF磁带11移动至其电连接接线柱16与IC接点12发生压接的位置(第2规定位置)(步骤S3)。
接着,进入将COF磁带11支持固定在基板搭载用工作平台6上的工序。也就是说,通过上升基板载置侧部件3,上升基板搭载用工作平台6,使基板搭载用工作平台6通过由真空吸附孔9产生的吸附力吸附COF磁带11,来支持固定COF磁带11(步骤S4)。在此基础上,下降基板压板13,在基板搭载用工作平台6和基板压板13之间固定COF磁带11(步骤S5)。由此,基板搭载用工作平台6能够牢固的支撑COF磁带11。
接着,进入对IC接点12和COF磁带11进行对位的工序。首先,移动相机17至能够拍摄到位置标识的位置(步骤S6)。而且,相机17同时对COF磁带11的位置标识和IC接点12的回路配线晶格或者位置标识进行拍摄,并将所拍摄的图像数据读入相机17内(步骤S7)。
接着,图像处理装置32(参照图9)计算COF磁带11的位置标识坐标、和IC接点12的回路配线晶格的规定位置或者位置标识的坐标(步骤S8)。当与COF磁带11的位置标识或者IC接点12的位置标识(或者回路配线晶格的固定位置)相关的坐标数据误差超过规定范围的情况下(在步骤S9中是YES),装置控制器30(参照图9)判断其位置是否偏移,移动驱动振动磁头2,进行与IC接点12的对位(步骤S10)。当所拍摄的位置标识的坐标误差在规定的范围内时(在步骤S9中为NO),装置控制器30判断位置是否偏移,不再进行振动磁头2的移动,进入到下一工序。
在本实施形态中,因为不必透过磁带和透明基板就能够直接读取COF磁带11上的位置标识,所以不会由于使用透明基板时产生的光线歪曲而引起的位置读取精度的降低,能够提高标识位置的检出精度。
另外,2个部件的对位精度是分别在不同时刻测定2个部件的坐标,必须分别算出各个坐标,累计计算由原点起的各个坐标的误差。另一方面,如上所述在同一部材、同一时刻测定2个部件的位置时,只要能够把握到2个测定位置的相互关系的话,就能够对2个部件进行对位。因此,不必考虑2个部件由原点起的坐标中各个误差。换而言之,即使移动相机17,也能够高精度地读取2个部件的对位数据。像这样通过同一部材的光学系统18进行的同时拍摄,对于作为不进行残留振动检出的位置控制方法的开放式控制而言是十分有效的方法。以下,就该点进行说明。
在每次对位后,相机17移动到位置标识和回路配线晶格的规定位置处(以下,称为位置标识)并进行拍摄,当IC接点12与COF磁带11压接接合时,相机17从拍摄位置起后退。因为相机17难于在短时间内完全停止下来,所以会产生残留振动。
当残留振动达到一定程度时,在不同时刻拍摄IC接点12上的位置标识和COF磁带11上的位置标识的话,测定并计算所得的位置标识坐标包含有残留振动的影响。但是,如果将COF磁带11的位置标识作为IC接点12对位的基准,并进行同时拍摄的话,就不会产生上述问题。也就是说,使用同一相机17同时对IC接点12的位置标识和COF磁带11上的位置标识进行拍摄的话,相机17的残留振动将不会成为问题。
像这样,采用本实施形态的对位方法的话,能够显著的提高2个部件的对位精度。另外,在上述步骤S7中,通过拍摄上下2个被拍摄对象,同时读取其图像,能够省略为读取数据而不得不等待残留振动降低所花费的时间,加快节奏。
图7是关于利用超声波振动来将IC接点12的冲击电极(相当于现有技术中的金属突起102)接合到COF磁带11上的电连接接线柱16上的方法的流程图。
进行对位的步骤SA基本与上述关于IC接点12和COF磁带11的对位步骤S1到S10相同。而且,此时步骤S7的同时拍摄并不是必要条件。这既是因为IC接点12和COF磁带11的对位已经结束,也是因为在步骤SA中只不过是仅仅进行了细微的修正。
以下,参照图7就对位后的工序进行说明。
首先,装置控制器30使对位用的相机17后退(步骤S11)。而且,至少在下一步骤S12进行之前,使振动珩磨头2a的温度为300℃,基板加热部5的温度为200℃。该加热可以不在振动磁头2侧进行,仅在基板加热部5进行。
接着,进入装置控制器30通过下降振动磁头2,使IC接点12接近COF磁带11的工序(步骤S12)。
接着的工序是,装置控制器30在振动磁头用振动子2c的振动频率大于基板用振动子3a的振动频率的条件下,激振振动磁头用振动子2c和基板用振动子3a,使IC接点12和COF磁带11进行压接接合。
更具体地说,在振动磁头用振动子2c的振动频率为40KHz,基板振动用振动子3a的振动频率为18KHz的条件下,使振动磁头用振动子2c和基板用振动子3a在水平方向的垂直相交的方向上振动(步骤S13)。此时,振动磁头压接部2b的振幅为8μm,基板搭载用工作平台的振幅为14μm。
从两者接近的位置起,进一步下降振动磁头2,使IC接点12押压在COF磁带11的电连接接线柱16上以0.5秒(步骤S14)。而且,在此实施形态下,IC接点12的尺寸为纵横2×10mm,厚0.04mm,接线柱(突起)数量是40个。压接载荷为约100克/突起,整体为40N(牛顿)。另外,搭载面6a的镜面加工如上所述,其表面的凹凸程度控制在R Max为0.05~2.0μm的范围内。
接着,实施装置控制器30使IC接点12从振动磁头2离开的工序。具体地说,装置控制器30断开吸附着IC接点12的真空状态,使振动磁头压接部2b离开IC接点12(步骤S15)。
接着是,装置控制器30使固定在基板搭载用工作平台6上的COF磁带11离开基板搭载用工作平台6的工序。具体地说,装置控制器30断开吸附着COF磁带11的真空,上升基板压板13,使COF磁带11处于自由状态(步骤S16)。在此基础上,通过装置控制器30,将振动磁头2移动至挑选下一个IC接点12的位置。
接着,通过装置控制器30的控制,下降基板搭载用工作平台6(步骤S17)。然后,COF磁带11前进1个间距,进入到下一步的接合操作(步骤S18)。
在该实施形态下,振动磁头用振动子2c的振动频率是大于基板用振动子3a的振动频率。另外,振动的振幅是与振动频率相反,通过基板用振动子3a使基板搭载用工作平台6产生振动的振幅,是大于通过振动磁头用振动子2c使振动磁头压接部2b产生振动的振幅的。通过使上下侧的振动频率不同,可以进行无规则的滑合,得到良好的压接强度。
如果振动磁头用振动子2c的振动频率低于基板用振动子3a的振动频率的话,能量效率则会低下,同时,也很难得到良好的压接强度。这是因为给予COF磁带11的振动频率越高,传递到COF磁带11压接面的基板用振动子3a所产生的能量衰减就越大。另一方面,因为IC接点12的能量衰减很小,所以将振动频率提高到一定的程度,加大能量是有效的方法。由此得出,振动磁头用振动子2c的振动频率可以是基板用振动子3a振动频率的1.2~4倍,若是1.5~2.5倍的话则更佳。但是,即使振动磁头用振动子2c的振动频率低于基板用振动子3a的振动频率,与两者振动频率相同的情况相比,压接强度也较好。
在本发明中,在振动磁头用振动子2c的振幅为2~12μm,基板用振动子的振幅为3~20μm的条件下进行了试验。结果是,为了使振动磁头用振动子2c的振幅大于基板用振动子3a的振幅,必须降低振动磁头用振动子2c的振动频率,于是在能量效率恶化的同时,也难于得到良好的压接强度。故振动磁头用振动子2c的振幅是基板用振动子3a的1/4~1/1.2倍为佳,1/2.5~1/1.5倍则更佳。
当振动磁头用振动子2c的振动频率,即振动珩磨头2a的振动频率为40KHz时,振动珩磨头2a的振幅约为3μm,押压在COF磁带11上的IC接点12的振幅衰减至振动珩磨头2a的60~70%,约为1.8~2μm。另一方面,当振动珩磨头2a的振动频率为60KHz时,振动珩磨头2a的振幅约为1μm,押压在COF磁带11的IC接点12的振幅衰减至振动珩磨头2a的20%,约0.2μm。由此,振动磁头用振动子2c的振动频率,即振动珩磨头2a的振动频率约为40KHz时,与振动珩磨头2a的振动频率约为60KHz时相比,振动珩磨头2a的振幅增大了,而且传递到IC接点12的振动的衰减是较小,给予到IC接点12接合部的能量损失也小。
就各振动子2c、3a开始激振和IC接点12押压在COF磁带11的时间点而一言,各振动子2c、3a的时间点可以比IC接点12的押压时间点早。最完美的是使各振动子2a、3c开始振动与IC接点12的压接同时进行。
图8所示的是COF磁带11的厚度和实用性之间的关系。
所使用的COF磁带11是厚度为5~300μm的树脂制聚酰亚胺树脂。压接强度大于实际运用要求时以○标示,低于实际运用要求时以×标示,在这两者之间时以△标示。同样,磁带的强度(=基板强度)大于实际运用要求时以○标示,低于实际运用要求时以×标示,在这两者之间时以△标示。另外,当基板搭载用工作平台6的搭载面6a的表面粗糙度未被转录到COF磁带11内面的情况下以○标示,虽然被转录但是可以确认伤痕十分细微的以△标示,被转录且伤痕醒目的话以×标示。
从图8中判断所得,COF磁带11厚度以是10~200μm为佳,如果考虑到作业性能等方面,COF磁带11厚度为20~70μm则更佳。而且,即使现有技术下的搭载面6a的表面粗糙度是数μm以上的装置,压接强度和基板强度的评价数据也与图8所示的相同。而且,虽然最初装置(搭载面6a粗糙度在数μm以上的装置)没有对基板的伤痕是否被转录进行评价,但是从之后的其他的评价数据中,可以推测出基板的伤痕已被转录到图8所示各个厚度的挠性基板上。
图9是在接合装置1上,决定安装在振动磁头2顶端部底部的IC接点12,相对于COF磁带11在水平方向上的位置的对位装置25的主要构成图。
如图9所示,对位装置25包含有使振动磁头2在X轴方向上移动的X轴工作平台26、使振动磁头2在Y轴方向上移动的Y轴工作平台27、相机17、照明环29、装置控制器30、马达驱动器31、图像处理器32、和闪光灯照明控制装置33。该对位装置25,进行的是相对于IC接点12的COF磁带11的对位,并使吸附着固定IC接点12的振动珩磨头2a向X轴和Y轴移动。
X轴工作平台26是用来控制振动珩磨头2a的X轴方向(图1中与纸面相垂直的方向)驱动的,它包含有用于检出振动珩磨头2a的X轴方向位置的编码器。该X轴工作平台26通常将振动珩磨头2a的X轴方向的位置数据传送到装置控制器30、马达驱动器31和图像处理器32中。
Y轴工作平台27是用来控制振动珩磨头2a的Y轴方向(COF磁带11的行进方向)驱动,它包含有检出振动珩磨头2a的Y轴方向位置的编码器。该Y轴工作平台27通常将振动珩磨头2a的Y轴方向位置数据传送到装置控制器30、马达驱动器31和图像处理器32。
装置控制器30是用来管理该接合装置1整体的控制的,具体地说,是控制X轴工作平台26、Y轴工作平台27、马达驱动器31、图像处理器32、闪光灯照明控制装置33、基板载置侧部件3(图9中省略)、基板压板13(图9中省略)、和COF磁带11的输送等各个运转的。
装置控制器30根据由X轴工作平台26和Y轴工作平台27时时输送来的位置数据、和由图像处理装置32送出来的图像数据,来控制马达驱动器31、图像处理装置32、闪光灯照明控制装置33、基板载置侧部件3、基板压板13和COF磁带11的输送机构等的运行的。另外,装置控制器30还可以定期扫描固定支撑在振动磁头2的IC接点12和COF磁带11的位置数据,然后间歇地读取。
装置控制器30根据X轴工作平台26和Y轴工作平台27的位置数据,识别出IC接点12接近COF磁带11的水平方向上的规定位置上方时,将读取图像的指令信号发送至图像处理装置32。同时,装置控制器30将进行闪光灯照明的指令信号发送至闪光灯照明控制装置33。而且,监测工作平台26、27的位置数据。对于根据该数据向闪光灯照明控制装置33发出指令信号为止的迟延时间而言,虽然应为0,但是只要在工作平台26、27的残留振动频率的1/10以下的话,就没什么大的问题。
马达驱动器31通过装置控制器30的控制,驱动振动磁头2——即振动珩磨头2a在X轴方向和Y轴方向移动;图像处理装置32通过装置控制器30的控制,对相机17所拍摄的影像进行图像处理。该图像处理装置32在从相机17接受图像数据的同时,从X轴工作平台26和Y轴工作平台27接受位置数据。
然后,图像处理装置32在接受由装置控制器30发出的指令信号、控制相机17进行拍摄运转的同时,还向闪光灯照明控制装置33发出在同一时点进行闪光灯照明的指令信号。闪光灯照明控制装置33在接受了分别由图像处理装置32和装置控制器30发出的指令信号后,驱动照明环29进行闪光灯照明。
在闪光灯照明的同时,相机17同时拍摄COF磁带11和IC接点12的各个位置标示,和IC接点12的冲击电极和COF磁带11的电连接接线柱16。所拍摄的图像如上所述,由图像处理装置32进行处理,并通过装置控制器30进行位置状态的计算。然后,根据计算结果进行对位。
图6记载的对位方法能够提高上述IC接点12等电子部件和实际安装有电子部件的COF磁带11等树脂制挠性基板的对位精度并缩短时间。作为基板,并不限于使用挠性树脂制基板(包含磁带),刚性较高树脂磁带、刚性较高的树脂基板和刚性高陶瓷基板也适用。但是,基板搭载用工作平台6的表面粗糙度被转录到基板内面的,只有挠性基板才能发生,对基板搭载用工作平台6a进行镜面加工适用于将电子部件压接在挠性基板上的情况。
另外,图6的对位方法和图7的压接接合方法是以2个振动子2c、3a为例进行了说明,但图6和图7记载的方法也适用于只有1个振动子的场合,例如只有振动磁头用振动子2c的情况。
接着,参照图10~图12对本发明实施形态2的电子部件接合装置和电子部件接合法进行说明。因为实施形态2的电子部件接合装置51与实施形态1的接合装置相比,所不同的仅仅是在振动磁头2侧设置了振动子,其他的完全一致,所以在此对同一部件标识以同一符号,并省略或者简化相应的说明。
如图10所示,接合装置51包含有振动磁头2、和基板载置侧部件52。振动磁头用振动子2c以10~60KHz的频率进行振动,由此,振动珩磨头2a也以该数值,即以10~60KHz的频率进行振动。基板载置侧部件52上设置有安装在实施形态1的接合装置1的基板载置侧部件3上的基板用振动子3a和隔热层4。
对基板搭载用工作平台6的搭载面6a进行了镜面加工,使其表面粗糙度RMax为0.2μm。但是,在开发接合装置51时,首先使用的是未经镜面加工的部件,并确认在仅仅1个振动子的情况下,需要多少厚度的挠性基板能够满足产品的需求。评价项目是不包括基板伤痕在内的3个项目,图11显示了该结果。如图11所示,如果挠性基板(COF磁带11)的厚度在5~100μm的话,在一定程度上能够得到令人满足的产品,如果是在10~20μm的话,能够得到十分优良的产品。
但是,包括产品评价为0的在内,未进行镜面加工的搭载面6a的表面粗糙度就会被完全转录到所有COF磁带11的内面,并且以伤痕的形式予以表现。因此,图11所示的所有产品的最终产品评价为×。为了解决表面粗糙度被转录这一新问题,对搭载面6a进行了镜面加工。此时,就相对于表面粗糙度的转录程度,镜面加工需要达到什么程度进行了实验。在实验中,搭载面6a的表面粗糙度采取R Max为0.001μm~2.0μm。实验结果如图12所示。
如图12所示,对于因转录而产生的不良问题,当表面粗糙度采取R Max为0.01μm~0.5μm的范围的话则能够基本得到解决,更理想的是表面粗糙度为0.001μm~0.2μm。另一方面,对于压接强度的面,当表面粗糙度R Max在0.1μm以上时,能够基本解决该问题,更理想的是在0.05μm以上。在得到如图12所示实验结果时,作为挠性基板使用的COF磁带11的厚度为5~50μm。具体地说,在图11所示的实验结果中,压接强度得到O评价的是5μm、10μm、20μm、30μm、50μm这5种类型。
从图12所示的数据可推测得出,表面粗糙度超过一定程度后,摩擦变大,可以提高COF磁带11的位置固定强度,提高压接强度。另一方面,当表面粗糙度低于R Max 0.5μm时,挠性基板发挥其弹性性能,表面粗糙度不再被转录,基本不会有伤痕。
而且,在获取图12所示数据时,振动磁头2是在与图10纸面相垂直的方向上振动的。该方向与电连接接线柱16的延伸方向(引导部的固定部的突出方向)呈直角方向。该振动方向也可以是COF磁带11的行进方向或者其他方向。
上述各种实施形态是本发明较适宜的实施例子,但只要不超出本发明的权利要求可以进行各种的变更。例如,上述各种实施形态是使用了树脂制的COF磁带11作为挠性基板,但是也可以使用TAB方式所用的TAB磁带。另外,如果是挠性基板的话,还可以使用磁带以外的基板或者树脂制以外的基板。
另外,上述实施形态所示的是从上下2个方向施加超声波振动的例子、和从上方向施加超声波振动的例子,但是也可以是从下方向施加超声波振动。另外,使用的振动子是能够提供超声波振动的,但是根据接合的2个部件性质和所需的强度,也可以不是超声波而是其他能够提供音域振动的。
另外,在从上下2个方向施加超声波的情况下,如上所述适宜是由相互垂直相交的2个方向施加,但是也可以设定由同一方向,或者交叉角度不同于90度的方向施加振动。进而,在从上下2个方向施加超声波的情况下,推荐使2种振动的频率和振幅各不相同,但是也可以使2种振动的频率和振幅相同。另外,在频率和振幅各不相同的情况下,也可以设定其与实施形态1呈完全相反的关系。
另外,与挠性基板接合的电子部件除了IC接点外,还可以是声表面波器件、抵抗器件等其他的电子部件。另外,基板载置侧部件3、52可以不包含基板加热器5在内;挠性基板是通过真空吸附和基板压板13的押力固定支撑在搭载面6a上的,但也可以是仅仅通过其中任意一方,甚至使用磁石吸附等的固定方法来代替。另外,通过振动磁头2支撑固定的电子部件除了真空吸附外,还可以采用卡爪等的支撑固定方法。
另外,含有图1和图9所记载的组成要素中的一部分的接合装置也能够实施本发明的接合法。进而,本发明电子部件的接合法能够适用于使用该方法制造的产品,例如能够适用于TCP。
发明的效果根据本发明的电子部件接合法和电子部件接合装置,能够在挠性基板上压接接合以IC接点等电子部件。另外,根据本发明中的电子部件接合法和电子部件接合装置,在挠性基板上压接IC接点等的电子部件时,不会划伤挠性基板。
附图的简单说明[图1]是本发明实施形态1电子部件接合装置主要构成部分图,并表示了基板搭载用工作平台的一部分和基板压板的断面。是图1所示电子部件接合装置中的基板载置侧部件的平面图。是图1所示电子部件接合装置中COF磁带11和基板压板之间关系的平面图。是在图1所示电子部件接合装置中,就电子部件和COF磁带11对位工序进行说明的图面,同时在图中省略了基板压板和基板载置侧部件。是图1所示电子部件接合装置所使用的相机的透视图,(a)是平面图,(b)是左视图,(c)是主视图。是就采用图1所示电子部件接合装置的IC接点和COF磁带11进行的对位方法进行说明的流程图。是就采用图1所示电子部件接合装置的IC接点和COF磁带11进行压接的方法进行说明的流程图。是使用图1所示电子部件接合装置,从上下2个方向施加超声波振动的,从而制造的产品的评价图,在图中显示了相对挠性基板的厚度,就压接强度、基板(磁带)强度、基板划伤、产品这四项评价。是图1所示电子部件接合装置使用的定位驱动装置的构成图。是本发明实施形态2电子部件接合装置主要构成图,也是表示基板搭载用工作平台的一部分和基板压板的断面的正视图。是使用图10所示电子部件接合装置,仅仅从上方向施加超声波振动,从而制造的产品的评价图,也是在不考虑相对挠性基板的厚度的情况下,就压接强度、基板强度、基板内面产生的伤痕情况下,产品评价的各项评价结果的显示图。是使用图10所示电子部件接合装置,仅仅从上方向施加超声波振动,制造的产品的评价图,也是相对于搭载面粗糙度,就由转录不良产生的划伤,压接强度这各项评价的显示图。是就在压接时产生的伤痕位置进行说明的附图。1.电子部件接合装置2.振动磁头2a振动珩磨头2b振动磁头压接部2c振动磁头用振动子3.基板载置侧部件3a基板用振动子4.隔热层
5. 基板加热部6. 基板搭载用工作平台6a 搭载面6b 台部6c 接合孔6d 小径部6e 长孔7 加热器8 温度传感器9 真空吸孔9a 垂直部9b 大口字形槽部9c 小口字形槽部9d 椭圆状凹部10 真空管11 COF磁带(挠性基板)11a 冲孔12 IC接点(电子部件)13 基板压板14 开口15 切槽16 电连接接线柱17 相机18 光学系统19 摄像部20a 20b 相机开口21棱镜22a 22b 反光镜23,24CCD25 对位装置26 X轴工作平台27 Y轴工作平台29 照明环30 装置控制器
31 马达驱动器32 图像处理装置33 闪光灯照明控制装置51 电子部件接合装置52 基板安装侧部件
权利要求
1.一种电子部件的接合方法,其是将支持固定在磁头上的电子部件利用振动压接接合在基板上的方法,其包含有以下工序采用作为上述磁头的振动磁头,且该振动磁头支持固定上述电子部件的工序;将被支持固定的电子部件移动至第1规定位置的工序;上述基板采用树脂制的挠性基板,并将该挠性基板移动至第2规定位置的工序;基板搭载用工作平台支撑固定上述挠性基板的工序;电子部件接近上述挠性基板的工序;在上述磁头的振动频率超过基板搭载用工作平台的振动频率的状态下,使两者一边振动,一边将上述电子部件与挠性基板进行压接接合的工序;上述电子部件从磁头离开的工序;固定支撑在上述基板搭载用工作平台上的挠性基板从基板搭载用工作平台离开的工序。
2.一种电子部件的接合方法,其是将支持固定在磁头上的电子部件利用振动压接接合在基板上的方法,其包含有以下工序采用作为上述磁头的振动磁头,且该振动磁头支持固定上述电子部件的工序;将被支持固定的电子部件移动至第1规定位置的工序;上述基板采用树脂制的挠性基板,并将该挠性基板移动至第2规定位置的工序;基板搭载用工作平台支撑固定上述挠性基板的工序;上述电子部件接近上述挠性基板的工序;在上述基板搭载用工作平台的振动振幅大于磁头振动振幅的状态下,使两者一边振动,一边使上述电子部件和挠性基板进行压接接合的工序;上述电子部件从磁头离开的工序;固定支撑在上述基板搭载用工作平台上的挠性基板从基板搭载用工作平台离开的工序。
3.一种电子部件的接合方法,其是将支持固定在磁头上的电子部件利用振动压接接合在基板上的方法,其包含有以下工序上述磁头支持固定上述电子部件的工序;将被支持固定的电子部件移动至第1规定位置的工序;上述基板采用树脂制的挠性基板,并将该挠性基板移动至第2规定位置的工序;由搭载有上述挠性基板的搭载面表面粗糙度为0.01~0.5μm的基板搭载用工作平台支撑固定上述挠性基板的工序;电子部件接近上述挠性基板的工序;在上述磁头的振动频率超过基板搭载用工作平台的振动频率的状态下,使两者一边振动,一边将上述电子部件与挠性基板进行压接接合的工序;上述电子部件从磁头离开的工序;固定支撑在上述基板搭载用工作平台上的挠性基板从基板搭载用工作平台离开的工序。
4.一种电子部件的接合方法,其是将支持固定在磁头上的电子部件利用振动压接接合在基板上的方法,其包含有以下工序上述磁头支持固定上述电子部件的工序;将被支持固定的电子部件移动至第1规定位置的工序;上述基板采用树脂制的挠性基板,并将该挠性基板移动至第2规定位置的工序;由搭载有上述挠性基板的搭载面表面粗糙度为0.01~0.5μm的基板搭载用工作平台支撑固定上述挠性基板的工序;电子部件接近上述挠性基板的工序;在上述基板搭载用工作平台的振动振幅大于磁头振动振幅的状态下,使两者一边振动,一边使上述电子部件和挠性基板进行压接接合的工序;上述电子部件从磁头离开的工序;固定支撑在上述基板搭载用工作平台上的挠性基板从基板搭载用工作平台离开的工序。
5.一种电子部件的接合方法,其是将支持固定在磁头上的电子部件利用振动压接接合在基板上的方法,其包含有以下工序上述磁头支持固定上述电子部件的工序;将被支持固定的电子部件移动至第1规定位置的工序;上述基板采用树脂制的挠性基板,并将该挠性基板移动至第2规定位置的工序;由搭载有上述挠性基板的搭载面表面粗糙度为0.01~0.5μm的基板搭载用工作平台支撑固定上述挠性基板的工序;通过上述磁头和基板搭载用工作平台中任意一方或者双方的振动,将上述电子部件和挠性基板进行压接接合的工序;上述电子部件由被磁头支撑固定着的状态转变为不受磁头支撑固定状态的工序;上述挠性基板由被基板搭载用工作平台支撑着的状态转变为不受支撑状态的工序。
6.如权利要求1~5中的任意一项所述的电子部件的接合方法,其特征在于所说的挠性基板,其是厚度为10~200μm的树脂制挠性基板。
7.如权利要求6所述的电子部件的接合方法,其特征在于所说的挠性基板是COF磁带或者TAB磁带。
8.如权利要求3或4或5所述的电子部件的接合方法,其特征在于所说的挠性基板的厚度为10~50μm。
9.如权利要求1~5中的任意一项所述的电子部件的接合方法,其特征在于所说的电子部件和挠性基板中,至少对一方进行加热。
10.一种电子部件接合装置,其具有支撑固定电子部件的磁头、和搭载有基板的基板搭载用工作平台,而且,是通过向上述磁头和基板搭载用工作平台施加振动来将上述电子部件压接接合在基板上的;其中,上述基板能够采用厚度为10~200μm的COF磁带或者TAB磁带,在上述磁头的振动频率大于基板搭载用工作平台的振动频率的状态下,两者能够振动而构成的。
11.一种电子部件接合装置,其具有支撑固定电子部件的磁头、和搭载有基板的基板搭载用工作平台,而且,是通过向上述磁头和基板搭载用工作平台施加振动来将上述电子部件压接接合在基板上的;其中,上述基板能够采用厚度为10~200μm的COF磁带或者TAB磁带,在上述基板搭载用工作平台的振动振幅大于磁头的振动振幅的状态下,两者能够振动而构成的。
12.如权利要求10或11所述的电子部件接合装置,其特征在于将所说的磁头和基板搭载用工作平台,在水平方向上能够相互呈90度角进行往复振动。
13.一种电子部件接合装置,其具有支撑固定电子部件的磁头、和搭载有基板的基板搭载用工作平台,而且,是通过向上述磁头和基板搭载用工作平台中的任意一方或双方施加振动来将上述电子部件压接接合在基板上的;其中,上述基板采用磁带状的挠性基板,上述基板搭载用工作平台中,搭载有上述基板的搭载面的表面粗糙度为0.01~0.5μm。
14.如权利要求13所述的电子部件接合装置,其特征在于将所说的挠性基板,其是厚度为10~200μm的COF磁带或者TAB磁带,其表面粗糙度为0.05~0.2μm。
15.如权利要求13或14所述的电子部件接合装置,其特征在于其还设有使所说的磁头振动的磁头用振动子、和使所说的基板搭载用工作平台振动的基板用振动子,使所说的磁头和基板搭载用工作平台在水平方向内、相互保持90度的方向上进行往复振动,同时,根据所说的磁头和基板搭载用工作平台各自的振动频率或者各自的振动这两者中的至少一方或者双方而进行不同的振动。
16.如权利要求13或14所述的电子部件接合装置,其特征在于所说的磁头能够振动,并且在固定基板搭载用工作平台的状态下,通过超声波振动使支持固定于磁头上的电子部件,在水所说的磁头能够振动,并且在固定基板搭载用工作平台的状态下,通过超声波振动使支持固定于磁头上的电子部件,在水平方向上进行0.2~3.6μm的往复振动,从而将所说的电子部件压接接合在挠性基板上。平方向上进行0.2~3.6μm的往复振动,从而将所说的电子部件压接接合在挠性基板上。
全文摘要
本发明能够通过振动将挠性基板上的IC接点等电子部件进行接合,并且不会导致基板有伤痕。该电子部件的接合方法有如下工序,即述磁头支持固定上述电子部件的工序;将被支持固定的电子部件移动至第1规定位置的工序;上述基板采用树脂制的挠性基板,并将该挠性基板移动至第2规定位置的工序;搭载有上述挠性基板的搭载面表面粗糙度为0.01~0.5μm的基板搭载用工作平台支撑固定上述挠性基板的工序;通过上述磁头和基板搭载用工作平台中任意一方或者双方的振动,将上述电子部件和挠性基板进行压接接合的工序;上述电子部件由被磁头支撑固定着的状态转变为不受磁头支撑固定状态的工序;上述挠性基板由被基板搭载用工作平台支撑着的状态转变为不受支撑状态的工序。
文档编号H05K3/32GK1487575SQ0315533
公开日2004年4月7日 申请日期2003年8月27日 优先权日2002年8月30日
发明者根桥徹, 川上茂明, 清水弘之, 之, 明, 根桥 申请人:爱立发株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1