一种低分子壳聚糖@银纳米颗粒复合膜及制备方法和应用与流程

文档序号:13712766阅读:440来源:国知局
一种低分子壳聚糖@银纳米颗粒复合膜及制备方法和应用与流程

本发明属于材料科学与工程技术领域,特别涉及一种低分子壳聚糖@银纳米颗粒复合膜及制备方法和在抗菌、防腐领域中的应用。



背景技术:

随着人类的进步,人们对人体健康寄予更高的期望值,对日用化学品的安全标准要求越来越高,防腐剂作为日用化学品工业中不可或缺的添加剂之一,其安全标准也将越来越高。防腐剂一般分为合成防腐剂和天然防腐剂。现在大都使用合成防腐剂,但经长期的研究发现一些合成防腐剂有诱癌性、致畸性和易引起中毒等问题。2009年“强生含毒”事件:强生婴儿卫浴产品被曝含有甲醛及“1,4-二氧杂环乙烷”等有毒物质;2010年3月麦当劳“防腐剂”事件等,使得消费者对防腐剂,特别是合成防腐剂有谈防腐剂色变的反应,大家都已意识到化学合成防腐剂的危害性。与合成防腐剂相反,天然防腐剂具有天然、安全无毒、生物相容性好等特性。因此,近年来,天然防腐剂越来越受到大众的宠爱,天然防腐剂的研究和开发利用成了日用化学品工业的一个热点。因此,研究开发出既能高效抗菌又绿色无毒新型抗菌防腐材料是非常必要的。

壳聚糖(chitosan)是天然糖类唯一大量存在的碱性氨基多糖,分子中有活泼的羟基和氨基,具有良好的生物相容性、生物降解性和广谱的抗菌抑菌性等,这些性质使它作为天然的抗菌剂、抗菌材料、防腐剂有着很好的应用前景。虽然壳聚糖具有很多优点,但壳聚糖的抗菌防腐效果存在缺陷,其溶解性差、ph适用范围窄、只能溶于酸性环境,低剂量壳聚糖抗菌防腐效果差、抑菌谱较窄等,因此需要对壳聚糖进行改性,克服或者削弱这种不足,从而提高壳聚糖的抗菌防腐性能,以达到合成防腐剂的各种优越性能。

低分子量壳聚糖(lowmolecularweightchitosan,lmwc)相对于壳聚糖具有一些独特的理化性质。低分子量壳聚糖有着显著的抑菌抗菌作用。大量研究表明,随着壳聚糖分子量的降低,壳聚糖的抑菌、抗菌效果逐渐变强,尤其是当低聚壳聚糖的均分子量在3000左右的时候,它的抗菌抑菌效果最佳。低分子量壳聚糖分子中有大量的-nh2和-oh强极性基团,平均分子量的降低,分子内的氧键作用也随之消弱,同时,分子链长度的缩短,增加其在水溶液中的无序程度,这使得低分子量壳聚糖具有非常好的保湿性,还使其水溶性大大改观。在制备低分子壳聚糖的方法中,h2o2氧化降解法,降解效率高,没有污染,但生成制备的壳聚糖产品分子量不够低;酶法合成法对环境没有污染,操作简单,反应条件温和,在多种酶中,木瓜蛋白酶来源广泛,价格便宜,对壳聚糖降解效果显著,但降解的壳聚糖产品分子量不够低。

银纳米颗粒(silvernanoparticles,agnps)因其本身独特的物理化学特性得到了应用的机会,而其中的广谱抗菌性是最受到研究人员关注的。大量研究表明,纳米银能够有效抑制细菌、真菌和病毒的生长。虽然纳米银具有优异的抗菌性,但其分散性和不稳定性限制了它的应用。将纳米银与其他材料复合为纳米银的实际应用提供了解决方法。



技术实现要素:

为了克服上述现有技术的缺点与不足,本发明的首要目的在于提供一种低分子壳聚糖@银纳米颗粒复合膜的制备方法。

本发明的另一目的在于提供上述方法制备得到的低分子壳聚糖@银纳米颗粒复合膜。

本发明的再一目的在于提供上述低分子壳聚糖@银纳米颗粒复合膜在抗菌、防腐领域中的应用。

本发明的目的通过下述方案实现:

一种低分子壳聚糖@银纳米颗粒复合膜的制备方法,包括以下步骤:

(1)将酶粉加入高分子壳聚糖的缓冲溶液中,30~60℃搅拌反应10~14h,再加入h2o2溶液在50~80℃反应20~60min,再在90~110℃加热5~10min,抽滤,分离,加热活化,得到低分子壳聚糖终产物;

(2)将低分子壳聚糖终产物和聚乙烯醇加入水中,混合均匀,再加入agnps分散液,30~90℃搅拌4~5h,再在细胞粉碎机搅拌1~2h,得到静电纺丝液(pva/lmwc/agnps);

(3)将静电纺丝液纺丝,得到低分子壳聚糖@银纳米颗粒复合膜。

步骤(1)中所述缓冲溶液的ph为3.5~5.0,优选为ph为3.5~5.0的乙酸-乙酸钠缓冲液。

步骤(1)中所述高分子壳聚糖的缓冲溶液可通过将高分子壳聚糖加入缓冲溶液中搅拌溶解得到。

步骤(1)中所述高分子壳聚糖与酶粉的质量比为10:1~20:1。

步骤(1)中所述的酶粉为非专一性酶,如蛋白酶、淀粉酶、纤维素酶、脂肪酶等,可为木瓜蛋白酶等。所述酶粉的酶活≥10unit/mg。

步骤(1)中所述h2o2溶液与缓冲溶液的体积比为1:10~3:10。

所述h2o2溶液的浓度优选为30~35wt%。

步骤(1)中所述的过滤用于除去酶酚。

步骤(1)中所述的分离可通过调节抽滤后体系ph至中性,再利用无水乙醇进行醇沉,离心分离实现。

步骤(1)中所述的加热活化指60~80℃真空条件下保持18~24h。

步骤(2)中所述聚乙烯醇和低分子壳聚糖终产物的质量比优选为1:0.01~1:0.2。

步骤(2)静电纺丝液中所述聚乙烯醇的浓度为8~10wt%。

步骤(2)所述的混合均匀优选通过预处理实现,更优选为混合后先溶胀30~60min,再90~100℃条件下搅拌2~4h。

步骤(2)所述agnps分散液为步骤(2)反应体系总体积的0.5~2%。

步骤(2)所述agnps分散液的浓度为18~20mg/ml。所述agnps分散液使用前优选先超声10~15min。

步骤(3)中所述纺丝的条件可为湿度35~45%,接收距离为180~210mm,纺丝电压为40~60kv。

本发明还提供上述方法制备得到的低分子壳聚糖@银纳米颗粒复合膜。

本发明的低分子壳聚糖@银纳米颗粒复合膜性能优异,相比于单独的银纳米颗粒复合膜具有更强的抗菌效果和细菌截留能力,且材料不容易流失,可回收再利用,同时克服了单独的银纳米材料分散性高、不稳定的缺陷,绿色环保,易回收处理,可应用于抗菌、防腐等领域中。

本发明方法通过木瓜蛋白酶-h2o2联用的方法制备低分子壳聚糖,然后采用静电纺丝技术将低分子壳聚糖与银纳米颗粒复合,制备得到低分子壳聚糖@银纳米颗粒复合膜。该方法简单且易操作,制备过程耗时短,易规模化生产。

低分子壳聚糖保持了壳聚糖本身良好的生物相容性、生物降解性和广谱抗菌性等性能,并且含有丰富的-nh2和-oh强极性基团,这使得低分子量壳聚糖具有非常好的保湿性,还使其水溶性大大改观。将其与银纳米颗粒通过静电纺丝复合设计,使得其抗菌性能进一步加强,同时通过静电纺丝将材料成型为纳米纤维膜,复合材料既拥有低分子壳聚糖本身的优异性能,克服了银纳米颗粒分散性高、不稳定的不足,且对细菌有一定的截留能力,进一步提升了材料的抗菌防腐性能,减少了材料的流失,有利于其重复回收利用。

本发明相对于现有技术,具有如下的优点及有益效果:

(1)与传统将天然抗菌物作为天然防腐剂直接运用不同,本发明利用h2o2/木瓜蛋白酶双降解法将壳聚糖低分子化,强化其抗菌防腐性能,进一步增强其水溶性和保湿性。

(2)在此基础上,以安全无毒为基本要求,以广谱高效为基本目标,进一步采用静电纺丝技术将lmwc与抗菌性强的银纳米颗粒复配,达到协同增效、广谱抑菌和保湿防腐的目的,所开发的抗菌防腐剂具有天然高效、安全无毒、广谱抗菌和保湿的优点。

(3)本发明中的低分子壳聚糖材料仍然保留了壳聚糖的结构与性质,是一种具有良好生物相容性、广谱抗菌性且可生物降解的天然碱性多糖,通过降低分子量,其壳聚糖更多的-nh2和-oh强极性基团裸露出来,增强了其抗菌能力和保湿性,克服了壳聚糖本身水溶性差的局限性。

(4)本发明得到的低分子壳聚糖@银纳米颗粒复合膜材料相比于单独的银纳米颗粒复合膜具有更强的抗菌效果和细菌截留能力,且材料不容易流失,可回收再利用。

(5)本发明得到的低分子壳聚糖@银纳米颗粒复合膜材料克服了单独的银纳米材料分散性高、不稳定的缺陷,绿色环保,易回收处理。

(6)本发明的制备方法简单且易操作,制备过程耗时短,易规模化生产。

附图说明

图1为降解前的壳聚糖(a)以及实施例2中制备的lmwc-2(b)的粉末xrd图。

图2为pva(a)、实施例1制备的lmwc@agnps-1(b)和lmwc-1(c)。的粉末xrd图。

图3为降解前的壳聚糖(a)和实施例3制备的lmwc-3(b)的傅里叶红外光谱图。

图4为降解前的壳聚糖(a)、实施例2制备的lmwc-2(b)和lmwc@agnps-2(c)的电镜扫描图。

图5为实施例2制备的lmwc@agnps-2的eds图。

图6为降解前的壳聚糖、银纳米颗粒、实施例2制备的lmwc-2和lmwc@agnps-2作用于大肠杆菌抑菌圈效果对比图。

图7为降解前的壳聚糖、银纳米颗粒、实施例2制备的lmwc-2和lmwc@agnps-2作用于金黄色葡萄球菌的抑菌圈效果对比图。

具体实施方式

下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。

下列实施例所用试剂如无特殊说明均可从市场常规购得。实施例中所用的木瓜蛋白酶购自于上海阿拉丁生化科技股份有限公司。

实施例1:低分子壳聚糖@银纳米颗粒复合膜材料的制备

将4.00g壳聚糖溶于ph=4.5的200mlhac-naac溶液中,均匀搅拌使其完全溶解,加入0.20g木瓜蛋白酶于45℃恒温条件下搅拌反应11.5小时,升温至60℃恒温,再向其中加入40mlh2o2溶液反应30min,100℃加热5min,自然冷却至室温。过滤除去木瓜蛋白酶,滤液用4倍体积无水乙醇沉淀析出产物低分子壳聚糖,抽滤分离,真空条件下活化24h,得到样品并标记此样品为lmwc-1。

然后,称取0.4762glmwc-1样品和9.5238g聚乙烯醇加到90ml去离子水中,先溶胀30分钟,使其分散均匀,然后向其中加入1ml的20mg/ml的agnps分散液(使用前先在超声波清洗仪中超声10分钟),在90℃的恒温水浴条件下磁力搅拌4h,在细胞粉碎机里超声1h,使之充分分散均匀,即可得到pva/lmwc/agnps静电纺丝液,然后用elmarco静电纺丝机在接收距离为210mm,纺丝电压为56kv,carrige移动速度为150mm/s下进行纺丝,标记此样品为lmwc@agnps-1。

实施例2:低分子壳聚糖@银纳米颗粒复合膜材料的制备

将4.00g壳聚糖溶于ph=4.5的200mlhac-naac中,均匀搅拌使其完全溶解,加入0.40g木瓜蛋白酶于45℃恒温条件下搅拌反应11.5小时,升温至60℃恒温,再向其中加入40mlh2o2溶液反应30分钟,沸水浴5分钟,自然冷却至室温。过滤除去木瓜蛋白酶,滤液用4倍体积无水乙醇沉淀析出产物低分子壳聚糖,抽滤分离,真空条件下活化24h,得到样品并标记此样品为lmwc-2。称取0.4762glmwc-2样品和9.5238g聚乙烯醇加到90ml去离子水中,先溶胀30分钟,使其分散均匀,然后向其中加入1ml的20mg/ml的agnps分散液(使用前先在超声波清洗仪中超声10分钟),在90℃的恒温水浴条件下磁力搅拌4h,在细胞粉碎机里超声1h,使之充分分散均匀,即可得到pva/lmwc/agnps静电纺丝液,然后用elmarco静电纺丝机在接收距离为210mm,纺丝电压为56kv,carrige移动速度为150mm/s条件下进行纺丝,标记此样品为lmwc@agnps-2。

实施例3:低分子壳聚糖@银纳米颗粒复合膜材料的制备

将4.00g壳聚糖溶于ph=4.5的200mlhac-naac中,均匀搅拌使其完全溶解,加入0.27g木瓜蛋白酶于45℃恒温条件下搅拌反应11.5小时,升温至60℃恒温,再向其中加入40mlh2o2溶液反应30分钟,沸水浴5分钟,自然冷却至室温。过滤除去木瓜蛋白酶,滤液用4倍体积无水乙醇沉淀析出产物低分子壳聚糖,抽滤分离,真空条件下活化24h,得到样品并标记此样品为lmwc-3。称取0.4762glmwc-3和9.5238g聚乙烯醇加到90ml去离子水中,先溶胀30分钟,使其分散均匀,然后向其中加入1ml的20mg/ml的agnps分散液(使用前先在超声波清洗仪中超声10分钟),在90℃的恒温水浴条件下磁力搅拌4h,在细胞粉碎机里超声1h,使之充分分散均匀,即可得到pva/lmwc/agnps静电纺丝液,然后用elmarco静电纺丝机在接收距离为210mm,纺丝电压为56kv,carrige移动速度为150mm/s条件下进行纺丝,标记此样品为lmwc@agnps-3。

实施例4:结果表征

(1)xrd表征分析

采用荷兰帕纳科公司生产的empyrean锐影x射线衍射仪对本发明实施例1和2所制备得到的材料进行表征,以降解前壳聚糖(cs)和纯的pva膜作为空白对比,其中操作条件为:铜靶,40kv,40ma,步长0.0131度,扫描速度9.664秒/步。结果如图1、图2所示,从图1可以看出,降解前壳聚糖的衍射主峰2θ分别出现在20.1°、28.2°,实施例2的lmwc-2的壳聚糖衍射主峰逐渐减弱,趋于平缓,形成了无定形区域,同时在2θ为14.7°、32.8°、36.2°和40.5°等出现新的衍射峰,这是由于壳聚糖在降解过程中分子链断裂,分子内或分子间氢键已被大大削弱,壳聚糖的结晶性发生改变,但同时断键后的小分子形成新的晶形。由图2可知,纯的pva膜,只在2θ=19°存在一个宽峰,而实施例1的lmwc-1在20.1°出现了壳聚糖的弱衍射峰,实施例3中lmwc@agnps复合膜只出现了pva的19°衍射峰,这可能是lmwc和agnps在纺丝液中分散的很好,也可能是lmwc和agnps的含量较少。

(2)傅里叶红外光谱表征

采用美国尼高力公司公司生产的ccr-1傅里叶变换红外光谱仪对本发明实施例3所制备得到的材料进行表征,以壳聚糖(cs)作为空白对比,其中操作条件为:扫描范围为500-4000cm-1。结果如图3所示,其中3400-3600cm-1是形成氢键的-oh伸缩振动吸收峰与-nh2的伸缩振动吸收峰而增宽的多重吸收峰;2937.2cm-1处则是c-h的伸缩振动吸收峰;1654.9cm-1是酰胺基的特征吸收峰,因实施例3降解后的壳聚糖其脱乙酰度下降,所以其在此处的吸收峰有所降低。1420.1cm-1和1323.0cm-1是-ch2的转动吸收峰;1147.5cm-1是醚链c-o-c的伸缩振动吸收峰。由图可知,实施例3制备的lmwc-3与降解前的壳聚糖基本的官能团位置没有发生变化,只是吸收峰的强度有所不同,表明木瓜蛋白酶-h2o2氧化法联用制备的低分子壳聚糖,仍保持着壳聚糖的化学结构。

(3)sem及eds表征分析

采用merlin场发射扫描电子显微镜(carlzeiss公司,德国)对实施例2制备的样品的表面形貌进行表征。结果分别如图4所示,可以看出,降解前壳聚糖品呈片状并且相互堆叠,而实施例2的降解后壳聚糖lmwc-2表面变得光滑,同时棱角更加分明;实施例2的lmwc@agnps-2复合膜呈均匀纳米纤维状分布,对扫描电镜照片中的纤维进行能谱(eds)分析,可得到相应的元素含量,如图5所示。由此可知,纤维中存在n元素和ag元素,而n元素只来源于低分子壳聚糖,ag元素只来源于银纳米颗粒,所以agnps颗粒和lmwc成功负载在纳米纤维上,复合膜制备成功。

(4)样品抑菌圈的测定

采用抑菌圈实验来测试实施例2样品的抗菌性能,以大肠杆菌和金黄色葡萄球菌为实验对象,以壳聚糖和agnps为对比空白。

抑菌圈实验,首先用准备好109cfu/ml的大肠杆菌(escherichiacoli)和金黄色葡萄球菌(staphylococcusaureus)使用液,然后将其稀释为104、105、106cfu/ml的浓度,并涂布于lb琼脂平板上。然后将降解前的壳聚糖、银纳米颗粒和实施例2的lmwc-2样品配置成一定浓度的溶液,用直径为1cm的圆形滤纸片浸渍其中;将实施例2的lmwc@agnps-2样品剪裁成直径为1cm大小的圆片,然后分别平铺于以上3个不同细菌浓度的平板上,每个细菌浓度2个平行实验组。接着在37℃下倒置培养过夜,最后取出观察并测量抑菌圈大小。每个实施例样品在不同细菌浓度下的2个平行实验组,取平均值计算其抑菌圈值,其结果如表1、图6和图7所示。

表1抑菌圈直径

由图6和表1可知,降解前的壳聚糖对大肠杆菌几乎没有抗菌效果,实施例2的lmwc-2和银纳米颗粒对大肠杆菌的抗菌效果相当,而lmwc@agnps-2复合膜的抗菌效果增强,说明复合膜中低分子壳聚糖和银纳米颗粒有协同作用,可强化对大肠杆菌的抗菌效果;由图7和表1可知,降解前的壳聚糖和降解后实施例2的lmwc-2对金黄色葡萄球菌均没有抗菌效果,银纳米颗粒和lmwc@agnps-2复合膜对金黄色葡萄球菌的抗菌效果相当,这是由于金黄色葡萄球菌是革兰氏阳性菌,壳聚糖主要是通过吸附在细胞表面形成高分子膜,阻止营养物向细胞内的运输而起到杀菌作用,降低其分子量并不能增强抗菌效果,同时低剂量的高分子壳聚糖抑菌效果差,所以复合膜中对金黄色葡萄球菌起主要抗菌作用的是银纳米颗粒。

上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1