生物活性剂体内递送的装置及其制造方法

文档序号:1110054阅读:199来源:国知局
专利名称:生物活性剂体内递送的装置及其制造方法
相关申请的交叉引用本申请是2001年2月14日提交的共同转让、共同待批美国专利申请序列第09/783,633号、2000年11月17日提交的第09/716,146号以及作为2000年11月17日提交的第09/716,146号部分继续的2002年10月17日提交的第10/258,087号的部分继续。
背景技术
本发明一般涉及用于支撑体腔通道并在体内递送生物活性化合物的可植入装置。更具体地说,本发明涉及配备有悬臂控制器的可植入装置,该装置响应预定的生理事件而自动递送生物活性化合物。
闭塞性疾病、病症或创伤可导致开放的体腔变窄并限制流体或物质通过体腔的流动或通行。闭塞性疾病的一个例子是动脉硬化,其中,由于动脉硬化斑块的逐渐形成而阻塞了部分血管,该过程成为狭窄。当血管狭窄导致血管功能性闭塞时,血管必需回到其开放状态。治疗闭塞体腔的常规疗法包括用生物活性剂如组织纤维蛋白溶酶原激活剂(TPA)或血管内皮生长因子(VEGF)和成纤维细胞生长因子(FGF)基因转移物来扩张体腔,改善缺血肢体和心肌中的血流和侧支形成(S.Yla-Herttuala,心血管基因疗法(Cardiovascular gene therapy),Lancet,2000年1月15日);外科手术干预以消除阻塞,用新的内源性或外源性移植组织代替阻塞区段,或者使用导管安装的装置如球囊导管来扩张体腔或切削导管以切除闭塞物质。用球囊导管扩张血管被称为经皮腔内血管成形术。在该血管成形术期间,将紧缩状态的球囊导管插入血管闭塞区段内,多次膨胀和收缩以扩张血管。由于球囊导管的膨胀,血管壁上形成的斑块裂解且血管扩张,以增加通过血管的血流。
在大约60%的血管成形术病例中,血管保持开放。但是,高达约40%的再狭窄率是不能接受的。血管成形术后已使用了许多各种材料、性质和构型的腔内支架来防止再狭窄和血管开放缺失。
虽然使用腔内支架已成功降低了血管成形术患者中的再狭窄率,发现即使使用腔内支架仍然存在显著的再狭窄率。通常认为支架术后再狭窄率主要是因为内皮层不能再生长覆盖支架而在支架管腔表面上发生平滑肌细胞相关新生内膜的生长。对内皮这一动脉腔的天然抗血栓形成内壁的损伤是导致在支架部位发生再狭窄的重要原因。内皮缺失暴露了血栓形成性动脉壁蛋白质,它与常规用于制造支架的许多假体材料如不锈钢、钛、钽、镍钛记忆合金(Nitinol)等的血栓形成性一起,可引发血小板沉积和凝血连锁反应激活,导致血栓形成,从部分覆盖支架管腔表面到闭塞性血栓形成。此外,支架处的内皮缺失提示支架部位新生内膜增生的形成。因此,动脉壁的快速再内皮化,伴随着植入装置的体液或血液接触表面的内皮化,是维持脉管系统开放和防止低流血栓形成的关键。为了防止进行血管成形术的区域发生再狭窄和血栓形成,可采用抗血栓形成剂和其它生物活性剂。
发现需要同步进行将生物活性剂递送至放置支架的区域和支架植入。已设计了许多支架来将生物活性剂递送至支架植入的解剖学区域。其中一些支架是浸渍有生物活性剂的可生物降解支架。可生物降解浸渍支架的例子参见美国专利5,500,013、5,429,634和5,443,458。其它已知的生物活性剂递送支架包括美国专利5,342,348中描述的支架,其中,生物活性剂浸渍入机织到支架中或层压到支架上的纤丝中。美国专利5,234,456描述了一种亲水支架,该支架包含吸附的生物活性剂,所述生物活性剂可包括设置在支架亲水材料中的生物活性试剂。其它生物活性剂递送支架在美国专利5,201,778、5,282,823、5,383,927;5,383,928、5,423,885、5,441,515、5,443,496、5,449,382、4,464,450以及欧洲专利申请0 528 039中描述。用于腔内递送生物活性剂的其它装置在美国专利3,797,485、4,203,442、4,309,776、4,479,796、5,002,661、5,062,829、5,180,366、5,295,962、5,304,121、5,421,826以及国际申请WO 94/18906中描述。一种定向释放生物活性剂的支架在美国专利6,071,305中描述,其中,支架由螺旋状元件形成,在螺旋状元件的腔外表面(albuminal surface)中具有槽。腔内递送之前将生物活性剂装载在槽中,因而生物活性剂直接敷着所述生物活性剂处理的组织。最后,国际申请WO 00/18327描述了一种药物递送支架,其中管状管道缠绕在螺旋状支架中。管状管道具有沿整个导管长度延伸的单一连续管腔或双连续管腔。管状导管的一些区域或区段具孔,以使药物从导管“渗流”。管状导管的一端与流体递送导管流体连通,将流体如药物引入连续管腔并通过孔。
当使用可生物降解或不可生物降解的聚合物基或聚合物包衣支架时,一旦药物从聚合物溶出,聚合物可导致免疫炎症反应。在采用聚合物作为生物活性剂载体的情况下,希望聚合物与体内组织分离以限制生物活性剂溶出(eluting)后的免疫炎症反应,如本发明所能实现的那样。
还需要一种可植入的医疗装置,该装置能够支撑生理腔道并在需要时自动递送生物活性剂,所述需要限定为重要的生理学事件。更具体地说,需要一种可植入的医疗装置,以实现可控地递送生物活性剂。并且,还需要一种可植入的医疗装置,该装置能够检测重要的生理事件并能以非侵入方式手动激活而递送生物活性剂。
发明概述本发明一般涉及一种可植入的医疗装置,该装置可递送入解剖管道内,能够恢复和维持解剖管道的开放并将生物活性剂递送至解剖管道内。不是为了限制本发明,本发明的常规应用是冠状或其它血管支架装置,采用基于导管的方法可将该装置经皮递送至体内血管系统内的部位,并且一旦植入至所需部位,所述装置能够释放生物活性剂,以促进和提高脉管受损或损伤区域内的治愈反应。
更具体地说,本发明适合响应一种或多种内源性条件或外源性条件以递送生物活性剂。例如,可起动药物递送的内源性条件包括但不限于某些生理条件,例如,装置上非内皮细胞的生长、炎症反应、血管壁压、或T细胞或自然杀伤细胞的存在。可起动药物递送的外源性条件的非限制性例子包括施加的RF场、磁场、电磁场、超声、x-射线、正电子发射、激光或光子发射。
根据本发明,提供了一种结构主体,优选是一基本管状元件,结构主体内具有至少一个内室或内部孔穴,许多开口穿过结构主体并在结构主体的外壁表面与所述至少一个内室之间连通。结构主体的壁表面上或壁表面中存在或形成有许多悬臂元件,它们被设置成能使各个悬臂元件重叠在许多开口中至少一个的上方或覆盖许多开口中的至少一个。
许多悬臂元件基本上由翼状元件构成,翼状元件优选由形状记忆或超弹性材料制成,具有二元功能性,即处于开放或闭合位置中。许多悬臂元件各自是响应特定刺激如温度或压力的MEMS(微机电系统)装置,并可通过连接对特定生物化学标记物具有结合亲合力的反应性部分而衍生化。注意,每个悬臂元件具有二元功能性。在第一或闭合位置中,悬臂元件覆盖并阻塞穿过结构主体壁并与内室或内部孔穴连通的至少一个相关开口,将生物活性剂保留在结构主体中。在第二或开放位置中,悬臂偏离或暴露与其相关的一个或多个开口,而使生物活性剂从一个或多个开口溶出。悬臂的第二或开放位置是预定刺激的存在或缺失的结果。例如,第二位置可响应流动压力如血流,由于组织生长或阻塞导致的血流停止或降低可激活第二位置。或者,第二位置可响应温度,使得热诱导、例如超声共振诱导的热可激活第二位置。
当悬臂元件采取其开放位置之后,生物活性剂从内室或内部孔穴溶出,并通过许多机制从暴露的许多开口流出,这些机制包括但不限于,自由流动、泵送或脉冲流、渗透介导的扩散、毛细管扩散、置换流等等。
如本文所用,术语“生物活性剂”旨在包括一种或多种药理学活性化合物,可与制药学上可接受的载体以及任选地其它成分如抗氧化剂、稳定剂、渗透促进剂等组合。如本文所用,术语“药理学活性剂”和“生物活性剂”可与“药物”同义使用。本发明中可使用的生物活性剂的例子包括但不限于抗病毒药、抗生素药物、类固醇、纤连蛋白、抗凝药物、抗血小板功能药物、防止平滑肌细胞在血管内壁表面生长的药物、肝素、肝素片段、阿司匹林、香豆素、组织纤维蛋白溶酶原激活剂(TPA)、尿激酶、水蛭素、链激酶、抗增殖试剂如甲氨蝶呤、顺铂、氟尿嘧啶、阿霉素、抗氧化剂如抗坏血酸、β-胡萝卜素、维生素E、抗代谢剂、血栓素抑制剂、非甾体和甾体抗炎药、免疫抑制剂、β和钙通道阻断剂、包括DNA和RNA片段的遗传物质、完全表达基因、抗体、淋巴因子、生长因子如血管内皮生长因子(VEGF)和成纤维细胞生长因子(FGF)、前列腺素、白三烯、层粘连蛋白、弹性蛋白、胶原、一氧化氮(NO)、整联蛋白、紫杉醇、紫杉酚(taxol)、雷怕霉素(rapamycin)、雷怕霉素衍生物,例如2003年9月11日公开的美国专利公开第2003/0170287号中描述的雷怕霉素衍生物、西罗莫司、雷帕霉素(rapamune)、他克莫司、地塞米松、依维莫司、ABT-578(一种雷怕霉素类似物,可抑制mTOR细胞周期调节蛋白)以及生长因子如VEG-F。
本发明的另一方面是提供一种直径可变的结构元件。该结构元件可采取适合特定植入应用的圆柱形、管形、平面、球形、曲线或其它一般形状。例如,根据本发明,提供了一种腔内支架,该支架由许多限定腔内支架基本管状形状的通常称为支柱或圆环的互连元件构成。以一定的方式构造所述许多互连元件中的至少一些,使得具有在互连元件内或互连元件上形成的至少一个内部孔穴以及在内部孔穴与支架外部之间连通的至少一个开口。本发明考虑的可植入装置的可选形式包括但不限于封闭式支架、支架移植物、移植物、心脏瓣膜、静脉瓣、滤器、阻塞装置、导管、骨植入物、可植入避孕药、可植入抗肿瘤小丸或杆、或者其它可植入的医疗装置。
在本发明的一方面,提供了一种递送生物活性剂的支架,该支架基本上由许多结构元件构成,其中至少一些具有保留生物活性剂的内部孔穴和穿过所述内部孔穴与结构元件表面的开口以使所述生物活性剂从内部孔穴传递至支架外部。除本文所述之外,本发明并不依赖于支架的特定几何形状、材料、材料性质或构型。
本发明的其它方面涉及可结合到可植入医疗装置上、或者更具体地结合到悬臂上的的传感器,以监测或检测内源性或外源性刺激。内源性刺激典型地是生理学事件,例如平滑肌细胞增殖、内皮化作用、斑块形成、生物化学变化、细胞或细胞表面蛋白结合等。传感器优选以整体单层材料或多层薄膜的形式通过薄膜真空沉积制造,其中,通过机械、电、化学、电化学或机电方法,至少部分薄膜能够感应以下至少一种变化流体流动、流动速率、温度、压力、或者体内化学或生物化学物质的存在或缺失。
具体地说,基于体内管腔中存在的物理、化学或电能量差异,传感器能够监测临床上重要的生理学事件。例如,可采用本发明传感器来感应血流量、血流速率、压力、电能量、生物化学相互作用、温度、或腔内植入物如支架或其它类型腔内导管的管腔内沉积程度和类型的显著变化。本发明还提供一种响应感应或监测的参数调节腔内植入物的机械和/或物理性质的方式。例如,当监测通过腔内装置的血流量被确定为低于生理学标准和/或血压被确定为高于生理学标准时,可起动可植入医疗装置如支架,自动或手动控制地释放选定的生物活性剂。
在本发明的一方面,传感器能够监测可植入装置周围的环境,检测指示预定事件的刺激。在一个优选的方面,传感器可制造到许多悬臂元件上或与许多悬臂元件结合。一旦检测到特定事件,信号可传递至可植入物装置,然后促使悬臂从闭合位置向开放位置发生转化。通过转化,选定的生物活性剂释放入局部环境。
在本发明的另一方面,传感器也可检测预定的刺激,除了仅仅是监测,传感器向悬臂发送信号或转移能量而使悬臂从闭合位置朝开放位置发生物理转化。优选地,悬臂被制造成本身可用作传感器,使得一旦悬臂检测到供能事件,悬臂可响应供能事件而从闭合位置朝开放位置发生物理转化。
根据本发明的另一个实施方式,本发明传感器包括至少一个区域的可植入腔内装置,该装置由许多具有不同机械性质的悬臂元件形成,例如不同的弹性模量、可塑性或应力应变行为。根据目前本发明考虑的最佳模式,悬臂元件优选由超弹性材料构成。和形状记忆悬臂元件一样,超弹性悬臂元件可被设置在可植入装置的流体接触表面或组织接触表面上,例如接触血液的支架管腔表面、或接触血管新生组织的支架腔外表面上。或者,传感器可被设置在可植入装置的流体接触表面和组织接触表面上。与形状记忆悬臂传感器不同,超弹性悬臂传感器可响应施加在传感器上的力如剪切力的变化。
对于形状记忆悬臂元件传感器和超弹性悬臂元件传感器来说,各种悬臂元件各自具有分别指示闭合或开放位置的第一和第二位置。各个悬臂元件的第一或“闭合”位置与其中设置传感器的腔内装置的表面共面或平齐。在第二或“开放”位置中,各个激活的悬臂元件从其中设置传感器的腔内装置的表面向外伸出。因为不同的悬臂元件或悬臂元件组被制造成具有不同的转变温度或不同的应力应变性质,处于第二或“开放”位置中的各个悬臂元件或悬臂元件组指示其中植入腔内装置的体内存在的给定热或应力应变条件并可释放内部孔穴内容纳的生物活性剂。
在本发明的一个具体形式中,本发明腔内装置包括温度感应器,该温度感应器有许多悬臂元件被设置在腔内装置的近端、远端或中间区域中至少一个上和被设置在腔内装置的管腔或腔外壁表面中至少一个上。为了便于检测,提供了许多悬臂元件组,每个组由许多独立的悬臂元件形成,组内许多独立的悬臂元件各自具有相同的转变温度。许多悬臂元件组沿腔内装置的纵轴线排列,排列的方式可产生具有不同转变温度的悬臂元件组的连续区。通过放射成像、超声成像、磁共振成像或提供悬臂元件或悬臂元件组位置可检测图像的其它方式来确定悬臂元件或悬臂元件组的位置,指示内腔装置部位处的温度变化。
在本发明的另一个具体形式中,传感器包括许多悬臂元件,它们可被设置在腔内装置的近端、远端或中间区域中至少一个上和被设置在腔内装置的管腔或腔外壁表面中至少一个上。为了便于检测,提供了许多悬臂元件组,每个组由许多独立的悬臂元件形成,组内许多独立的悬臂元件各自具有相同的转变温度。许多悬臂元件组沿腔内装置的纵轴线排列,排列的方式可产生具有不同应力应变转变压力的悬臂元件组的连续区。通过与未加载悬臂元件的基线应力应变相比,作用在悬臂元件或悬臂元件组上的应力和应变,提供在反映在能量中对应的频率位移,指示内腔装置部位处施加的应力或应变、例如血压或血流剪切应力的变化。悬臂元件的位置和频率位移可通过放射成像、超声成像、磁共振成像或提供悬臂元件或悬臂元件组位置可检测图像或者能够测定负载在悬臂元件上的差异性应力应变导致的频率位置的其它方式来确定。
在本发明的又一种形式中,本发明传感器是由能够发生弹性、可塑、形状记忆或超弹性变形的材料微制造形成的生物传感器,其中形成有许多悬臂元件,如上所述。所述许多悬臂元件各自具有对于选自下组的至少一个内皮化指示物选定的至少一个结合区域内皮细胞表面蛋白、抗原、抗体、细胞因子、生长因子、辅助因子、或内皮细胞或内皮细胞前体的其它生物或生物化学标记物。至少一个指示物与所述许多悬臂元件中至少一个的结合可使施加于悬臂元件的应变改变,而使相关悬臂元件或悬臂元件组从第一或“闭合”位置向第二或“开放”位置发生超弹性转化。如上文本发明实施方式中所述,传感器悬臂元件相对于腔内装置在第二或“开放”位置中的位置指示了内皮化进程并允许释放内部孔穴内容纳的生物活性剂。
类似地,通过使用许多弹性或超弹性悬臂元件,可感应动脉粥样硬化斑块的形成或进展并用合适的生物活性剂处理。根据第一个实施方式,由于动脉粥样硬化斑块生长到悬臂元件上,许多超弹性悬臂元件由于施加在悬臂元件上的应变而发生马氏体转化。根据第二个实施方式,许多超弹性悬臂元件具有选作至少一个动脉粥样硬化斑块或其前体的指示物的至少一个结合区域。动脉粥样硬化斑块或动脉粥样硬化斑块前体与悬臂元件上的结合域的结合,使悬臂元件的应变量增加至足以导致悬臂元件从第一或“闭合”位置朝第二或“开放”位置发生超弹性转化。如上文本发明实施方式中所述,传感器悬臂元件相对于腔内装置在第二或“开放”位置中的位置指示了动脉粥样硬化的进展并引起容纳在内部孔穴内合适的生物活性剂的释放。
因为其用作结构支架和采用经导管方法递送支架的需要,支架必须以降低的直径状态递送并可扩张或能够在体内扩张至膨大直径状态。因此,所有支架具有比支架其它结构区域经受更高应力和应变条件的特定结构区域。因此,宜设置内部孔穴,将生物活性剂保留在腔内递送和扩张期间经受相对较低应力和应变的支架结构区域中。或者,当需要递送大量生物活性剂时,内部孔穴可设置在递送和扩张期间经受巨大变形的区域中,从而迫使生物活性剂在变形产生的正压力下从内部孔穴溶出。然后,扩散力迫使巨大变形区域或较低压力应变区域中存在的剩余生物活性剂溶出。
附图简要说明

图1是根据本发明具有许多悬臂元件的可植入元件的立体图。
图2是取自图1中区域2的部分平面视图。
图3是图沿图2中线3-3的剖视图,显示了许多在第一或闭合位置中的悬臂元件。
图4是与图3相同的剖视图,显示了许多在第二或开放位置中的悬臂元件。
图5是沿图1中线5-5的剖视图。
图6是本发明一个可选实施方式的剖视图。
图7是根据本发明一个优选实施方式的药物溶出(drug-eluting)支架的部分平面视图。
图8是根据本发明一个优选实施方式的药物溶出支架的横切面显微照片。
图9A-9G是连续剖视图,显示了根据本发明制造本发明药物溶出可植入医疗装置的方法。
优选实施方式的详细描述具体参考图1和2,本发明药物溶出装置10基本上由主体元件12构成,仅仅为了说明的目的,显示为基本管状构型,它具有第一壁表面14和第二壁表面16、第一端面13和相对的第二端面15。许多开口20穿过第一壁表面14和第二壁表面16中的一个或两者,并在至少一个室21间连通(虚线表示),室21完全位于药物溶出装置10的z-轴厚度内,并在第一壁表面14和第二壁表面16间限定,许多开口20中只有至少一个在内室21与药物溶出装置10的第一14或第二16壁表面间连通。第一壁表面14和第二壁表面16中的一个或两者中具有或结合有许多覆盖元件18,设置这些覆盖元件18以使许多开口20中至少一个被许多覆盖元件18中的一个所覆盖。许多开口29和相关的许多覆盖元件18可任选地排列成开口20和覆盖元件18的组23a-23e的样式。许多覆盖元件18基本上各自具有二元功能性,其中,当它们在第一或闭合位置中时,相关的至少一个开口20被覆盖元件18所覆盖或阻塞,而在第二或开放位置中,相关的至少一个开口20没有被覆盖元件18所覆盖。第一位置和第二位置间的转变优选由用于构成许多开口20的材料的形状记忆或超弹性相转变产生。许多覆盖元件18的二元转变可以是同步或不同步的。就是说,所有的所述许多覆盖元件18在共同条件下可在第一和第二位置间转变,因而同步起作用;或者,单独的覆盖元件18或覆盖元件组,而不是所有覆盖元件18在共同条件下可发生转变,而其它覆盖元件18不发生二元转变,因而不同步起作用。
虽然将参考基本管状实施方式显示和描述本发明药物溶出装置10,本领域普通技术人员应理解,其它几何构型并且也是可以考虑和可行的,这些几何构型包括但不限于球形、卵形、平面、曲线或圆柱构型。
根据一个本发明优选的实施方式,所述许多覆盖元件18包括由形状记忆或超弹性金属或拟金属材料构成的悬臂样元件。悬臂样覆盖元件18可形成第一壁表面14、第二壁表面16、或两者中的一体组件,可形成第一壁表面14、第二壁表面16或两者上的层,或者,可以是连接于第一壁表面14、第二壁表面16或两者的离散元件。而且,悬臂样覆盖元件可以是规则或不规则样式阵列。悬臂15可以任何需要的样式覆盖任意或所有开口14。此外,许多开口20中的一些可以没有相关的悬臂样覆盖元件18,或者所有的所述许多开口20可具有相关的悬臂样覆盖元件18。许多开口20的尺寸足以允许生物活性剂通过扩散、渗透压或在细胞向内生长进入至少一个内室21的正压作用下溶出。
图3和4显示了许多细胞样覆盖元件悬臂样覆盖元件18的二元功能性。在图3和4所示实施方式中,许多悬臂样覆盖元件18在壁表面14中一体形成,许多悬臂样覆盖元件18各自对向覆盖元件18下方的相关开口20。本领域技术人员将理解,开口20和覆盖元件18也可在相对的壁表面16中形成且与其关联。内室21完全限定在装置10的Z轴厚度内,位于第一壁表面14和第二壁表面16之间。可溶出的生物活性剂24被保留在内室21内。图3显示了在其第一或闭合位置中的许多悬臂样覆盖元件18,其中,许多悬臂样覆盖元件18各自沿壁表面14相互间为共平面关系。图4显示了在其第二或开放位置中的许多悬臂覆盖元件18,其中,许多悬臂样覆盖元件各自变形至暴露各个相关的开口20,并允许生物活性剂24从内室21溶出并通过开口20。如上所述,虽然图3和4描述了许多悬臂样覆盖元件18的同步作用,许多悬臂样覆盖元件18也可以不同步作用。
图5是沿图1中线5-5的横截面视图,显示了药物溶出可植入装置30,在一个实施方式中,它由基本管状元件32构成,可以是圆柱形支架、或是单独的支架支柱。管状元件32的许多内室34中至少一个完全在管状元件32的第一壁表面14和第二壁表面16间形成,用作生物活性剂36的储库。中央内腔31提供体液横穿装置30的流体流动通道。或者,当管状元件32是单独的支架支柱时,中央内腔32可用作保留从装置溶出的生物活性剂36的内室34,在这种情况下,任选地取消许多内室24。所述许多开口38在许多内室34、中央内腔31中至少一个和装置30外部之间连通。许多悬臂样覆盖元件42在外周层40中形成,构成装置30的第一壁表面14。
图6是图5所示本发明另一种实施方式的横截面视图。图6所示另一种实施方式的药物溶出装置45基本上类似于图5所示,只是所述许多开口47在装置45的许多内室43和中央内腔31之间连通。此外,许多悬臂样元件48在材料46的内腔层中形成,覆盖许多开口47以控制生物活性剂36从内室43的溶出。因此,在图5中,当许多悬臂样覆盖元件42中至少一些从其第一、闭合位置转化为第二、开放位置时,生物活性剂36从装置30向腔外溶出,而在图6中,生物活性剂36从装置45向腔内溶出。
许多开口20各自的位置可变化,取决于药物溶出可植入装置10所需的具体指示和应用。许多开口20可向装置10的腔内壁表面16开放、或向装置10的腔外壁表面14开放,或同时向装置10的腔内壁表面16和腔外壁表面14开放。开口20除围绕装置10的外周和纵轴线均匀分布之外,开口20也可朝装置10的近端或远端具有较高的密度。或者,开口20可沿装置10的中间区域具有较高的密度。应理解,在开口20密度较高的地方,由于开口20较高的密度,较大剂量的生物活性剂36可在任意时间释放。
所述许多开口21除了上述定位之外,许多内室34,41可连续或不连续地在装置10的z轴厚度内,并且可以在装置10的不同外周或纵向区域中。在不连续内室34,41的情况下,多种生物活性剂可装载在装置10中以同步或不同步溶出。
通过利用许多悬臂样覆盖元件18的不同步功能,可基于不同的生理学条件的发生实现差异性药物递送。
主体元件12优选由可生物相容的金属制成,例如钛、钒、铝、镍、钽、锆、铬、银、金、硅、镁、铌、钪、铂、钴、钯、锰、钼以及它们的合金,例如锆-钛-钽合金、镍-钛合金、铬-钴合金或不锈钢。许多悬臂样覆盖元件18优选由形状记忆或超弹性材料制成,例如镍-钛或铬钴合金。
许多悬臂18可分别由能够发生弹性、可塑、形状记忆和/或超弹性变形的材料制成。可采用例如不锈钢、钛、镍、钽、金、钒、镍-钛或其合金的材料来制造所述许多悬臂元件。通过改变材料的合金比例可赋予悬臂18不同的电、热或机械性质。优选均以真空沉积主体元件12和悬臂18以紧密控制材料组成、材料的电、机械和热性质,并且紧密控制装置的组织和流体接触表面及疏松材料。例如,对于镍-钛合金来说,镍-钛二元目标中目标钛含量可改变已知的量以精确改变悬臂元件18的转变温度。
根据本发明的一个实施方式,主体元件12和许多悬臂18中的一个或两者都由薄层金属膜制成。如本文所用,术语“薄层金属膜”或“金属薄膜”可同义使用,用于表示由金属或拟金属材料构成的可生物相容的材料。本发明金属薄膜可通过常规煅制金属加工技术制成,或者可通过纳米制造技术如物理蒸气沉积或化学蒸气沉积制成。本发明中使用的该金属薄膜可以是由单层或多层厚度大于0μm小于约125μm的生物相容金属或生物相容拟金属制成的薄膜所构成的。
优选许多悬臂18各自都具有二元功能性,以提供指示悬臂奥氏体相位的第一“闭合”位置和指示悬臂18马氏体相位的第二“开放”位置。闭合位置被构造成在降低的位置中,与表面基本上共平面。另一方面,开放位置被构造成在升高的位置中或相对于表面向外伸出。
因此,应理解,当植入的温度传感器遇到不同的体内温度时,不同的悬臂元件组将接触其转变温度并从“闭合”位置变到“开放”位置。一旦处于开放位置中,悬臂将不再阻碍生物活性剂通过开口从内部孔穴的溶出。
许多悬臂样覆盖元件18可用作传感器,它们被制造成能够感应和响应生理学状态的改变,例如压力、温度、细胞和蛋白结合、给定生物化学标记物的存在或缺失等等。或者,许多悬臂样覆盖元件18可以被制造成仅仅能够响应特定的外部施加的刺激。在这种情况下,可施加外源性刺激如磁场、RF能、超声、热等,以起动许多悬臂样覆盖元件18中至少一些并允许生物活性剂溶出。
如图1所示,悬臂样覆盖元件18的有序阵列(通常以元件23表示)可形成传感器组,使得形成第一阵列23a的悬臂样覆盖元件18可以被制造成具有马氏体应力/应变转换系数σ,而形成第二阵列23b的悬臂样覆盖元件18可以被制造成具有转换系数σ+1,形成第三阵列23c的悬臂样覆盖元件18可以被制造成具有转换系数σ+2等,使得不同的覆盖元件18或覆盖元件组18可基于体内施加到悬臂样覆盖元件18的给定量应力或应变而改变其位置。
或者,不仅仅具有二元功能性,许多覆盖元件18还可分别具有依赖于各个悬臂元件的材料模量和转动惯量的响应曲线。响应曲线允许开口随着覆盖元件18从闭合位置逐渐位移至开放位置而具有不同的阻抗程度,从而实现通过开口的不同的溶出分布特征。各个覆盖元件18可以被构造成具有沿覆盖元件18的X-Y轴在Z轴厚度中的变量。通过构建具有可变Z轴厚度的覆盖元件18,由于覆盖元件18的几何形状改变而具有的不同的材料模量和不同的转动惯量,不同的覆盖元件18或不同的覆盖元件组18将显示不同的应力-应变反应。在这种覆盖元件18替换结构的情况下,对于施加到覆盖元件18的给定量的应力-应变,覆盖元件18将偏转和位移从外部能源施加的回复的共振频率。偏转的程度将与作用于覆盖元件18的应力和应变力相关。当然,应理解,覆盖元件18的替换结构仍能提供二元“闭合”和“开放”功能性,“闭合”和“开放”位置仅仅指示覆盖元件18的偏移位置。
因此,应理解,当植入的传感器遭遇与例如生理血压、流体剪切应力、内皮化作用、动脉粥样硬化斑块形成等变化有关的不同应力和应变时,不同的悬臂元件组将暴露于其转变条件并从“闭合”位置改变到“开放”位置。
可通过许多方法制造各个上述本发明优选的实施方式。根据本发明,考虑使煅制金属部件如毛细管形成可植入装置或通过真空沉积技术形成可植入装置,是制备本发明可植入结构元件的优选方法。当由许多独立的管状元件制造可植入装置时,可采用预先存在的外径60-400μm、壁厚度10-350μm的微管状元件来制造适用于颅内或冠状动脉应用的极小尺寸的装置。微管状元件可形成圆柱形腔内装置,例如通过编织或弯曲和通过点焊将微管状元件连接在一起。当微管状元件的末端形成自身插管时,自身插管末端可在沿其纵轴线的任意点暴露在腔内装置的近腔表面上。穿过各个独立的管状元件管壁的许多开口可通过微钻孔形成,开口穿过壁并进入独立的管状元件的内部孔穴或管腔。许多开口可以是激光切割、蚀刻或通过EDM方法形成的,可在管状元件形成可植入装置的三维构型之前或之后形成。
当由非预先存在的结构元件形成可植入装置时,可采用真空沉积技术来形成可植入结构主体,例如溅射、反应性离子蚀刻、化学蒸气沉积、等离子蒸气沉积等,如微电子制造领域已知的那样,更详细描述参见2002年4月30日公布的共同转让的美国专利6,379,383,和2003年3月27日公开的以公开专利申请第20030059640号出版的共同转让的美国专利申请序列第10/211,489号,这两份申请中采用物理蒸气沉积过程制造可植入材料的示例方法的内容参考包括在此。
内室、许多开口和覆盖元件可在沉积期间分别形成。为了通过真空沉积形成这些元件,真空沉积过程可以是改进的牺牲材料必要样式以在结构材料基层上形成内室和开口的区域,然后将第二层结构材料沉积到牺牲材料和基层上。然后,例如通过蚀刻除去牺牲材料,保留沉积的疏松材料中形成的内部孔穴和许多开口。可通过沉积一层覆盖材料来形成许多覆盖元件,然后例如通过激光蚀刻来限定覆盖材料层中的覆盖元件,在覆盖材料中形成悬臂样覆盖元件。
制备本发明药物溶出医疗装置的示例性方法60如图9A-9G顺序所示。如图9A所示,提供基材62;第一层生物相容材料64沉积在基材62上,然后是牺牲材料层66。在图9B中,下一步需要按样式形成牺牲材料层66以保留牺牲材料层66的样式区段68。如后文所述,样式区段68将形成本发明装置的内室21。然后,使第二层生物相容材料70沉积到样式区段68和第一层生物相容材料64上,如图9C所示。如图9D所示,在第二层生物相容材料70中形成许多开口72,并与牺牲材料层66的样式区段68连通。然后,如图9E所示,通过开口72除去保留在样式区段68中的牺牲材料,以留下完全被第二层生物相容材料70和第一层生物相容材料64所限定的内室72。然后,提供第三层生物相容材料76以覆盖第二层生物相容材料70和其中的许多开口72,如图9F所示。第三层生物相容材料76可预先形成有许多悬臂元件78,相邻悬臂元件78之间具有分离间隔80,间隔80和悬臂元件78覆盖的开口72之间形成有粘合区域82,如图9G所示。本领域技术人员将理解,第三层生物相容材料可以是离散的材料层或者可以由在粘合区域82分别连接于第二层生物相容材料70的许多独立的悬臂元件78构成。第三层生物相容材料76可直接沉积在第二层生物相容材料70上,然后形成许多独立的悬臂元件78,例如通过激光切割或选择性蚀刻。但是,重要的是,还应插入牺牲夹层掩模,覆盖第二层生物相容层70和许多开口72而仅仅暴露粘合区域82,使得除去牺牲夹层掩模之后,许多悬臂元件78可从许多开口72自由偏转和开放这些开口。
无论采用何种制造方法,生物活性剂必须装载在可植入装置的内部孔穴内。可通过使液体或半液体状态的生物活性剂流过许多开口进入内部孔穴来完成生物活性剂的装载,可装载在整个装置中或者在可植入装置的部分区域中。可采用正压、温度变化或此两者促进流动装载,例如热等静压(HIP)中所使用的那样。在HIP中,加压介质典型地是气体,在升高的温度下持续特定的时间期限来进行该过程。虽然HIP通常用于致密材料,用于填补浇铸缺损和空隙,或用于粘结相似或不相似的材料,它也可用于迫使流体或半流体从可植入装置外部进入可植入装置内部孔穴。或者,可采用扩散介导的装载、渗透装载或真空装载以将生物活性剂加载到内部孔穴内。
虽然参考优选实施方式描述了本发明,本领域普通技术人员将理解和明白,可改变结构材料、生物活性剂、制造方法、装置构型或装置适应症和用途而不背离本发明,本发明的范围仅仅由所附权利要求书所限定。
权利要求
1.一种可植入的药物溶出医疗装置,所述装置包括第一元件,它具有许多限定第一元件z轴厚度的壁表面,被完全包封在第一元件的z轴厚度内的至少一个内室,许多开口中至少一个在所述内室与所述多个壁表面中的至少一个并通过第一元件的一部分z轴厚度;至少一个内室中的生物活性剂;和位于许多壁表面中至少一个上的许多第二元件,许多第二元件中的至少一个与许多开口中至少一个相关,许多第二元件中的至少一个各自具有覆盖和阻塞相关开口的第一位置以及不覆盖相关开口的第二位置,一旦遭遇确定的刺激,所述许多第二元件能够在第一位置和第二位置之间转变。
2.如权利要求1所述的可植入的药物溶出医疗装置,其特征在于,所述许多第二元件以自然状态位于第一位置中,一旦施加刺激就转变至第二位置。
3.如权利要求1所述的可植入的药物溶出医疗装置,其特征在于,所述刺激是经皮施加于所述医疗装置的外源性刺激。
4.如权利要求1所述的可植入的药物溶出医疗装置,其特征在于,所述刺激选自内源性物理刺激、电刺激或化学刺激。
5.如权利要求1所述的可植入的药物溶出医疗装置,其特征在于,所述第一元件选自支架、包覆支架和血管移植物。
6.如权利要求1所述的可植入的药物溶出医疗装置,其特征在于,所述第一元件还包括支架,所述支架具有许多互连的独立结构元件,所述许多互连的独立结构元件中至少一些具有至少一个内室、许多开口中至少一个、位于其中的至少一种生物活性剂,并且许多覆盖元件中的至少一个与许多开口中的至少一个可操作地相关。
7.如权利要求1所述的可植入体,其特征在于,所述第一元件和所述许多第二元件各自还包括选自下组的材料钛、钒、铝、镍、钽、锆、铬、银、金、硅、镁、铌、钪、铂、钴、钯、锰、钼及其合金、锆-钛-钽合金、镍-钛合金、镍-钛-钽合金、铬-钴合金或不锈钢。
8.如权利要求1所述的可植入体,其特征在于,所述生物活性剂还包括选自下组的药理学活性剂抗生素药物、抗病毒药、抗肿瘤剂、类固醇、纤连蛋白、抗凝药物、抗血小板功能药物、防止平滑肌细胞在血管内壁表面生长的药物、肝素、肝素片段、阿司匹林、香豆素、组织纤维蛋白溶酶原激活剂、尿激酶、水蛭素、链激酶、抗增殖试剂、抗氧化剂、抗代谢剂、血栓素抑制剂、非甾体和甾体抗炎药、免疫抑制剂、β和钙通道阻断剂、包括DNA和RNA片段的遗传物质、完全表达基因、抗体、淋巴因子、生长因子、血管内皮生长因子、成纤维细胞生长因子、前列腺素、白三烯、层粘连蛋白、弹性蛋白、胶原、一氧化氮、整联蛋白、紫杉醇、紫杉酚、雷怕霉素、雷怕霉素衍生物和类似物、西罗莫司、雷帕霉素、他克莫司、地塞米松、依维莫司、ABT-578或生长因子。
9.一种腔内支架,所述支架包括基本为管状的元件,所述元件具有纵向穿过管状元件并在管状元件的相对末端开口的中央内腔、管腔表面和腔外表面以及它们之间限定的壁厚度,至少一个内室在至少一些部分的管状元件中被完全限定在壁厚度内,许多开口在至少一个内室与管腔表面、腔外表面中至少一个之间连通;位于至少一个内室中的至少一种生物活性剂;和与所述许多开口可操作地相关的许多覆盖元件,它具有阻塞许多开口中至少一个的闭合位置和允许生物活性剂从至少一个内室溶出并通过所述至少一个开口的开放位置。
10.如权利要求9所述的可植入体,其特征在于,所述管状元件和所述许多覆盖元件还包括选自下组的材料钛、钒、铝、镍、钽、锆、铬、银、金、硅、镁、铌、钪、铂、钴、钯、锰、钼及其合金、锆-钛-钽合金、镍-钛合金、铬-钴合金或不锈钢。
11.如权利要求10所述的可植入的药物溶出医疗装置,其特征在于,所述许多覆盖元件和所述管状元件中的至少一个由至少一种可生物相容的金属薄膜制成。
12.如权利要求9所述的可植入体,其特征在于,所述至少一种生物活性剂还包括选自下组的药理学活性剂抗生素药物、抗病毒药、抗肿瘤剂、类固醇、纤连蛋白、抗凝药物、抗血小板功能药物、防止平滑肌细胞在血管内壁表面生长的药物、肝素、肝素片段、阿司匹林、香豆素、组织纤维蛋白溶酶原激活剂、尿激酶、水蛭素、链激酶、抗增殖试剂、抗氧化剂、抗代谢剂、血栓素抑制剂、非甾体和甾体抗炎药、免疫抑制剂、β和钙通道阻断剂、包括DNA和RNA片段遗传物质、完全表达基因、抗体、淋巴因子、生长因子、血管内皮生长因子、成纤维细胞生长因子、前列腺素、白三烯、层粘连蛋白、弹性蛋白、胶原、一氧化氮、整联蛋白、紫杉醇、紫杉酚、雷怕霉素、雷怕霉素衍生物和类似物、西罗莫司、雷帕霉素、他克莫司、地塞米松、依维莫司、ABT-578或生长因子。
13.如权利要求9所述的腔内支架,其特征在于,所述管状元件还包括限定管状元件壁的许多互连的结构元件,与所述许多结构元件中至少一些相关的许多不连续的内室,在各个许多不连续内部孔穴和支架外部之间连通的许多开口,位于所述许多不连续内室中的至少一种生物活性剂,以及与所述许多开口相关的许多悬臂样覆盖元件中至少一个。
14.一种制备药物溶出医疗装置的方法,所述方法包括以下步骤a)将第一层可生物相容的材料真空沉积到基材上;b)将牺牲材料层真空沉积到第一层可生物相容的材料上;c)除去部分牺牲材料,形成限定内室的牺牲层区域;d)将第二层可生物相容的材料真空沉积到限定内室的牺牲层区域和第一层可生物相容的材料上;e)形成穿过第二层可生物相容的材料并与限定内室的牺牲层区域相连通的许多开口中至少一个;f)除去内室限定区域的牺牲层,从而形成完全处于第一层可生物相容的材料和第二层可生物相容的材料之间的许多内室中至少一个;以及g)设置使得许多覆盖元件中的至少一个覆盖许多开口中的至少一个,所述许多覆盖元件中至少一个具有覆盖许多开口中至少一个的第一位置和不覆盖许多开口中至少一个的第二位置。
15.如权利要求14所述的方法,其特征在于,所述真空沉积步骤还包括物理蒸气沉积和化学蒸气沉积中至少一种。
16.如权利要求14所述的方法,其特征在于,在步骤(a)之前进行步骤(g),并且步骤(g)还包括将第一层可生物相容的材料真空沉积到所述许多覆盖元件上的步骤。
17.如权利要求14所述的方法,其特征在于,所述方法还包括将至少一种生物活性剂装载到许多内室中至少一个中的步骤。
18.如权利要求17所述的方法,所述方法还包括从以下药理学活性剂中选择至少一种生物活性剂的步骤抗生素药物、抗病毒药、抗肿瘤剂、类固醇、纤连蛋白、抗凝药物、抗血小板功能药物、防止平滑肌细胞在血管内壁表面生长的药物、肝素、肝素片段、阿司匹林、香豆素、组织纤维蛋白溶酶原激活剂、尿激酶、水蛭素、链激酶、抗增殖试剂、抗氧化剂、抗代谢剂、血栓素抑制剂、非甾体和甾体抗炎药、免疫抑制剂、β和钙通道阻断剂、包括DNA和RNA片段的遗传物质、完全表达基因、抗体、淋巴因子、生长因子、血管内皮生长因子、成纤维细胞生长因子、前列腺素、白三烯、层粘连蛋白、弹性蛋白、胶原、一氧化氮、整联蛋白、紫杉醇、紫杉酚、雷怕霉素、雷怕霉素衍生物和类似物、西罗莫司、雷帕霉素、他克莫司、地塞米松、依维莫司、ABT-578或生长因子。
19.如权利要求14所述的方法,其特征在于,第二层可生物相容的材料、第一层可生物相容的材料中的至少一种和所述许多覆盖元件中的至少一个还包括金属薄膜。
全文摘要
本发明包括一种用于在体内将生物活性剂可控地递送至体内部位的可植入的结构元件。该可植入的结构元件可被构造成可植入的假体,例如腔内支架、心脏瓣膜、骨植入物等,实现假体和生物活性剂载体的双功能。通过许多悬臂样覆盖元件,阻止药物溶出直到内源性或外源性刺激导致覆盖元件开放并允许药物溶出,从而控制生物活性剂的溶出。
文档编号A61L31/02GK101043859SQ200580029702
公开日2007年9月26日 申请日期2005年9月9日 优先权日2004年9月9日
发明者C·T·伯勒, S·R·贝利, D·马托, C·E·巴纳斯 申请人:先进生物假体表面有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1