用于调节代谢途径的组合物和方法与流程

文档序号:14597750发布日期:2018-06-05 17:48阅读:177来源:国知局
用于调节代谢途径的组合物和方法与流程

交叉引用

本申请要求以下申请的权益:2011年7月15日提交的美国申请No.61/508,139;2012年4月20日提交的美国申请No.61/636,597;2012年4月20日提交的美国申请No.61/636,598;2012年4月20日提交的美国申请No.61/636,603;2012年4月20日提交的美国申请No.61/636,605;2012年4月20日提交的美国申请No.61/636,608;2012年4月20日提交的美国申请No.61/636,610;所有这些申请均通过引用整体并入本文。



背景技术:

所有的生物体都开发了通过平衡其能量摄入和代谢与其生物支出需求而保持体内能量稳态的精妙的代谢途径。在哺乳动物中,这些途径调节食物摄取、葡萄糖稳态、脂肪和/或肌肉中的能量储存以及通过例如身体活动进行能量调动。通常由相对于能量支出而言过度的能量摄取所导致的这些途径功能失常,导致能量稳态不平衡,并可能导致多种代谢紊乱,例如肥胖、糖尿病、高血压、动脉硬化、高胆固醇和高脂血症。

人类代谢紊乱的高发病率及其对健康和死亡率的相关影响代表了对公共健康的显著威胁。例如,肥胖,在临床上定义为人体质量指数超过30kg/m2,据估计其影响35.7%的美国成年人口。肥胖增加了很多疾病的可能性,例如心脏疾病和II型糖尿病,后者为世界上主要的可预防的死亡原因之一。在美国,经估计肥胖导致了每年约110,000-365,000例死亡。糖尿病是一种代谢紊乱,其特征为高血糖水平或低葡萄糖耐量,据估计其影响了8%的美国人口。糖尿病还与由血管疾病、癌症、肾病、传染病、外部原因、故意自残、神经系统紊乱和慢性肺病导致的较高死亡风险显著相关(N Engl J Med 2011;364:829-841)。据估计,受试者表现出向心性肥胖和至少两种其它代谢紊乱(例如高胆固醇、高血压或糖尿病)的代谢综合征影响了25%的美国人口。

抗衰老酶(Sirtuins)是一种高度保守的蛋白质去乙酰化酶和/或ADP-核糖基转移酶,已显示其能够延长低等模型生物如酵母、秀丽线虫(C.elegans)和果蝇的寿命。在哺乳动物中,抗衰老酶已显示能作为代谢传感器,响应于环境信号,以协调调节多种能量稳态途径的基因的活性。例如,研究显示,抗衰老酶活化模拟热量限制——一种证明能显著延长寿命的措施——的效果,并激活能改善葡萄糖稳态和通过脂肪酸氧化将脂肪转化为能量的基因。

已经进行了很多努力来尝试开发通过靶向特定的能量代谢途径的代谢紊乱治疗方法。这些努力已经导致开发了,例如,异黄酮类(美国专利申请No.20110165125)、四氢利普司他汀(美国专利No.6,004,996)和调节SIRT1和AMPK途径的组合物(美国专利申请No.20100210692、20100009992、20070244202和20080176822)。然而,这些努力成就有限。例如,SIRT1激活剂白藜芦醇在人体中的应用受到了其有限的生物利用度的限制,需要很高的剂量,这会引发安全考虑。因此,仍然亟需能够通过安全地调控代谢途径来解决多种代谢紊乱的治疗方法。



技术实现要素:

本申请提供了可用于诱导受试者中脂肪酸氧化和线粒体生物发生增加的组合物。该组合物还导致Sirt1和Sirt3的活化,从而调节有益的下游效应,包括对糖尿病、心血管疾病和炎性疾病的预防和治疗。这类组合物包含协同量的抗衰老酶途径激活剂(例如白藜芦醇)与支链氨基酸和/或其代谢物(例如β-羟基甲基丁酸酯(HMB)、亮氨酸、酮异己酸(KIC)或HMB、KIC和/或亮氨酸的组合)的组合。本申请还提供了增加受试者中脂肪酸氧化的方法,包括施用所公开的组合物。

本发明提供了一种组合物,其包含:(a)一种或多种类型的支化氨基酸(例如亮氨酸)和/或其代谢物和(b)抗衰老酶途径激活剂,其任选地可以亚治疗量存在,其中该组合物较之单独使用时的组分(a)或(b)而言,能协同有效地使抗衰老酶途径输出增加至少约1倍(例如至少约1、2、3、4、5倍或更多倍)。在一些实施方案中,当(i)将来自用该组合物处理的肌管或脂肪细胞的培养基施用至其它肌管或脂肪细胞,(ii)将组合物施用至肌管或脂肪细胞,和/或(iii)将组合物施用至受试者时,观察到协同效应。

在此描述的任一方面的一些实施方案中,抗衰老酶途径输出的增加由选自下述的生理效应的升高所证实:线粒体生物发生、脂肪酸氧化、葡萄糖摄取、棕榈酸盐摄取、氧消耗、二氧化碳生成、体重减轻、热量产生、内脏脂肪组织减少、呼吸交换率、胰岛素敏感度、炎症标志物水平、体温、脂肪细胞褐化、鸢尾素产生和血管舒张。抗衰老酶途径输出的增加可以由SIRT1、SIRT3和PGC1-α中的一种或多种的表达或活性水平的升高来证明。抗衰老酶途径输出的增加可以是至少约1、3、5、6、8、10、15、20或50倍。

本发明的另一方面提供了一种组合物,其包含:(a)一种或多种类型的支化氨基酸(例如亮氨酸)和/或其代谢物,和(b)抗衰老酶途径激活剂,其中所述组合物中组分(a)与(b)的摩尔比大于约20,且其中当施用至有需要的受试者时,该组合物协同地增强由受试者的体重增加降低、受试者的内脏脂肪体积减小、受试者的脂肪氧化增加、受试者的鸢尾素产量增加、受试者的胰岛素敏感度升高、受试者的肌肉中葡萄糖摄取增加、炎症标志物降低、血管舒张增强和/或体温升高所测量的线粒体生物发生。在一些实施方案中,所述组合物中组分(a)与(b)的摩尔比大于约5、10、15、20、25、30、35、40、60、80、100、150、200、250或更多。

本发明的另一方面提供了一种组合物,其包含:适于口服的单位剂量,所述单位剂量包含:(a)一种或多种类型的支化氨基酸(例如亮氨酸)和/或其代谢物,和(b)基本上同质的一组多酚或多酚前体分子,且其中该单位剂量能有效诱导由受试者的体重增加降低、受试者的内脏脂肪体积减小、受试者的脂肪氧化增加、受试者的胰岛素敏感度升高、受试者的肌肉中葡萄糖摄取增加、血管舒张增强和/或体温升高所测量的抗衰老酶途径输出的增加。在一些实施方案中,该单位剂量被配制为片剂、胶囊或凝胶胶囊。

多酚或多酚前体分子可以以有效增加抗衰老酶途径输出(例如约、少于约或多于约1倍、3倍、5倍、6倍、8倍、10倍、15倍、20倍、50倍或更多)的量存在。多酚或多酚前体分子可以以有效地使抗衰老酶途径输出增加至少约1、2、3、4、5倍或更多倍的量存在。多酚分子能够激活SIRT1和/或SIRT3。多酚能够激活AMPK。多酚能够激活PGC1α。多酚可以为白藜芦醇或其类似物。多酚可以为绿原酸。多酚可选自绿原酸、白藜芦醇、咖啡酸、奎尼酸、白皮杉醇、鞣花酸、表没食子儿茶素没食子酸酯、葡萄籽提取物、肉桂酸、阿魏酸及其任意类似物。

本发明的另一方面提供了一种食物组合物,其包含:(a)一种或多种类型的支化氨基酸(例如亮氨酸)和/或其代谢物;(b)抗衰老酶途径激活剂,其中(a)和(b)以协同实现由受试者的体重增加降低、受试者的内脏脂肪体积减小、受试者的脂肪氧化增加、受试者的胰岛素敏感度升高、受试者的肌肉中葡萄糖摄取增加、血管舒张增强和/或体温升高所测量的抗衰老酶途径输出的升高的量存在;和(c)食物载体。

所述组合物可以是包装成液体(例如饮料)、固体(例如固体食品)或半固体(例如半固体食品)的膳食补充剂。在一些实施方案中,食物载体是果汁、咖啡、茶、苏打或小吃棒。可将组合物配制为口服剂型。可将组合物包装为单位剂量。可将单位剂量配制为片剂、胶囊或凝胶胶囊。

本发明的另一方面提供了一种组合物,其包含:协同有效量的(a)一种或多种类型的支化氨基酸(例如亮氨酸)和/或其代谢物;和(b)抗衰老酶途径激活剂,其中该组合物基本上不含非支化氨基酸,其中当施用至有需要的受试者时,该组合较之对受试者单独施用组分(a)或组分(b)而言,以更大的程度增强线粒体生物发生,且其中增强的线粒体生物发生由受试者的体重降低、受试者的内脏脂肪体积减小、受试者的脂肪氧化增加、受试者的胰岛素敏感度升高、受试者的肌肉中葡萄糖摄取增加、血管舒张增强和/或体温升高来测量。线粒体生物发生的增强可以为至少约1、2、3、4、5、6、8、10、15、20或50倍(其中1倍的增加等于100%的增加)。在一些实施方案中,线粒体生物发生和/或其一种或多种量度的变化为约或多于约10%、20%、50%、100%、200%、300%、400%、500%、750%、1000%、2000%、5000%或更多。

本发明的另一方面提供了一种组合物,其包含:(a)一种或多种类型的支化氨基酸(例如亮氨酸)和/或其代谢物,和(b)抗衰老酶信号途径中PGC1α下游的信号分子。PGC1α下游的信号分子可以是鸢尾素或其类似物。在一些实施方案中,该一种或多种类型的支化氨基酸和/或其代谢物可选自亮氨酸、缬氨酸、异亮氨酸、4-羟基异亮氨酸、酮异己酸(KIC)、α-羟基-异己酸和HMB。该组合物基本上不含非支化氨基酸。

在一个方面,本发明提供了一种组合物,其包含:(a)一种或多种类型的支化氨基酸(例如亮氨酸)和/或其代谢物,和(b)亚治疗量的选自双胍、氯茴苯酸、磺酰脲、噻唑烷二酮、α葡萄糖苷酶抑制剂和麦角生物碱的一种或多种抗糖尿病剂;其中当对受试者施用该组合时,较之对受试者单独施用组分(a)或组分(b)而言,该组合协同地增加所述受试者中的胰岛素敏感度。在一些实施方案中,抗糖尿病剂为抗衰老酶途径激活剂。在一些实施方案中,抗糖尿病剂为双胍(例如二甲双胍或其任意类似物)。在一些实施方案中,胰岛素敏感度的增加为至少约1倍的增加(例如至少约1、2、3、4、5、6、8、10、15、20或50倍)。在一些实施方案中,本发明提供了一种加强双胍的治疗效果的方法,包括将本发明组合物的组分(a)和组分(b)同时或相继施用至受试者,其中(a)和(b)的施用量能协同增加胰岛素敏感度,且其中组分(b)为双胍(例如二甲双胍)。

本发明还提供了一种加强选自双胍、氯茴苯酸、磺酰脲、噻唑烷二酮、α葡萄糖苷酶抑制剂和麦角生物碱的一种或多种抗糖尿病剂的治疗效果的方法,包括对受试者同时或相继施用(a)亚治疗量的所述抗糖尿病剂和(b)一种或多种支化氨基酸,其中(a)和(b)的施用能有效地减轻所述受试者的糖尿病症状。糖尿病症状的实例包括但不限于多尿症、烦渴、体重减轻、多食、视力模糊、高血压、脂蛋白代谢异常和牙周病。双胍可以是二甲双胍。该一种或多种抗糖尿病剂可包含格列吡嗪和/或二甲双胍。该一种或多种抗糖尿病剂可以是噻唑烷二酮。

在一个方面,本发明提供了一种增加鸢尾素的水平,例如增加细胞或受试者中鸢尾素的产生的方法。在一些实施方案中,该方法包括施用一种组合物,该组合物包含:(a)一种或多种类型的支化氨基酸(例如亮氨酸)和/或其代谢物,和(b)抗衰老酶途径激活剂;其中所述施用增加细胞的鸢尾素产量。在一些实施方案中,鸢尾素产量的增加(或提供其证据的指示物的增加)是增加约、少于约或多于约5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%、125%、150%、175%、200%或更多。在一些实施方案中,鸢尾素产量的增加(或提供其证据的指示物的增加)是增加约、少于约或多于约1倍、3倍、5倍、6倍、8倍、10倍、15倍、20倍、50倍或更多。在一些实施方案中,鸢尾素产量的增加由(例如根据mRNA和/或蛋白质水平所测量的)FNDC5表达的升高所证实。在一些实施方案中,鸢尾素产量的增加由脂肪细胞褐化的一种或多种指示物的升高(例如脂肪酸氧化,和/或脂肪组织中一种或多种褐色脂肪选择性基因表达的升高)所证实。在一些实施方案中,鸢尾素产量的增加由来自细胞或在受试者中的鸢尾素的分泌增加(例如由培养细胞的培养基或受试者中的循环血浆所测量的)所证实。在一些实施方案中,该组合物包含亮氨酸和白藜芦醇。在一些实施方案中,该组合物包含亮氨酸和肉桂酸。在一些实施方案中,该组合物包含HMB和白藜芦醇。在一些实施方案中,该组合物包含HMB和肉桂酸。

在此描述的任一方面的一些实施方案中,所述组合物适于口服。该组合物可以是适于非口服施用至受试者的液体形式。该组合物可以是适于注射施用至受试者的液体形式。该组合物可以配制为用于口服施用至受试者。

本发明提供了一种增强有需要的受试者中的脂肪氧化的方法,包括对受试者施用在此描述的任一组合物一段时间,其中受试者中的脂肪氧化在此段时间内增强。本发明提供了一种降低有需要的受试者中的炎症应答的方法,包括对受试者施用在此描述的任一组合物一段时间,其中受试者中的炎症应答在此段时间内降低。本发明提供了一种升高或保持受试者体温的方法,包括对受试者施用在此描述的任一组合物一段时间,其中受试者的体温在此段时间内升高。本发明提供了一种诱导血管舒张的方法,包括对受试者施用在此描述的任一组合物一段时间,其中受试者中的血管舒张在此段时间内被诱导。本发明提供了一种治疗糖尿病的方法,包括对受试者施用在此描述的任一组合物一段时间,其中受试者中的胰岛素敏感度在此段时间内升高。在一些实施方案中,胰岛素敏感度升高由血浆胰岛素水平的降低和/或葡萄糖利用的增加(例如响应于葡萄糖负荷的更快的葡萄糖摄取)所证实。在一些实施方案中,脂肪氧化的增加和/或胰岛素敏感度的增加为约、少于约或多于约5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%、125%、150%、175%、200%或更多。在一些实施方案中,脂肪氧化和胰岛素敏感度的增加为多于约5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%、125%、150%、175%、200%或更多。在一些实施方案中,脂肪氧化的增加和/或胰岛素敏感度的增加为约、少于约或多于约1倍、3倍、5倍、6倍、8倍、10倍、15倍、20倍、50倍或更多。在一些实施方案中,脂肪氧化的增加和/或胰岛素敏感度的增加为多于约1倍、3倍、5倍、6倍、8倍、10倍、15倍、20倍、50倍或更多。

本发明提供了一种制备在此描述的任一组合物的方法,包括将组分混合形成基本上同质的混合物并使组合物形成单位剂量。

在此描述的任一方面的一些实施方案中,该一种或多种类型的支化氨基酸和/或其代谢物选自亮氨酸、缬氨酸、异亮氨酸、4-羟基异亮氨酸、酮异己酸(KIC)、α-羟基-异己酸和羟基甲基丁酸酯(HMB)。该组合物可以基本上不含非支化氨基酸。该组合物可包含至少约500mg的亮氨酸和/或至少约200mg的该一种或多种代谢物。

在此描述的任一方面的一些实施方案中,抗衰老酶途径激活剂可激活SIRT1、SIRT3、AMPK和PGC1α中的一种或多种。在一些实施方案中,抗衰老酶途径激活剂为多酚或多酚前体。在一些实施方案中,抗衰老酶途径激活剂为白藜芦醇或其类似物。多酚可以为绿原酸。多酚或多酚前体可选自绿原酸、白藜芦醇、咖啡酸、肉桂酸、阿魏酸、白皮杉醇、鞣花酸、表没食子儿茶素没食子酸酯、葡萄籽提取物及其任意类似物。抗衰老酶途径激活剂可选自肉桂酸、奎尼酸、褐藻素、双胍、罗格列酮或其任意类似物。双胍可以是二甲双胍。

在此描述的任一方面的一些实施方案中,该组合物具有一种或多种额外的性质。在一些实施方案中,该组合物为食物组合物。该组合物可以是包装成液体(例如饮料)、固体(例如固体食品)或半固体(例如半固体食品)的食品或膳食补充剂。在一些实施方案中,将组合物配制为口服剂型。在一些实施方案中,可将组合物包装为单位剂量。可将单位剂量配制为片剂、胶囊或凝胶胶囊。在一些实施方案中,该组合物进一步包含药物活性剂。在一些实施方案中,该组合物进一步包含抗糖尿病剂。该组合物可以为进一步包含药学上可接受的赋形剂的药物组合物。在一些实施方案中,对受试者施用组合物能协同增加线粒体生物发生至少约1倍、3倍、5倍、6倍、8倍、10倍、15倍、20倍或50倍或更多。在一些实施方案中,对受试者施用组合物能协同增加抗衰老酶途径输出至少约1倍、3倍、5倍、6倍、8倍、10倍、15倍、20倍或50倍或更多。

此外,还提供了下述非限制性实施方案:

本发明提供了一种组合物,其包含协同量的白藜芦醇、协同量的β-羟基甲基丁酸酯(HMB)、协同量的酮异己酸(KIC);和/或协同量的亮氨酸。在一些实施方案中,该组合物包含协同量的白藜芦醇和协同量的HMB,其中:所述协同量的白藜芦醇为至少35mg至约500mg,且所述协同量的HMB为约(或至少)0.20g至约3.0g。

在一些实施方案中,该组合物包含协同量的白藜芦醇和协同量的亮氨酸,其中:所述协同量的白藜芦醇为至少35mg至约500mg;并且所述协同量的亮氨酸为约(或至少)0.75g至约3.0g。该组合物可包含协同量的白藜芦醇和协同量的KIC,其中:所述协同量的白藜芦醇为至少35mg至约500mg;并且所述协同量的KIC为约(或至少)0.75g至约3.0g。该组合物可包含协同量的白藜芦醇、协同量的HMB和协同量的亮氨酸,条件是所述组合物中HMB和亮氨酸的总量少于(或少于约)3.0g,其中:所述协同量的白藜芦醇为至少35mg至约500mg;所述协同量的HMB为约(或至少)0.20g至约3.0g;并且所述协同量的亮氨酸为约(或至少)0.50g至约3.0g。该组合物可包含协同量的白藜芦醇、协同量的KIC和协同量的亮氨酸,条件是所述组合物中KIC和亮氨酸的总量少于(或少于约)3.0g,其中:所述协同量的白藜芦醇为至少35mg至约500mg;所述协同量的KIC为约(或至少)0.50g至约3.0g;并且所述协同量的亮氨酸为约(或至少)0.50g至约3.0g。该组合物可包含协同量的白藜芦醇、协同量的HMB和协同量的KIC,条件是所述组合物中HMB和KIC的总量少于(或少于约)3.0g,其中:所述协同量的白藜芦醇为至少35mg至约500mg;所述协同量的HMB为约(或至少)0.20g至约3.0g;并且所述协同量的KIC为约(或至少)0.50g至约3.0g。

该组合物可包含协同量的白藜芦醇、协同量的KIC、协同量的HMB和协同量的亮氨酸,条件是所述组合物中KIC、HMB和亮氨酸的总量少于(或少于约)3.0g,其中:所述协同量的白藜芦醇为至少35mg至约500mg;所述协同量的HMB为约(或至少)0.20g至约3.0g;所述协同量的KIC为约(或至少)0.50g至约3.0g;并且所述协同量的亮氨酸为约(或至少)0.50g至约3.0g。

在一些实施方案中,所述协同量的白藜芦醇为至少50mg至约500mg;并且所述协同量的HMB为约(或至少)0.40g至约3.0g。在其它实施方案中,所述协同量的白藜芦醇为至少50mg至约500mg;并且所述协同量的亮氨酸为约(或至少)0.75g至约3.0g。在一些实施方案中,所述协同量的白藜芦醇为至少50mg至约500mg;所述协同量的HMB为至少0.40g至约3.0g;并且所述协同量的亮氨酸为至少0.75g至约3.0g。在其它实施方案中,所述协同量的白藜芦醇为至少50mg至约500mg;所述协同量的KIC为至少0.75g至约3.0g;并且所述协同量的亮氨酸为至少0.75g至约3.0g。在一些实施方案中,所述协同量的白藜芦醇为至少50mg至约500mg;所述协同量的HMB为至少0.40g至约3.0g;并且所述协同量的KIC为至少0.75g至约3.0g。

在一些实施方案中,所述协同量的白藜芦醇为至少50mg至约500mg;所述协同量的HMB为至少0.40g至约3.0g;所述协同量的KIC为至少0.75g至约3.0g;并且所述协同量的亮氨酸为至少0.75g至约3.0g。

在此描述的一些实施方案中,HMB、KIC、亮氨酸或亮氨酸、KIC和/或HMB的组合的量可小于或等于3.0g。

在此描述的一些实施方案中,所述组合物可排除一种或多种选自以下的氨基酸:赖氨酸、谷氨酸、脯氨酸、精氨酸、缬氨酸、异亮氨酸、天冬氨酸、天冬酰胺、甘氨酸、苏氨酸、丝氨酸、苯丙氨酸、酪氨酸、组氨酸、丙氨酸、色氨酸、甲硫氨酸、谷氨酰胺、牛磺酸、肉碱、胱氨酸和半胱氨酸。

在此描述的一些实施方案中,所述组合物可排除一种或多种以下成份:烟酸、维生素B6、维生素B12、泛酸、咖啡因、绿茶提取物、瓜拉那种子提取物或瓜拉那植物提取物。

在此描述的一些实施方案中,所述组合物可排除一种或多种选自以下的氨基酸:赖氨酸、谷氨酸、脯氨酸、精氨酸、缬氨酸、异亮氨酸、天冬氨酸、天冬酰胺、甘氨酸、苏氨酸、丝氨酸、苯丙氨酸、酪氨酸、组氨酸、丙氨酸、色氨酸、甲硫氨酸、谷氨酰胺、牛磺酸、肉碱、胱氨酸和半胱氨酸。

在此描述的一些实施方案中,所述组合物可排除一种或多种以下成份:烟酸、维生素B6、维生素B12、泛酸、咖啡因、绿茶提取物、瓜拉那种子提取物或瓜拉那植物提取物。

在此描述的一些实施方案中,所述组合物可排除一种或多种选自以下的氨基酸:赖氨酸、谷氨酸、脯氨酸、精氨酸、缬氨酸、异亮氨酸、天冬氨酸、天冬酰胺、甘氨酸、苏氨酸、丝氨酸、苯丙氨酸、酪氨酸、组氨酸、丙氨酸、色氨酸、甲硫氨酸、谷氨酰胺、牛磺酸、肉碱、胱氨酸和半胱氨酸。在一些实施方案中,该组合物排除缬氨酸和/或异亮氨酸。

在此描述的一些实施方案中,该组合物可进一步包含增香剂。在此描述的任一实施方案中,所述组合物为固体、液体、乳液、凝胶或糊剂。

本发明提供了一种增加受试者中脂肪酸氧化的方法,包括以有效增加脂肪酸氧化的量对受试者施用包含协同量的白藜芦醇、协同量的β-羟基甲基丁酸酯(HMB)、协同量的酮异己酸(KIC)和/或协同量的亮氨酸的组合物。

在一个方面,本发明提供了一种在受试者中减少体重增加或诱导体重减轻的方法,包括以有效减少体重增加或诱导体重减轻的量对受试者施用包含协同量的白藜芦醇、协同量的β-羟基甲基丁酸酯(HMB)、协同量的酮异己酸(KIC)和/或协同量的亮氨酸的组合物。

在另一方面,本发明提供了一种刺激Sirt1或Sirt3的方法,包括以有效刺激Sirt1或Sirt3的量对受试者施用包含协同量的白藜芦醇、协同量的β-羟基甲基丁酸酯(HMB)、协同量的酮异己酸(KIC)和/或协同量的亮氨酸的组合物。

本发明提供了一种激活脂肪细胞、平滑肌、骨骼肌或心肌的代谢活性的方法,包括以足以激活所述肌肉的代谢活性的量对受试者施用包含协同量的白藜芦醇、协同量的β-羟基甲基丁酸酯(HMB)、协同量的酮异己酸(KIC)和/或协同量的亮氨酸的组合物。

在其它实施方案中,本发明提供了一种升高或保持受试者体温的方法,包括以足以升高或保持受试者的体温的量对所述受试者施用包含协同量的白藜芦醇、协同量的β-羟基甲基丁酸酯(HMB)、协同量的酮异己酸(KIC)和/或协同量的亮氨酸的组合物。

本发明提供了一种治疗受试者中的2型糖尿病的方法,包括以足以治疗受试者中的2型糖尿病的量对所述受试者施用包含协同量的白藜芦醇、协同量的β-羟基甲基丁酸酯(HMB)、协同量的酮异己酸(KIC)和/或协同量的亮氨酸的组合物。

本发明还提供了一种降低受试者中的炎症应答的方法,包括以足以降低受试者中的炎症应答的量对所述受试者施用包含协同量的白藜芦醇、协同量的β-羟基甲基丁酸酯(HMB)、协同量的酮异己酸(KIC)和/或协同量的亮氨酸的组合物。

本发明提供了一种诱导血管舒张的方法,包括以足以诱导受试者中的血管舒张的量对所述受试者施用包含协同量的白藜芦醇、协同量的β-羟基甲基丁酸酯(HMB)、协同量的酮异己酸(KIC)和/或协同量的亮氨酸的组合物。

在一些实施方案中,该组合物包含协同量的白藜芦醇和协同量的HMB,其中:所述协同量的白藜芦醇为至少35mg至约500mg,且所述协同量的HMB为约(或至少)0.20g至约3.0g。

在一些实施方案中,该组合物包含协同量的白藜芦醇和协同量的亮氨酸,其中:所述协同量的白藜芦醇为至少35mg至约500mg,且所述协同量的亮氨酸为约(或至少)0.75g至约3.0g。

在其它实施方案中,该组合物包含协同量的白藜芦醇和协同量的KIC,其中:所述协同量的白藜芦醇为至少35mg至约500mg,且所述协同量的KIC为约(或至少)0.75g至约3.0g。

在一些实施方案中,该组合物包含协同量的白藜芦醇、协同量的HMB和协同量的亮氨酸,条件是所述组合物中HMB和亮氨酸的总量少于(或少于约)3.0g,其中:所述协同量的白藜芦醇为至少35mg至约500mg,所述协同量的HMB为约(或至少)0.20g至约3.0g,且所述协同量的亮氨酸为约(或至少)0.50g至约3.0g。

在一些实施方案中,该组合物包含协同量的白藜芦醇、协同量的KIC和协同量的亮氨酸,条件是所述组合物中KIC和亮氨酸的总量少于(或少于约)3.0g,其中:所述协同量的白藜芦醇为至少35mg至约500mg,所述协同量的KIC为约(或至少)0.50g至约3.0g,且所述协同量的亮氨酸为约(或至少)0.50g至约3.0g。

在其它实施方案中,该组合物包含协同量的白藜芦醇、协同量的HMB和协同量的KIC,条件是所述组合物中HMB和KIC的总量少于(或少于约)3.0g,其中:所述协同量的白藜芦醇为至少35mg至约500mg,所述协同量的HMB为约(或至少)0.20g至约3.0g,且所述协同量的KIC为约(或至少)0.50g至约3.0g。

在一些实施方案中,该组合物包含协同量的白藜芦醇、协同量的KIC、协同量的HMB和协同量的亮氨酸,条件是所述组合物中KIC、HMB和亮氨酸的总量少于(或少于约)3.0g,其中:所述协同量的白藜芦醇为至少35mg至约500mg,所述协同量的HMB为约(或至少)0.20g至约3.0g,所述协同量的KIC为约(或至少)0.50g至约3.0g,且所述协同量的亮氨酸为约(或至少)0.50g至约3.0g。

在一些实施方案中,所述协同量的白藜芦醇为至少50mg至约500mg,且所述协同量的HMB为约(或至少)0.40g至约3.0g。

在一些实施方案中,所述协同量的白藜芦醇为至少50mg至约500mg,且所述协同量的亮氨酸为约(或至少)0.75g至约3.0g。

在一些实施方案中,所述协同量的白藜芦醇为至少50mg至约500mg,所述协同量的HMB为至少0.40g至约3.0g,且所述协同量的亮氨酸为至少0.75g至约3.0g。

在一些实施方案中,所述协同量的白藜芦醇为至少50mg至约500mg,所述协同量的KIC为至少0.75g至约3.0g,且所述协同量的亮氨酸为至少0.75g至约3.0g。

在一些实施方案中,所述协同量的白藜芦醇为至少50mg至约500mg,所述协同量的HMB为至少0.40g至约3.0g,且所述协同量的KIC为至少0.75g至约3.0g。

在一些实施方案中,所述协同量的白藜芦醇为至少50mg至约500mg,所述协同量的HMB为至少0.40g至约3.0g,所述协同量的KIC为至少0.75g至约3.0g,且所述协同量的亮氨酸为至少0.75g至约3.0g。

在此描述的一些实施方案中,HMB、KIC、亮氨酸或亮氨酸、KIC和/或HMB的组合的量为少于或等于3.0g。

在此描述的一些实施方案中,该组合物进一步包含增香剂。在此描述的任一实施方案中,所述组合物为固体、液体、乳液、凝胶或糊剂。在此描述的任一实施方案中,所述受试者为人类或非人动物。在此描述的任一实施方案中,所述组合物经口服、肠胃外、静脉内或腹膜内施用。在任一用于根据任一实施方案减少体重增加或诱导体重减轻的实施方案中,所述受试者不限制饮食。

在任一用于根据任一实施方案减少体重增加或诱导体重减轻的实施方案中,所述受试者采用限制热量的饮食。在此描述的任一实施方案中,所述组合物包含:a)约50至100mg白藜芦醇和约400mg至约500mg HMB,b)约50至100mg白藜芦醇和约750mg至约1250mg亮氨酸,或c)约50至100mg白藜芦醇和约750mg至约1250mg KIC。

在此描述的任一实施方案中,所述组合物包含约50mg至约100mg白藜芦醇,和a)HMB和KIC组合,其量为约400mg和约1250mg,b)HMB和亮氨酸组合,其量为约400mg和约1250mg,c)KIC和亮氨酸组合,其量为约400mg和约1250mg,或d)HMB、KIC和亮氨酸组合,其量为约400mg和约1250mg。

援引并入

本说明书中提到的所有出版物、专利以及专利申请在此通过引用而以相同程度并入本文,如同每个单独的出版物、专利或专利申请特别地和单独地被指出通过引用而并入。

附图说明

本发明的新特征在随附的权利要求中具体阐述。通过参考以下对在其中利用到本发明原理的示例说明性实施方案加以阐述的详细描述和附图,将会获得对本发明的特征和优点更好的理解,在附图中:

图1描绘了显示亮氨酸和雷帕霉素对脂肪酸氧化的影响的图。

图2描绘了显示HMB、KIC和亮氨酸对脂肪酸氧化的影响的图。

图3描绘了显示HMB、KIC、亮氨酸和缬氨酸对线粒体生物发生的影响的图。

图4描绘了显示HMB、KIC和亮氨酸对线粒体调控和成分基因表达的影响的图。

图5描绘了显示白藜芦醇(Resv)、苏拉明、亮氨酸、KIC、HMB和亮氨酸对SIRT1活化的影响的图。

图6描绘了显示白藜芦醇、亮氨酸、HMB以及HMB和白藜芦醇的联合组合物对Sirt3活化的影响的图。

图7描绘了显示亮氨酸和HMB与白藜芦醇在低葡萄糖条件下对脂肪酸氧化的协同效应的图。

图8描绘了显示亮氨酸和HMB与白藜芦醇在高葡萄糖条件下对脂肪酸氧化的协同效应的图。

图9描绘了两个FDG-PET图像,其显示了使用DG-PET扫描分析得到的白藜芦醇和HMB对葡萄糖摄取的协同效应。

图10描绘了显示白藜芦醇、亮氨酸和HMB在饮食诱导肥胖的小鼠中对脂肪组织SIRT1活性的影响的图。

图11描绘了显示抗衰老酶途径的图解。

图12描绘了显示绿原酸(500nM)与HMB(5μM)和白藜芦醇(200nM)对C2C12肌管中脂肪酸氧化的交互作用的图。脂肪酸氧化被测量为对棕榈酸盐注射的O2消耗响应,并表示为相对于注射前基线的%变化(垂直线表示棕榈酸盐注射时间;该线左侧的数据点为基线测量值,该线右侧的数据点显示了O2消耗响应)。

图13描绘了显示绿原酸(500nM)和HMB(5μM)对脂肪酸氧化的交互作用的图(数据表示为相对于对照值的%变化。*p=0.05)。

图14描绘了显示绿原酸(500nM)与HMB(5μM)和亮氨酸(0.5mM)对3T3-L1脂肪细胞中的Sirt1活性的交互作用的图(数据表示为相对于对照值的%变化;*p=0.005;**p=0.0001)。

图15描绘了显示绿原酸(500nM)与HMB(5μM)和亮氨酸(0.5mM)对葡萄糖利用的交互作用的图(*p=0.045;**p=0.007)。葡萄糖利用被测量为对葡萄糖注射的胞外酸化响应。包括了对胰岛素(5nM)的响应作为参比。

图16描绘了显示咖啡酸(1μM)与亮氨酸(0.5mM)和白藜芦醇(200nM)对C2C12肌管中脂肪酸氧化的交互作用的图。脂肪酸氧化被测量为对棕榈酸盐注射的O2消耗响应,并表示为相对于注射前基线的%变化(垂直线表示棕榈酸盐注射时间;该线左侧的数据点为基线测量值,该线右侧的数据点显示了O2消耗响应)。

图17描绘了显示咖啡酸(1μM)与HMB(5μM)和白藜芦醇(200nM)对C2C12肌管中脂肪酸氧化的交互作用的图。脂肪酸氧化被测量为对棕榈酸盐注射的O2消耗响应,并表示为相对于注射前基线的%变化(垂直线表示棕榈酸盐注射时间;该线左侧的数据点为基线测量值,该线右侧的数据点显示了O2消耗响应)。

图18描绘了显示咖啡酸(1μM)、HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对C2C12肌管和3T3-L1脂肪细胞中脂肪酸氧化的交互作用的图(数据表示为相对于对照值的%变化;*p=0.05;**p=0.016)。

图19描绘了显示奎尼酸(500nM)与HMB(5μM)和白藜芦醇(200nM)对3T3-L1脂肪细胞中脂肪酸氧化的交互作用的图。脂肪酸氧化被测量为对棕榈酸盐注射的O2消耗响应,并表示为相对于注射前基线的%变化(垂直线表示棕榈酸盐注射时间;该线左侧的数据点为基线测量值,该线右侧的数据点显示了O2消耗响应)。

图20描绘了显示奎尼酸(500nM)与亮氨酸(0.5mM)和白藜芦醇

(200nM)对3T3-L1脂肪细胞中脂肪酸氧化的交互作用的图。脂肪酸氧化被测量为对棕榈酸盐注射的O2消耗响应,并表示为相对于注射前基线的%变化(垂直线表示棕榈酸盐注射时间;该线左侧的数据点为基线测量值,该线右侧的数据点显示了O2消耗响应)。

图21描绘了显示奎尼酸(500nM)、HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对C2C12肌管和3T3-L1脂肪细胞中脂肪酸氧化的交互作用的图(数据表示为相对于对照值的%变化;*p=0.05;**p=0.012)。

图22描绘了显示奎尼酸(500nM)、HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对AMPK活性的交互作用的图(数据表示为相对于对照值的%变化;*p=0.0001)。

图23描绘了显示奎尼酸(500nM)、HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对葡萄糖利用的交互作用的图。葡萄糖利用被测量为对葡萄糖注射的胞外酸化响应(*p=0.05;**p=0.0003)。

图24描绘了显示肉桂酸(500nM)与HMB(5μM)和白藜芦醇(200nM)对C2C12肌管中脂肪酸氧化的交互作用的图。脂肪酸氧化被测量为对棕榈酸盐注射的O2消耗响应,并表示为相对于注射前基线的%变化(垂直线表示棕榈酸盐注射时间;该线左侧的数据点为基线测量值,该线右侧的数据点显示了O2消耗响应)。

图25描绘了显示肉桂酸(500nM)与亮氨酸(0.5mM)和白藜芦醇(200nM)对C2C12肌管中脂肪酸氧化的交互作用的图。脂肪酸氧化被测量为对棕榈酸盐注射的O2消耗响应,并表示为相对于注射前基线的%变化(垂直线表示棕榈酸盐注射时间;该线左侧的数据点为基线测量值,该线右侧的数据点显示了O2消耗响应)。

图26描绘了显示肉桂酸(500nM)与HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对3T3-L1脂肪细胞中脂肪酸氧化的交互作用的图(数据表示为相对于对照值的%变化;*p=0.004;**p=0.006)。

图27描绘了显示肉桂酸(500nM)与HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对C2C12肌管中脂肪酸氧化的交互作用的图(数据表示为相对于对照值的%变化;*p=0.02;**p=0.05)。

图28描绘了显示肉桂酸(500nM)与HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对AMPK活性的交互作用的图(数据表示为相对于对照值的%变化;*p=0.0001)。

图29描绘了显示阿魏酸(500nM)与HMB(5μM)和白藜芦醇(200nM)对3T3-L1脂肪细胞中脂肪酸氧化的交互作用的图。脂肪酸氧化被测量为对棕榈酸盐注射的O2消耗响应,并表示为相对于注射前基线的%变化(垂直线表示棕榈酸盐注射时间;该线左侧的数据点为基线测量值,该线右侧的数据点显示了O2消耗响应)。

图30描绘了显示阿魏酸(500nM)与HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对3T3-L1脂肪细胞中脂肪酸氧化的交互作用的图(数据表示为相对于对照值的%变化;*p=0.018)

图31显示了阿魏酸(500nM)与亮氨酸(0.5mM)和白藜芦醇(200nM)对C2C12肌管中脂肪酸氧化的交互作用的图。脂肪酸氧化被测量为对棕榈酸盐注射的O2消耗响应,并表示为相对于注射前基线的%变化(垂直线表示棕榈酸盐注射时间;该线左侧的数据点为基线测量值,该线右侧的数据点显示了O2消耗响应)。

图32描绘了显示阿魏酸(500nM)与HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对3T3-L1脂肪细胞中脂肪酸氧化的交互作用的图(数据表示为相对于对照值的%变化;*p=0.034)。

图33描绘了显示阿魏酸(500nM)与HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对AMPK活性的交互作用的图(数据表示为相对于对照值的%变化;*p=0.05)。

图34描绘了显示白皮杉醇(1nM)与亮氨酸(0.5mM)和白藜芦醇(200nM)对3T3-L1脂肪细胞中脂肪酸氧化的交互作用的图。脂肪酸氧化被测量为对棕榈酸盐注射的O2消耗响应,并表示为相对于注射前基线的%变化(垂直线表示棕榈酸盐注射时间;该线左侧的数据点为基线测量值,该线右侧的数据点显示了O2消耗响应)。

图35描绘了显示白皮杉醇(1nM)与HMB(5μM)和白藜芦醇(200nM)对3T3-L1脂肪细胞中脂肪酸氧化的交互作用的图。脂肪酸氧化被测量为对棕榈酸盐注射的O2消耗响应,并表示为相对于注射前基线的%变化(垂直线表示棕榈酸盐注射时间;该线左侧的数据点为基线测量值,该线右侧的数据点显示了O2消耗响应)。

图36描绘了显示白皮杉醇(1nM)与HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对C2C12肌管中脂肪酸氧化的交互作用的图(数据表示为相对于对照值的%变化;*p=0.039)。

图37描绘了显示表没食子儿茶素没食子酸酯(EGCG)(1μM)、HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对C2C12肌管中葡萄糖利用的交互作用的图。葡萄糖利用被测量为对葡萄糖注射的胞外酸化响应(*p=0.015;**p=0.017)。

图38描绘了显示褐藻素(100nM)与HMB(5μM)和白藜芦醇(200nM)对3T3-L1脂肪细胞中脂肪酸氧化的影响的图。脂肪酸氧化被测量为对棕榈酸盐注射的O2消耗响应,并表示为相对于注射前基线的%变化(垂直线表示棕榈酸盐注射时间;该线左侧的数据点为基线测量值,该线右侧的数据点显示了O2消耗响应)。

图39描绘了显示褐藻素(100nM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对3T3-L1脂肪细胞中脂肪酸氧化的交互作用的图。脂肪酸氧化被测量为对棕榈酸盐注射的O2消耗响应,并表示为相对于注射前基线的%变化(垂直线表示棕榈酸盐注射时间;该线左侧的数据点为基线测量值,该线右侧的数据点显示了O2消耗响应)。

图40描绘了显示褐藻素(100nM)与HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对3T3-L1脂肪细胞中脂肪酸氧化的交互作用的图(数据表示为相对于对照值的%变化;*p=0.033;**p=0.05)。

图41描绘了显示褐藻素(100nM)、HMB(5μM)和亮氨酸(0.5mM)对C2C12肌管中葡萄糖利用的交互作用的图。葡萄糖利用被测量为对葡萄糖注射的胞外酸化响应(*p<0.04)。

图42描绘了显示褐藻素(100nM)、HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对3T3-L1脂肪细胞中葡萄糖利用的交互作用的图。葡萄糖利用被测量为对葡萄糖注射的胞外酸化响应(*p=0.02;**p=0.003)。

图43描绘了显示葡萄籽提取物(1μg/mL)与HMB(5μM)和白藜芦醇(200nM)对3T3-L1脂肪细胞中脂肪酸氧化的交互作用的图。脂肪酸氧化被测量为对棕榈酸盐注射的O2消耗响应,并表示为相对于注射前基线的%变化(垂直线表示棕榈酸盐注射时间;该线左侧的数据点为基线测量值,该线右侧的数据点显示了O2消耗响应)。

图44描绘了显示葡萄籽提取物(1μg/mL)与HMB(5μM)和白藜芦醇(200nM)对3T3-L1脂肪细胞中脂肪酸氧化的交互作用的图(数据表示为相对于对照值的%变化;*p=0.04)。

图45描绘了显示葡萄籽提取物(1μg/mL)与HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对3T3-L1脂肪细胞和C2C12肌管中AMPK活性的交互作用的图(数据表示为相对于对照值的%变化;*p=0.01)。

图46描绘了显示二甲双胍(Met)(0.1mM)与HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对C2C12肌管中脂肪酸氧化的交互作用的图(数据表示为相对于对照值的%变化;*p=0.03;**p=0.0001;***p=0.001)。

图47描绘了显示二甲双胍(0.1mM)与HMB(5μM)和亮氨酸(0.5mM)对C2C12肌管中葡萄糖利用的交互作用的图。葡萄糖利用被测量为对葡萄糖注射的胞外酸化响应(*p=0.03)。

图48描绘了显示二甲双胍(0.1mM)与HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对C2C12肌管中AMPK活性的交互作用的图(数据表示为相对于对照值的%变化;*p=0.031;**p=0.026;***p=0.017)

图49描绘了显示二甲双胍(0.1mM)与HMB(5μM)和亮氨酸(0.5mM)对线粒体生物发生的交互作用的图(*p=0.001;**p=0.013)。

图50描绘了显示罗格列酮(1nM)与HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对C2C12肌管中脂肪酸氧化的交互作用的图(数据表示为相对于对照值的%变化;*p=0.009)。

图51描绘了显示罗格列酮(1nM)与HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对3T3-L1脂肪细胞中脂肪酸氧化的交互作用的图(数据表示为相对于对照值的%变化;*p=0.004;**p=0.023;***p=0.003)。

图52描绘了显示罗格列酮(1nM)与HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对C2C12肌管中葡萄糖利用的交互作用的图。葡萄糖利用被测量为对葡萄糖注射的胞外酸化响应(*p=0.05;**p=0.001)。

图53描绘了显示咖啡因(10nM)与HMB(5μM)、亮氨酸(0.5mM)、白藜芦醇(200nM)和二甲双胍(0.1mM)对C2C12肌管中脂肪酸氧化的交互作用的图(数据表示为相对于对照值的%变化;*p=0.03;**p=0.05;***p=0.013)。

图54描绘了显示咖啡因(10nM)与HMB(5μM)、亮氨酸(0.5mM),白藜芦醇(200nM)和二甲双胍(0.1mM)对3T3-L1脂肪细胞中脂肪酸氧化的交互作用的图(数据表示为相对于对照值的%变化。*p=0.008)。

图55描绘了显示咖啡因(10nM)与HMB(5μM)和白藜芦醇(200nM)对3T3-L1脂肪细胞中脂肪酸氧化的交互作用的图。脂肪酸氧化被测量为对棕榈酸盐注射的O2消耗响应,并表示为相对于注射前基线的%变化(垂直线表示棕榈酸盐注射时间;该线左侧的数据点为基线测量值,该线右侧的数据点显示了O2消耗响应)。

图56描绘了显示茶碱(1μM)与HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对C2C12肌管中脂肪酸氧化的交互作用的图(数据表示为相对于对照值的%变化;*p=0.03;**p=0.05)。

图57描绘了显示茶碱(1μM)与HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对3T3-L1脂肪细胞中脂肪酸氧化的交互作用的图。脂肪酸氧化被测量为对棕榈酸盐注射的O2消耗响应,并表示为相对于注射前基线的%变化(垂直线表示棕榈酸盐注射时间;该线左侧的数据点为基线测量值,该线右侧的数据点显示了O2消耗响应)。

图58描绘了显示茶碱(1μM)与HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对3T3-L1脂肪细胞中脂肪酸氧化的交互作用的图(数据表示为相对于对照值的%变化;*p=0.006)。

图59描绘了显示可可提取物/可可碱(0.1μg/mL)与HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对3T3-L1脂肪细胞中脂肪酸氧化的交互作用的图。脂肪酸氧化被测量为对棕榈酸盐注射的O2消耗响应,并表示为相对于注射前基线的%变化(垂直线表示棕榈酸盐注射时间;该线左侧的数据点为基线测量值,该线右侧的数据点显示了O2消耗响应)。

图60描绘了显示可可提取物/可可碱(0.1μg/mL)与HMB(5μM)、亮氨酸(0.5mM)和白藜芦醇(200nM)对3T3-L1脂肪细胞中脂肪酸氧化的交互作用的图(数据表示为相对于对照值的%变化;*p=0.021;**p=0.00035)。

图61描绘了显示标准剂量的二甲双胍(在此为1.5g二甲双胍/kg饮食)、低剂量的二甲双胍(在此为0.75g二甲双胍/kg饮食)和非常低剂量的二甲双胍(在此为0.25g二甲双胍/kg饮食)较之[低剂量的二甲双胍+12.5mg白藜芦醇和2g CaHMB/kg饮食]和[非常低剂量的二甲双胍+12.5mg白藜芦醇和2g CaHMB/kg饮食]在db/db小鼠中对血浆胰岛素的影响的图(*相对于对照p<0.02)。

图62描绘了显示标准剂量的二甲双胍(在此为1.5g二甲双胍/kg饮食)、低剂量的二甲双胍(在此为0.75g二甲双胍/kg饮食)和非常低剂量的二甲双胍(在此为0.25g二甲双胍/kg饮食)较之[低剂量的二甲双胍+12.5mg白藜芦醇和2g CaHMB/kg饮食]和[非常低剂量的二甲双胍+12.5mg白藜芦醇和2g CaHMB/kg饮食]在db/db小鼠中对HOMAIR(胰岛素耐量的稳态评价)的影响的图(*相对于对照p<0.025)。

图63描绘了显示标准剂量的二甲双胍(在此为1.5g二甲双胍/kg饮食)、低剂量的二甲双胍(在此为0.75g二甲双胍/kg饮食)和非常低剂量的二甲双胍(在此为0.25g二甲双胍/kg饮食)较之[低剂量的二甲双胍+12.5mg白藜芦醇和2g CaHMB/kg饮食]和[非常低剂量的二甲双胍+12.5mg白藜芦醇和2g CaHMB/kg饮食]在db/db小鼠中对30-分钟胰岛素(0.75U/kg体重)血浆葡萄糖响应的影响的图(*相对于对照p<0.02)。

图64描绘了显示标准剂量的二甲双胍(在此为1.5g二甲双胍/kg饮食)、低剂量的二甲双胍(在此为0.75g二甲双胍/kg饮食)和非常低剂量的二甲双胍(在此为0.25g二甲双胍/kg饮食)较之[低剂量的二甲双胍+12.5mg白藜芦醇和2g CaHMB/kg饮食]和[非常低剂量的二甲双胍+12.5mg白藜芦醇和2g CaHMB/kg饮食]在db/db小鼠中对内脏脂肪量的影响的图(*相对于对照p<0.03)。

图65描绘了显示标准剂量的二甲双胍(在此为1.5g二甲双胍/kg饮食)、低剂量的二甲双胍(在此为0.75g二甲双胍/kg饮食)和非常低剂量的二甲双胍(在此为0.25g二甲双胍/kg饮食)较之[低剂量的二甲双胍+12.5mg白藜芦醇和2g CaHMB/kg饮食]和[非常低剂量的二甲双胍+12.5mg白藜芦醇和2g CaHMB/kg饮食]在db/db小鼠中对内脏脂肪量的影响的图(*相对于对照p<0.05)。

图66描绘了显示白藜芦醇(200nM)、亮氨酸(0.5mM)、HMB(5μM)和肉桂酸(1μM)对脂肪酸氧化的交互作用的图(*相对于对照p=0.035)。

图67描绘了显示白藜芦醇(200nM)、亮氨酸(0.5mM)、HMB(5μM)和肉桂酸(1μM)对由蛋白质印迹测定的C2C12细胞裂解物中鸢尾素前体蛋白FNDC5表达的交互作用的图(值为归一化的谱带强度单位;*相对于对照p<0.03)。

图68描绘了响应于亮氨酸(0.5mM)或HMB(5μM)与白藜芦醇(200nM)或肉桂酸(1μM)组合的向培养基中分泌鸢尾素的代表性蛋白质印迹。定量数据相对于对照归一化:白藜芦醇/HMB:增加73%(p<0.01);白藜芦醇/亮氨酸,增加271%(p<0.01),肉桂酸/HMB 7%(不显著),肉桂酸/亮氨酸,238%(p<0.01)。

图69描绘了显示白藜芦醇(200nM)、亮氨酸(0.5mM)和HMB(5μM)对C2C12肌管向培养基中分泌鸢尾素的交互作用的图(*相对于对照p=0.0008;**相对于对照p=0.00001)。

图70描绘了显示白藜芦醇和白藜芦醇/亮氨酸组合在饮食诱导的肥胖的小鼠中对血浆鸢尾素的交互作用的图(*相对于对照p=0.03)。

图71描绘了显示奎尼酸(QA;500nM)、亮氨酸(Leu;0.5mM)、HMB(5μM)对由蛋白质印迹测定的C2C12细胞裂解物中FNDC5蛋白表达的交互作用的图。值为归一化的谱带强度单位(*相对于对照p<0.005)。

图72描绘了C2C12细胞响应于与奎尼酸(500nM)组合的亮氨酸(0.5mM)或HMB(5μM)向培养基中分泌鸢尾素的代表性蛋白质印迹。

图73描绘了显示与奎尼酸(500nM)组合的亮氨酸(0.5mM)或HMB(5μM)对C2C12细胞向培养基中分泌鸢尾素的影响的定量评价的图(*相对于对照p<0.05)。

图74描绘了显示绿原酸(CA;500nM)、咖啡因(Cafn;10nM)、亮氨酸(Leu;0.5mM)和HMB(5μM)对C2C12肌管向培养基中分泌鸢尾素的交互作用的图(*相对于对照p<0.05)。

图75描绘了显示白藜芦醇、白藜芦醇/亮氨酸和白藜芦醇/HMB组合在饮食诱导的肥胖的小鼠中对皮下UCP1mRNA表达的影响的图。数据对18S归一化(*相对于对照p=0.05)。

图76描绘了显示白藜芦醇、白藜芦醇/亮氨酸和白藜芦醇/HMB组合在饮食诱导的肥胖的小鼠中对皮下PGC1αmRNA表达的影响的图。数据对18S归一化(*相对于对照p=0.04)。

具体实施方式

本发明的几个方面参考用于说明的实例应用描述如下。应当理解,为了提供对本发明的完整理解,阐述了很多具体的细节、关系和方法。然而,相关领域普通技术人员将很容易地认识到,可以不使用一种或多种的所述具体细节或可以用其它方法来实践本发明。除非另有说明,否则本发明不限于所述的行为或事件的顺序,因为一些行为可能以不同的顺序发生和/或与其它行为或事件同时发生。此外,并非需要所有描述的行为或事件来实施根据本发明的方法。公开的组合物中多种组分的浓度是示例性的,并不意味着被限制于所提及的浓度本身。

如在此使用的术语“受试者”或“个体”包括哺乳动物。哺乳动物的非限制性例子包括人和小鼠,包括转基因和非转基因小鼠。在此描述的方法可用于人体治疗、临床前和兽医应用。在一些实施方案中,受试者为哺乳动物,在一些实施方案中,受试者为人。其它哺乳动物包括但不限于,猿、黑猩猩、猩猩、猴子;驯养动物(宠物),如狗、猫、豚鼠、仓鼠、小鼠、大鼠、兔和雪貂;驯养家畜,如牛、水牛、野牛、马、驴、猪、绵羊和山羊;或通常在动物园中见到的野生动物,例如熊、狮、虎、豹、象、河马、犀牛、长颈鹿、羚羊、树懒、瞪羚、斑马、角马、草原犬鼠、无尾熊、袋鼠、熊猫、大熊猫、鬣狗、海豹、海狮和海象。

术语“施用(administer)”、“施用(administered)”、“施用(administers)”和“施用(administering)”定义为通过本领域已知的途径向受试者提供组合物,所述途径包括但不限于静脉内、动脉内、口服、肠胃外、口腔、局部、经皮、直肠、肌内、皮下、骨内、经粘膜或腹膜内施用途径。在本申请的某些实施方案中,施用组合物的口服途径可能是优选的。

如在此使用的,“药剂”或“生物活性剂”指生物学、药学或化学化合物或其它部分。非限制性的例子包括简单或复杂的有机或无机分子、肽、蛋白质、肽核酸(PNA)、寡核苷酸(包括,例如,适体和多核苷酸)、抗体、抗体衍生物、抗体片段、维生素衍生物、碳水化合物、毒素或化疗化合物。可以合成各种化合物,例如,小分子和低聚物(例如,寡肽和寡核苷酸),以及基于多种核心结构的合成有机化合物。另外,多种天然源可以提供用于筛选的化合物,例如植物或动物提取物等。技术人员可以容易地认识到,对于本发明的药剂的结构性质没有限制。

术语“有效量”或“治疗有效量”是指在此所述的化合物的量足以实现预期的应用,包括但不限于如下定义的疾病治疗。治疗有效量可能根据预期的应用(体外或体内)或治疗的受试者和疾病状况(例如,受试者的体重和年龄、病情的严重程度、给药方式等)而发生变化,其可以容易地由本领域普通技术人员确定。该术语也适用于能导致靶细胞特定响应,例如,减少增殖或下调靶蛋白活性的剂量。特定剂量将根据所选的特定化合物、要遵循的给药方案、其是否与其他化合物联合施用、给药时间、其所施用的组织和携带它的物理递送系统而变化。

途径的“调节剂”是指调节映射(mapped)到相同的特定信号转导途径的一种或多种细胞蛋白质的活性的物质或药剂。调节剂可以增强或抑制信号分子的活性和/或表达水平或模式。调节剂可以通过直接结合至组分来激活途径中的组分。调节剂也可以通过与一个或多个相关组分相互作用来间接地激活途径中的组分。途径的输出可以用蛋白质的表达或活性水平来测量。途径中的蛋白质的表达水平可以通过相应的mRNA或相关转录因子的水平以及该蛋白质在亚细胞定位中的水平来反映。例如,某些蛋白质通过在特定的亚细胞组分内部或外部改变位置而被激活,所述亚细胞组分包括但不限于细胞核、线粒体、核内体、溶酶体或细胞的其他膜性结构。途径的输出也可以用生理效应如线粒体生物发生、脂肪酸氧化或葡萄糖摄取来测量。

“激活剂”是指以增加途径输出的方式影响途径的调节剂。特定靶标的激活可以是直接的(例如,通过与靶标相互作用)或间接的(例如,通过与包含靶标的信号传导途径中的靶标上游的蛋白质相互作用)。

“抑制剂”可以是以通过减少途径输出的方式影响途径的调节剂。

在此使用的术语“基本上不含”指具有少于约10%、少于约5%、少于约1%、少于约0.5%、少于0.1%或更少的特定组分的组合物。例如,基本上不含非支链氨基酸的组合物可以含有少于约1%的非支链氨基酸赖氨酸。

药剂、激活剂或治疗剂的“亚治疗量”是这样的量:其少于该药剂、激活剂或治疗剂的有效量,但是当与有效量或亚治疗量的另一种药剂或治疗剂联合时,由于例如得到的有效作用中的协同效应和/或减少的副作用,可以产生期望的结果。

“协同的”或“协同”效应可以使得联合组合物的一种或多种效应大于每个单独组分的一种或多种效应,或其可以大于每个单独组分的一种或多种效应之和。协同效应可以大约为或者大于约单独施用时单独的一种组分对受试者的效应或每种组分的叠加效应的10%、20%、30%、50%、75%,100%、110%、120%、150%、200%、250%、350%或500%或更多。该效应可以是在此描述的任何可测量的效应。

组合物

本发明提供了能够增加或调节抗衰老酶途径的输出的组合物。该抗衰老酶途径包括但不限于信号分子,例如Sirt1、Sirt3和AMPK。该途径的输出可以通过表达水平和/或途径的活性和/或生理效应进行测定。在一些实施方案中,Sirt1途径的活化包括PGC1-α的刺激和/或随后的线粒体生物发生和脂肪酸氧化的刺激。通常,抗衰老酶途径激活剂是激活或增加抗衰老酶途径的一种或多种组分的化合物。抗衰老酶途径的增强或活化可通过途径中的组分蛋白质活性的升高而观察到。例如,所述蛋白质可以是Sirt1、PGC1-α、AMPK、Epac1、腺苷酸环化酶、Sirt3或任意其它蛋白质及其各自沿着图11所示的信号途径的相关蛋白质(Park等人,“Resveratrol Ameliorates Aging-Related Metabolic Phenotypes by Inhibiting cAMP Phosphodiesterases,”Cell 148,421-433,2012年2月3日)。可作为抗衰老酶途径输出的量度的生理效应的非限制性实例包括线粒体生物发生、脂肪酸氧化、葡萄糖摄取、棕榈酸盐摄取、氧消耗、二氧化碳生成、体重减轻、热量产生、内脏脂肪组织减少、呼吸交换率、胰岛素敏感度、炎症标志物水平、血管舒张、脂肪细胞褐化和鸢尾素产生。脂肪细胞褐化的指示物的例子包括但不限于增加的脂肪酸氧化和一种或多种褐化脂肪选择性基因(例如Ucp1、Cidea、Prdm16和Ndufs1)的表达。在一些实施方案中,可作为抗衰老酶途径输出量度的一种或多种生理效应的变化由例如通过施用本发明的组合物而增加鸢尾素产量而诱导。

线粒体生物发生的升高可通过新线粒体形成的增加和/或线粒体功能的增强来证实,例如受试者中脂肪酸氧化增加、热量产生增加、胰岛素敏感度升高、葡萄糖摄取增加、血管舒张增强、体重减轻、脂肪体积减小和炎性应答或标志物的减少。

组合物可以是联合组合物,其可以包含一种或多种协同组分。在一些实施方案中,联合组合物的协同效应能够允许剂量减少,从而导致对受试者的副作用减轻并降低治疗成本。在其它实施方案中,协同效应可以获得任何其它常规治疗均无法获得的结果。本发明的联合组合物提供了能量代谢调节的显著改善。

在一些实施方案中,组合物可以是一种或多种支链氨基酸和/或其代谢物与可以具有一种或多种特性的抗衰老酶途径激活剂的联合组合物。该联合组合物(a)可具备增加抗衰老酶途径输出的协同效应,(b)使抗衰老酶途径输出增加至少约1、2、5、7、10或20倍,(c)具有大于约20的支链氨基酸和/或其代谢物与抗衰老酶途径输出的摩尔比,(d)被配制为用于口服的单位剂量,其中抗衰老酶途径激活剂是基本上同质的一组多酚分子,和(e)可具备协同效应并进一步包含食物载体。在此描述的任一组合物可具备这些特性中的一种或多种。

在一些实施方案中,本发明提供了一种组合物,其包含(a)一种或多种类型的支化氨基酸和/或其代谢物和(b)以亚治疗量存在的抗衰老酶途径激活剂,其中该组合物较之单独使用时的组分(b)而言,协同有效地使抗衰老酶途径输出增加至少约5、10、50、100、200、500倍或更多倍。

在一些实施方案中,抗衰老酶途径激活剂或AMPK途径激活剂可以是多酚。例如,该多酚可以为绿原酸、白藜芦醇、咖啡酸、白皮杉醇、鞣花酸、表没食子儿茶素没食子酸酯(EGCG)、葡萄籽提取物或其任意类似物。在一些实施方案中,激活剂可以是白藜芦醇、其类似物或其代谢物。例如,激活剂可以是蝶芪或白藜芦醇的小分子类似物。白藜芦醇的小分子类似物的例子描述于美国专利申请No.20070014833、20090163476和20090105246,这些申请通过引用整体并入本文。

多酚可以为基本上同质的一组多酚。多酚可以为一种类型的多酚,其中该组合物可以排除所有其他类型的多酚。在其它实施方案中,该组合物可包含2、3或4种类型的多酚并排除所有其他类型的多酚。在一些实施方案中,该组合物可包含1、2、3或4种类型的多酚和少于0.1%、0.5%、1%或2%的任意其它类型的多酚。在一些实施方案中,组合物进一步包含磷酸二酯酶(PDE)抑制剂和/或其它抗衰老酶途径激活剂。

在一些实施方案中,抗衰老酶激活剂是以下所示的任何一种或多种化合物:

在一个实施方案中,抗衰老酶激活剂为式1的均二苯代乙烯或查耳酮化合物:

其中,对于每个存在独立地,

R1、R2、R3、R4、R5、R′1、R′2、R′3、R′4和R′5代表H、烷基、芳基、杂芳基、芳烷基、烷芳基、杂芳烷基、卤化物、NO2、SR、OR、N(R)2或羧基;

R代表H、烷基、芳基、杂芳基或芳烷基;

M代表O、NR或S;

A—B代表二价烷基、烯基、炔基、酰胺基、磺酰胺基、重氮基、醚、烷基氨基、烷基硫、羟胺或肼基;且

n为0或1。

在进一步的实施方案中,抗衰老酶激活剂是式1及其伴随定义的化合物,其中n为0。在进一步的实施方案中,抗衰老酶激活剂是式1及其伴随定义的化合物,其中n为1。在进一步的实施方案中,抗衰老酶激活剂是式1及其伴随定义的化合物,其中A—B为乙烯基。在进一步的实施方案中,抗衰老酶激活剂是式1及其伴随定义的化合物,其中A—B为—CH2CH(Me)CH(Me)CH2—。在进一步的实施方案中,抗衰老酶激活剂是式1及其伴随定义的化合物,其中M为O。在进一步的实施方案中,该方法包括式1及其伴随定义的化合物,其中R1、R2、R3、R4、R5、R′1、R′2、R′3、R′4和R′5为H。在进一步的实施方案中,抗衰老酶激活剂是式1及其伴随定义的化合物,其中R2、R4和R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是式1及其伴随定义的化合物,其中R2、R4、R′2和R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是式1及其伴随定义的化合物,其中R3、R5、R′2和R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是式1及其伴随定义的化合物,其中R1、R3、R5、R′2和R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是式1及其伴随定义的化合物,其中R2和R′2为OH;R4为O-β-D-葡萄糖苷;且R′3为OCH3。在进一步的实施方案中,抗衰老酶激活剂是式1及其伴随定义的化合物,其中R2为OH;R4为O-β-D-葡萄糖苷;且R′3为OCH3

在进一步的实施方案中,抗衰老酶激活剂是式1及其伴随定义的化合物,其中n为0;A—B为乙烯基;且R1、R2、R3、R4、R5、R′1、R′2、R′3、R′4和R′5为H(反式均二苯代乙烯)。在进一步的实施方案中,抗衰老酶激活剂是式1及其伴随定义的化合物,其中n为1;A—B为乙烯基;M为O;且R1、R2、R3、R4、R5、R′1、R′2、R′3、R′4和R′5为H(查耳酮)。在进一步的实施方案中,抗衰老酶激活剂是式1及其伴随定义的化合物,其中n为0;A—B为乙烯基;R2、R4和R′3为OH;且R1、R3、R5、R′1、R′2、R′4和R′5为H(白藜芦醇)。在进一步的实施方案中,抗衰老酶激活剂是式1及其伴随定义的化合物,其中n为0;A—B为乙烯基;R2、R4、R′2和R′3为OH;且R1、R3、R5、R′1、R′4且R′5为H(白皮杉醇)。在进一步的实施方案中,抗衰老酶激活剂是式1及其伴随定义的化合物,其中n为1;A—B为乙烯基;M为O;R3、R5、R′2和R′3为OH;且R1、R2、R4、R′1、R′4和R′5为H(紫铆因)。在进一步的实施方案中,抗衰老酶激活剂是式1及其伴随定义的化合物,其中n为1;A—B为乙烯基;M为O;R1、R3、R5、R′2和R′3为OH;且R2、R4、R′1、R′4和R′5为H(3,4,2′,4′,6′-五羟基查耳酮)。在进一步的实施方案中,抗衰老酶激活剂是式1及其伴随定义的化合物,其中n为0;A—B为乙烯基;R2和R′2为OH,R4为O-β-D-葡萄糖苷,R′3为OCH3;且R1、R3、R5、R′1、R′4和R′5为H(土大黄苷)。在进一步的实施方案中,抗衰老酶激活剂是式1及其伴随定义的化合物,其中n为0;A—B为乙烯基;R2为OH,R4为O-β-D-葡萄糖苷,R′3为OCH3;且R1、R3、R5、R′1、R′2、R′4和R′5为H(脱氧土大黄苷)。在进一步的实施方案中,抗衰老酶激活剂是式1及其伴随定义的化合物,其中n为0;A—B

为—CH2CH(Me)CH(Me)CH2—;R2、R3、R′2和R′3为OH;且R1、R4、R5、R′1、R′4和R′5为H(NDGA)。

在另一个实施方案中,抗衰老酶激活剂为式2的黄烷酮化合物:

其中,对于每个存在独立地,

R1、R2、R3、R4、R′1、R′2、R′3、R′4、R′5和R″代表H、烷基、芳基、杂芳基、芳烷基、烷芳基、杂芳烷基、卤化物、NO2、SR、OR、N(R)2或羧基;

R代表H、烷基、芳基、杂芳基或芳烷基;

M代表H2、O、NR或S;

Z代表CR、O、NR或S;

X代表CR或N;且

Y代表CR或N。

在进一步的实施方案中,抗衰老酶激活剂是式2及其伴随定义的化合物,其中X和Y均为CH。在进一步的实施方案中,抗衰老酶激活剂是式2及其伴随定义的化合物,其中M为O。在进一步的实施方案中,抗衰老酶激活剂是式2及其伴随定义的化合物,其中M为H2。在进一步的实施方案中,抗衰老酶激活剂是式2及其伴随定义的化合物,其中Z为O。在进一步的实施方案中,抗衰老酶激活剂是式2及其伴随定义的化合物,其中R″为H。在进一步的实施方案中,抗衰老酶激活剂是式2及其伴随定义的化合物,其中R″为OH。在进一步的实施方案中,抗衰老酶激活剂是式2及其伴随定义的化合物,其中R″为烷氧羰基。在进一步的实施方案中,抗衰老酶激活剂是式2及其伴随定义的化合物,其中R1

在进一步的实施方案中,抗衰老酶激活剂是式2及其伴随定义的化合物,其中R1、R2、R3、R4、R′1、R′2、R′3、R′4、R′5和R″为H。在进一步的实施方案中,抗衰老酶激活剂是式2及其伴随定义的化合物,其中R2、R4和R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是式2及其伴随定义的化合物,其中R4、R′2、R′3和R″为OH。在进一步的实施方案中,抗衰老酶激活剂是式2及其伴随定义的化合物,其中R2、R4、R′2、R′3和R″为OH。在进一步的实施方案中,抗衰老酶激活剂是式2及其伴随定义的化合物,其中R2、R4、R′2、R′3、R′4和R″为OH。

在进一步的实施方案中,抗衰老酶激活剂是式2及其伴随定义的化合物,其中X和Y为CH;M为O;Z和O;R″为H;且R1、R2、R3、R4、R′1、R′2、R′3、R′4、R′5和R″为H(黄烷酮)。在进一步的实施方案中,抗衰老酶激活剂是式2及其伴随定义的化合物,其中X和Y为CH;M为O;Z和O;R″为H;R2、R4和R′3为OH;且R1、R3、R′1、R′2、R′4和R′5为H(柚皮素)。在进一步的实施方案中,抗衰老酶激活剂是式2及其伴随定义的化合物,其中X和Y为CH;M为O;Z和O;R″为OH;R2、R4、R′2和R′3为OH;且R′1、R3、R′1、R′4和R′5为H(3,5,7,3′,4′-五羟基黄烷酮)。在进一步的实施方案中,抗衰老酶激活剂是式2及其伴随定义的化合物,其中X和Y为CH;M为H2;Z和O;R″为OH;R2、R4、R′2和R′3为OH;且R1、R3、R′1、R′4和R′5为H(表儿茶素)。在进一步的实施方案中,抗衰老酶激活剂是式2及其伴随定义的化合物,其中X和Y为CH;M为H2;Z和O;R″为OH;R2、R4、R′2、R′3和R′4为OH;且R1、R3、R′1和R′5为H(没食子儿茶酸)。在进一步的实施方案中,抗衰老酶激活剂是式2及其伴随定义的化合物,其中X和Y为CH;M为H2;Z和O;R″为

R2、R4、R′2、R′3、R′4和R″为OH;且R1、R3、R′1和R′5为H(表没食子儿茶素没食子酸酯)。

在另一个实施方案中,抗衰老酶激活剂为式3的异黄烷酮化合物:

其中,对于每个存在独立地,

R1、R2、R3、R4、R′1、R′2、R′3、R′4、R′5和R″1代表H、烷基、芳基、杂芳基、芳烷基、烷芳基、杂芳烷基、卤化物、NO2、SR、OR、N(R)2或羧基;

R代表H、烷基、芳基、杂芳基或芳烷基;

M代表H2、O、NR或S;

Z代表C(R)2、O、NR或S;

X代表CR或N;且

Y代表CR或N。

在另一个实施方案中,抗衰老酶激活剂是式4的黄酮化合物:

其中,对于每个存在独立地,

R1、R2、R3、R4、R′1、R′2、R′3、R′4和R′5代表H、烷基、芳基、杂芳基、芳烷基、烷芳基、杂芳烷基、卤化物、NO2、SR、OR、N(R)2或羧基;

R代表H、烷基、芳基、杂芳基或芳烷基;

M代表H2、O、NR或S;

Z代表CR、O、NR或S;且

X代表CR″或N,其中

R″为H、烷基、芳基、杂芳基、烷芳基、杂芳烷基、卤化物、NO2、SR、OR、N(R)2或羧基。

在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为C。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为CR。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中Z为O。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中M为O。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R″为H。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R″为OH。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R1、R2、R3、R4、R′1、R′2、R′3、R′4和R′5为H。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R2、R′2和R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R2、R4、R′2、R′3和R′4为OH。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R2、R4、R′2和R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R3、R′2和R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R2、R4、R′2和R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R2、R′2、R′3和R′4为OH。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R2、R4和R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R2、R3、R4和R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R2、R4和R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R3、R′1和R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R2和R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R1、R2、R′2和R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R3、R′1和R′2为OH。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R4和R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R2和R4为OH。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R2、R4、R′1和R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R4为OH。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R2、R4、R′2、R′3和R′4为OH。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R2、R′2、R′3和R′4为OH。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中R1、R2、R4、R′2和R′3为OH。

在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为CH;Z为O;M为O;且R1、R2、R3、R4、R′1、R′2、R′3、R′4和R′5为H(黄酮)。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为COH;Z为O;M为O;R2、R′2和R′3为OH;且R1、R3、R4、R′1、R′4和R′5为H(漆黄素)。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为CH;Z为O;M为O;R2、R4、R′2、R′3和R′4为OH;且R1、R3、R′1和R′5为H(5,7,3′,4′,5′-五羟基黄酮)。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为CH;Z为O;M为O;R2、R4、R′2和R′3为OH;且R1、R3、R′1、R′4和R′5为H(木犀草素)。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为COH;Z为O;M为O;R3、R′2和R′3为OH;且R1、R2、R4、R′1、R′4和R′5为H(3,6,3′,4′-四羟基黄酮)。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为COH;Z为O;M为O;R2、R4、R′2和R′3为OH;且R1、R3、R′1、R′4和R′5为H(槲皮素)。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为CH;Z为O;M为O;R2、R′2、R′3和R′4为OH;且R1、R3、R4、R′1和R′5为H。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为COH;Z为O;M为O;R2、R4和R′3为OH;且R1、R3、R′1、R′2、R′4和R′5为H。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为CH;Z为O;M为O;R2、R3、R4和R′3为OH;且R1、R′1、R′2、R′4和R′5为H。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为CH;Z为O;M为O;R2、R4和R′3为OH;且R1、R3、R′1、R′2、R′4和R′5为H。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为COH;Z为O;M为O;R3、R′1和R′3为OH;且R1、R2、R4、R′2、R′4和R′5为H。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为CH;Z为O;M为O;R2和R′3为OH;且R1、R3、R4、R′1、R′2、R′4和R′5为H。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为COH;Z为O;M为O;R1、R2、R′2和R′3为OH;且R1、R2、R4、R′3、R′4和R′5为H。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为COH;Z为O;M为O;R3、R′1和R′2为OH;且R1、R2、R4、R′3、R′4和R′5为H。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为CH;Z为O;M为O;R′3为OH;且R1、R2、R3、R4、R′1、R2、R′4和R′5为H。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为CH;Z为O;M为O;R4和R′3为OH;且R1、R2、R3、R′1、R′2、R′4和R′5为H。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为CH;Z为O;M为O;R2和R4为OH;且R1、R3、R′1、R′2、R′3、R′4和R′5为H。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为COH;Z为O;M为O;R2、R4、R′1和R′3为OH;且R1、R3、R′2、R′4和R′5为H。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为CH;Z为O;M为O;R4为OH;且R1、R2、R3、R′1、R′2、R′3、R′4和R′5为H。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为COH;Z为O;M为O;R2、R4、R′2、R′3和R′4为OH;且R1、R3、R′1和R′5为H。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为COH;Z为O;M为O;R2、R′2、R′3和R′4为OH;且R1、R3、R4、R′1和R′5为H。在进一步的实施方案中,抗衰老酶激活剂是式4及其伴随定义的化合物,其中X为COH;Z为O;M为O;R1、R2、R4、R′2和R′3为OH;且R3、R′1、R′4和R′5为H。

在另一个实施方案中,抗衰老酶激活剂为式5的异黄酮化合物:

其中,对于每个存在独立地,

R1、R2、R3、R4、R′1、R′2、R′3、R′4和R′5代表H、烷基、芳基、杂芳基、芳烷基、烷芳基、杂芳烷基、卤化物、NO2、SR、OR、N(R)2或羧基;

R代表H、烷基、芳基、杂芳基或芳烷基;

M代表H2、O、NR或S;

Z代表C(R)2、O、NR或S;且

Y代表CR″或N,其中

R″代表H、烷基、芳基、杂芳基、烷芳基、杂芳烷基、卤化物、NO2、SR、OR、N(R)2或羧基。

在进一步的实施方案中,抗衰老酶激活剂是式5及其伴随定义的化合物,其中Y为CR″。在进一步的实施方案中,抗衰老酶激活剂是式5及其伴随定义的化合物,其中Y为CH。在进一步的实施方案中,抗衰老酶激活剂是式5及其伴随定义的化合物,其中Z为O。在进一步的实施方案中,抗衰老酶激活剂是式5及其伴随定义的化合物,其中M为O。在进一步的实施方案中,抗衰老酶激活剂是式5及其伴随定义的化合物,其中R2和R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是式5及其伴随定义的化合物,其中R2、R4和R′3为OH。

在进一步的实施方案中,抗衰老酶激活剂是式5及其伴随定义的化合物,其中Y为CH;Z为O;M为O;R2和R′3为OH;且R1、R3、R4、R′1、R′2、R′4和R′5为H。在进一步的实施方案中,抗衰老酶激活剂是式5及其伴随定义的化合物,其中Y为CH;Z为O;M为O;R2、R4和R′3为OH;且R1、R3、R′1、R′2、R′4和R′5为H。

在另一个实施方案中,抗衰老酶激活剂为式6的花青素化合物:

其中,对于每个存在独立地,

R3、R4、R5、R6、R7、R8、R′2、R′3、R′4、R′5和R′6代表H、烷基、芳基、杂芳基、芳烷基、烷芳基、杂芳烷基、卤化物、NO2、SR、OR、N(R)2或羧基;

R代表H、烷基、芳基、杂芳基或芳烷基;且

A-代表选自下述的阴离子:Cl-、Br-或I-

在进一步的实施方案中,抗衰老酶激活剂是式6及其伴随定义的化合物,其中A-为Cl-。在进一步的实施方案中,抗衰老酶激活剂是式6及其伴随定义的化合物,其中R3、R5、R7和R′4为OH。在进一步的实施方案中,抗衰老酶激活剂是式6及其伴随定义的化合物,其中R3、R5、R7、R′3和R′4为OH。在进一步的实施方案中,抗衰老酶激活剂是式6及其伴随定义的化合物,其中R3、R5、R7、R′3、R′4和R′5为OH。

在进一步的实施方案中,抗衰老酶激活剂是式6及其伴随定义的化合物,其中A-为Cl-;R3、R5、R7和R′4为OH;且R4、R6、R8、R′2、R′3、R′5和R′6为H。在进一步的实施方案中,抗衰老酶激活剂是式6及其伴随定义的化合物,其中A-为Cl-;R3、R5、R7、R′3和R′4为OH;且R4、R6、R8、R′2、R′5和R′6为H。在进一步的实施方案中,抗衰老酶激活剂是式6及其伴随定义的化合物,其中A-为Cl-;R3、R5、R7、R′3、R′4和R′5为OH;且R4、R6、R8、R′2和R′6为H。

在进一步的实施方案中,抗衰老酶激活剂为由式7表示的均二苯代乙烯、查耳酮或黄酮化合物:

其中,对于每个存在独立地,

M不存在或为O;

R1、R2、R3、R4、R5、R′1、R′2、R′3、R′4和R′5代表H、烷基、芳基、杂芳基、芳烷基、烷芳基、杂芳烷基、卤化物、NO2、SR、OR、N(R)2或羧基;

Ra代表H或两个Ra形成键;

R代表H、烷基、芳基、杂芳基、芳烷基;且

n为0或1。

在进一步的实施方案中,抗衰老酶激活剂是由式7及其伴随定义表示的激活化合物,其中n为0。在进一步的实施方案中,抗衰老酶激活剂是由式7及其伴随定义表示的激活化合物,其中n为1。在进一步的实施方案中,抗衰老酶激活剂是由式7及其伴随定义表示的激活化合物,其中M不存在。在进一步的实施方案中,抗衰老酶激活剂是由式7及其伴随定义表示的激活化合物,其中M为O。在进一步的实施方案中,抗衰老酶激活剂是由式7及其伴随定义表示的激活化合物,其中Ra为H。在进一步的实施方案中,抗衰老酶激活剂是由式7及其伴随定义表示的激活化合物,其中M为O且两个Ra形成键。

在进一步的实施方案中,抗衰老酶激活剂是由式7及其伴随定义表示的激活化合物,其中R5为H。在进一步的实施方案中,抗衰老酶激活剂是由式7及其伴随定义表示的激活化合物,其中R5为OH。在进一步的实施方案中,抗衰老酶激活剂是由式7及其伴随定义表示的激活化合物,其中R1、R3和R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是由式7及其伴随定义表示的激活化合物,其中R2、R4、R′2和R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是由式7及其伴随定义表示的激活化合物,其中R2、R′2和R′3为OH。在进一步的实施方案中,抗衰老酶激活剂是由式7及其伴随定义表示的激活化合物,其中R2和R4为OH。

在进一步的实施方案中,抗衰老酶激活剂是由式7及其伴随定义表示的化合物,其中n为0;M不存在;Ra为H;R5为H;R1、R3和R′3为OH;且R2、R4、R′1、R′2、R′4和R′5为H。在进一步的实施方案中,抗衰老酶激活剂是由式7及其伴随定义表示的激活化合物,其中n为1;M不存在;Ra为H;R5为H;R2、R4、R′2和R′3为OH;且R1、R3、R′1、R′4和R′5为H。在进一步的实施方案中,抗衰老酶激活剂是由式7及其伴随定义表示的激活化合物,其中n为1;M为O;两个Ra形成键;R5为OH;R2、R′2和R′3为OH;且R1、R3、R4、R′1、R′4和R′5为H。

其它抗衰老酶激活剂包括具有选自下述式8-25和30的通式的化合物。

R1、R2=H、芳基、杂环、小烷基

A、B、C、D=CR1、N

n=0、1、2、3

R1、R2=H、芳基、杂环、小烷基

R3=H、小烷基

A、B=CR1、N

n=0、1、2、3

R1、R2=H、芳基、杂环、小烷基

R’1-R’5=H、OH

A、B、C、D=CR1、N

n=0、1、2、3

R1、R2=H、芳基、杂环、小烷基

R3=H、小烷基

R’1-R’5=H、OH

A、B=CR1、N

n=0、1、2、3

R1、R2=H、烷基、烯基

R=杂环、芳基

n=0-10

R1=H、卤素、NO2、SR(R=H、烷基、芳基)、OR(R=H、烷基、芳基)、NRR’(R、R’=烷基、芳基)、烷基、芳基、羧基

R2=H、卤素、NO2、SR(R=H、烷基、芳基)、OR(R=H、烷基、芳基)、NRR’(R、R’=烷基、芳基)、烷基、芳基、羧基

R3=H、卤素、NO2、SR(R=H、烷基、芳基)、OR(R=H、烷基、芳基)、NRR’(R、R’=烷基、芳基)、烷基、芳基、羧基

R4=H、卤素、NO2、SR(R=H、烷基、芳基)、OR(R=H、烷基、芳基)、NRR’(R、R’=烷基、芳基)、烷基、芳基、羧基

R5=H、卤素、NO2、SR(R=H、烷基、芳基)、OR(R=H、烷基、芳基)、NRR’(R、R’=烷基、芳基)、烷基、芳基、羧基

R’1=H、卤素、NO2、SR(R=H、烷基、芳基)、OR(R=H、烷基、芳基)、NRR’(R、R’=烷基、芳基)、烷基、芳基、羧基

R’2=H、卤素、NO2、SR(R=H、烷基、芳基)、OR(R=H、烷基、芳基)、NRR’(R、R’=烷基、芳基)、烷基、芳基、羧基

R’3=H、卤素、NO2、SR(R=H、烷基、芳基)、OR(R=H、烷基、芳基)、NRR’(R、R’=烷基、芳基)、烷基、芳基、羧基

R’4=H、卤素、NO2、SR(R=H、烷基、芳基)、OR(R=H、烷基、芳基)、NRR’(R、R’=烷基、芳基)、烷基、芳基、羧基

R’5=H、卤素、NO2、SR(R=H、烷基、芳基)、OR(R=H、烷基、芳基)、NRR’(R、R’=烷基、芳基)、烷基、芳基、羧基

R”1=H、卤素、NO2、SR(R=H、烷基、芳基)、OR(R=H、烷基、芳基)、NRR’(R、R’=烷基、芳基)、烷基、芳基、羧基

A-B=乙烯、乙炔、酰胺、磺酰胺、重氮基、烷基醚、烷基胺、烷基硫、羟胺、肼

X=CR、N

Y=CR、N

Z=O、S、C(R)2、NR

R=H、烷基、芳基、芳烷基

其中,对于每个存在独立地,

R=H、烷基、芳基、杂环基、杂芳基或芳烷基;且

R′=H、卤素、NO2、SR、OR、NR2、烷基、芳基或羧基。

其中,对于每个存在独立地,

R=H、烷基、芳基、杂环基、杂芳基或芳烷基。

其中,对于每个存在独立地,

R′=H、卤素、NO2、SR、OR、NR2、烷基、芳基、芳烷基或羧基;且

R=H、烷基、芳基、杂环基、杂芳基或芳烷基。

其中,对于每个存在独立地,

L代表CR2、O、NR或S;

R代表H、烷基、芳基、芳烷基或杂芳烷基;且

R′代表H、卤素、NO2、SR、OR、NR2、烷基、芳基、芳烷基或羧基。

其中,对于每个存在独立地,

L代表CR2、O、NR或S;

W代表CR或N;

R代表H、烷基、芳基、芳烷基或杂芳烷基;

Ar代表稠合的芳基或杂芳基环;且

R′代表H、卤素、NO2、SR、OR、NR2、烷基、芳基、芳烷基或羧基。

其中,对于每个存在独立地,

L代表CR2、O、NR或S;

R代表H、烷基、芳基、芳烷基或杂芳烷基;且

R′代表H、卤素、NO2、SR、OR、NR2、烷基、芳基、芳烷基或羧基。

其中,对于每个存在独立地,

L代表CR2、O、NR或S;

R代表H、烷基、芳基、芳烷基或杂芳烷基;且

R′代表H、卤素、NO2、SR、OR、NR2、烷基、芳基、芳烷基或羧基。

在进一步的实施方案中,抗衰老酶激活剂为式30表示的均二苯代乙烯、查耳酮或黄酮化合物:

其中,对于每个存在独立地,

D为苯基或环己基;

R1、R2、R3、R4、R5、R′1、R′2、R′3、R′4和R′5代表H、烷基、芳基、杂芳基、烷芳基、杂芳烷基、卤化物、NO2、SR、OR、N(R)2、羧基、叠氮化物、醚;或任意两个相邻的R或R′基团一起形成稠合的苯或环己基;

R代表H、烷基、芳基或芳烷基;且

A—B代表亚乙基、亚乙烯基或亚胺基;

条件是当A—B为亚乙烯基时,D为苯基且R′3为H;当R1、R2、R4和R5为H时,R3不是OH;且当R1、R3和R5为H时,R2和R4不是OMe;且当R1、R2、R4和R5为H时,R3不是OMe。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中D为苯基。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基或亚胺基。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中R2为OH。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中R4为OH。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中R2和R4为OH。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中D为苯基;且A—B为亚乙烯基。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中D为苯基;A—B为亚乙烯基;且R2和R4为OH。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基;D为苯环;R2和R4为OH;且R′3为Cl。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基;D为苯环;R2和R4为OH;且R′3为OH。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基;D为苯环;R2和R4为OH;且R′3为H。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基;D为苯环;R2和R4为OH;且R′3为CH2CH3

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基;D为苯环;R2和R4为OH;且R′3为F。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基;D为苯环;R2和R4为OH;且R′3为Me。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基;D为苯环;R2和R4为OH;且R′3为叠氮化物。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基;D为苯环;R2和R4为OH;且R′3为SMe。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基;D为苯环;R2和R4为OH;且R′3为NO2

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基;D为苯环;R2和R4为OH;且R′3为CH(CH3)2

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基;D为苯环;R2和R4为OH;且R′3为OMe。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基;D为苯环;R2和R4为OH;R′2为OH;且R′3为OMe。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基;D为苯环;R2为OH;R4为羧基;且R′3为OH。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基;D为苯环;R2和R4为OH;且R′3为羧基。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基;D为苯环;R2和R4为OH;且R′3和R′4一起形成稠合的苯环。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基;D为苯环;且R4为OH。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基;D为苯环;R2和R4为OCH2OCH3;且R′3为SMe。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基;D为苯环;R2和R4为OH;且R′3为羧基。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基;D为环己基环;且R2和R4为OH。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基;D为苯环;且R3和R4为OMe。

在进一步的实施方案中,抗衰老酶激活剂是由式30及其伴随定义表示的化合物,其中A—B为亚乙烯基;D为苯环;R2和R4为OH;且R′3为OH。

在一个实施方案中,本发明的抗衰老酶调节化合物由式31表示:

或其盐,其中:

环A任选地被取代;且

环B被至少一个羧基或多环芳基取代。

在另一个实施方案中,本发明的抗衰老酶调节化合物由式32表示:

或其盐,其中:

环A任选地被取代;

R1、R2、R3和R4独立地选自—H、卤素、—OR5、—CN、—CO2R5、—OCOR5、—OCO2R5、—C(O)NR5R6、—OC(O)NR5R6、—C(O)R5、—COR5、—SR5、—OSO3H、—S(O)nR5、—S(O)nOR5、—S(O)nNR5R6、—NR5R6、—NR5C(O)OR6、—NR5C(O)R6和—NO2

R5和R6独立地为—H、取代的或未取代的烷基、取代的或未取代的芳基或取代的或未取代的杂环基;且

n为1或2。

在某些实施方案中,R1、R2、R3和R4独立地选自—H、—OR5和—SR5,尤其是—H和—OR5(例如—H、—OH、—OCH3)。

环A优选地被取代。合适的取代基包括卤素(例如,溴)、酰氧基(例如,乙酰氧基)、氨基羰基(例如芳基氨基羰基(例如被取代的,尤其是羧基取代的)、苯基氨基羰基)和烷氧基(例如,甲氧基、乙氧基)。

在另一方面,本发明提供了新型的式(III)的抗衰老酶调节化合物:

或其盐,其中:

环A任选地被取代;

R5和R6独立地为—H、取代的或未取代的烷基、取代的或未取代的芳基或取代的或未取代的杂环基;

R7、R9、R10和R11独立地选自—H、卤素、—R5、—OR5、—CN、—CO2R5、—OCOR5、—OCO2R5、—C(O)NR5R6、—OC(O)NR5R6、—C(O)R5、—COR5、—SR5、—OSO3H、—S(O)nR5、—S(O)nOR5、—S(O)nNR5R6、—NR5R6、—NR5C(O)OR6、—NR5C(O)R6和—NO2

R8为多环芳基;且

n为1或2。

在某些实施方案中,R7、R9、R10和R11中的一个或多个为—H。在特定的实施方案中,R7、R9、R10和R11各自为—H。

在某些实施方案中,R8为杂芳基,例如噁唑并[4,5-b]吡啶基。在特定的实施方案中,R8为杂芳基且R7、R9、R10和R11中的一个或多个为—H。

环A优选地被取代。合适的取代基包括卤素(例如,溴)、酰氧基(例如,乙酰氧基)、氨基羰基(例如芳基氨基羰基(例如被取代的,尤其是羧基-取代的)、苯基氨基羰基)和烷氧基(例如,甲氧基、乙氧基),尤其是烷氧基。在某些实施方案中,环A被至少一个烷氧基或卤素基团取代,尤其是被甲氧基取代。

在某些实施方案中,环A任选地被多达3个独立地选自(C1-C3直链或支链烷基)、O—(C1-C3直链或支链烷基)、N(C1-C3直链或支链烯丙基)2、卤素或5-6元杂环的取代基取代。

在某些实施方案中,环A不被腈或吡咯烷基取代。

在某些实施方案中,R8为取代的或未取代的二环杂芳基,例如包括环N原子和1-2个独立地选自N、O或S的额外环杂原子的二环杂芳基。优选地,R8通过碳-碳键连接到化合物的其余部分。在某些此类实施方案中,存在2个额外的环杂原子,且一般至少一个所述额外的环杂原子为O或S。在某些此类实施方案中,存在共2个环氮原子(存在0或1个O或S),且氮原子一般各自在不同的环上。在某些此类实施方案中,R8不被含羰基的部分取代,特别是当R8为噻吩并嘧啶或噻吩并吡啶时。

在某些此类实施方案中,R8选自噁唑并吡啶、苯并噻吩基、苯并呋喃基、吲哚基、喹喔啉基、苯并噻唑基、苯并噁唑基、苯并咪唑基、喹啉基、异喹啉基或异吲哚基。在某些此类实施方案中,R8选自噻唑并吡啶基、咪唑并噻唑基、苯并噁嗪酮基或咪唑并吡啶基。

R8的具体实例(其中

表示到式33的其余部分的连接)包括:

其中不直接与所示的连接点相邻的至多2个环碳独立地被O—C1-C3直链或支链烷基、C1-C3直链或分支的烷基或卤素取代,尤其是被C1-C3直链或支链烷基或卤素取代。在某些实施方案中,R8

在某些实施方案中,R8

且环A任选地被至多3个独立地选自(C1-C3直链或支链烷基)、O—(C1-C3直链或支链烯丙基)、N(C1-C3直链或支链烷基)2、卤素或5-6元杂环的取代基取代。在某些此类实施方案中,环A不同时在2-位和6-位被O—(C1-C3直链或支链烷基)取代。在某些此类实施方案中,环A不同时在2-位、4-位和6-位被O—(C1-C3直链或支链烷基)取代。在某些此类实施方案中,环A不同时在2-位、3-位和4-位被O—(C1-C3直链或支链烷基)取代。在某些此类实施方案中,环A不在4-位被5-6元杂环取代。在某些此类实施方案中,环A不是单独地在3-位或4-位(通常是4-位)被O—(C1-C3直链或支链烷基)取代。在某些此类实施方案中,环A不在4-位被O—(C1-C3直链或支链烷基)取代且不在2-或3-位被C1-C3直链或支链烷基取代。

在某些实施方案中,R8

且环A任选地被至多3个独立地选自(C1-C3直链或支链烷基)、(C1-C3直链或支链卤代烷基,其中卤代烷基是被一个或多个卤素原子取代的烷基)、O—(C1-C3直链或支链烷基)、N(C1-C3直链或支链烷基)2、卤素或5-6元杂环的取代基取代。在某些此类实施方案中,环A不是单独地在3-位或4-位被O—(C1-C3直链或支链烷基)取代。在某些此类实施方案中,环A不在4-位被O—(C1-C3直链或支链烯丙基)取代且不在2-位或3-位被C1-C3直链或支链烯丙基取代。

在某些实施方案中,R8

(例如,其中一个或两个卤素为氯)且环A任选地被至多3个独立地选自(C1-C3直链或支链烷基)、O—(C1-C3直链或支链烷基),N(C1-C3直链或支链烷基)2、卤素或5-6元杂环的取代基取代,但不单独地在3-位被O—(C1-C3直链或支链烷基)取代。

在某些实施方案中,例如当R8具有上述值之一时,环A被至多3个独立地选自氯、甲基、O-甲基、N(CH3)2或吗啉代的取代基取代。在某些此类实施方案中,R8选自

其中不直接与所示的连接点相邻的至多2个环碳独立地被C1-C3直链或支链烷基或卤素取代;每个R7、R9和R11为—H;且R10

自—H、—CH2OH、—CO2H、—CO2CH3、—CH2-哌嗪基、

CH2N(CH3)2、—C(O)—NH—(CH2)2—N(CH3)2或—C(O)-哌嗪基。在某些此类实施方案中,当R8

且环A为3-二甲基氨基苯基时,R7、R9、R10和R11均不是—CH2—N(CH3)2或—C(O)—NH—(CH2)2—N(CH3)2,和/或当R8

且环A为3,4二甲氧基苯基时,R7、R9、R10和R11均不是C(O)OCH3或C(O)OH。

在某些实施方案中,例如当R8具有上述值之一时,和/或环A任选地被如上所述取代时,R7、R9、R10和R11中的至少一个为—H。在某些此类实施方案中,每个R7、R9、R10和R11为—H。

在某些实施方案中,R7、R9、R10或R11

自—C(O)OH、—N(CH3)2、—CH2OH、—CH2OCH3、—CH2-哌嗪基、—CH2-甲基哌嗪基、—CH2-吡咯烷基、—CH2-哌啶基、—CH2-吗啉代、—CH2—N(CH3)2、—C(O)—NH—(CH2)n-哌嗪基、—C(O)—NH—(CH2)n-甲基哌嗪基、—C(O)—NH—(CH2)n-吡咯烷基、—C(O)—NH—(CH2)n-吗啉代、—C(O)—NH—(CH2)n-哌啶基或—C(O)—NH—(CH2)n—N(CH3)2,其中n为1或2。在某些此类实施方案中,R10选自—C(O)OH、—N(CH3)2、—CH2OH、—CH2OCH3、—CH2-哌嗪基、—CH2-甲基哌嗪基、—CH2-吡咯烷基、—CH2-哌啶基、—CH2-吗啉代、—CH2—N(CH3)2、—C(O)—NH—(CH2)n-哌嗪基、—C(O)—NH—(CH2)n-甲基哌嗪基—C(O)—NH—(CH2)n-吡咯烷基、—C(O)—NH—(CH2)n-吗啉代、—C(O)—NH—(CH2)n-哌啶基或—C(O)—NH—(CH2)n—N(CH3)2,其中n为1或2且每个R7、R9和R11为H。

在某些实施方案中,环A被腈基取代或在对位被5或6元杂环取代。杂环的典型实例包括吡咯烷基、哌啶基和吗啉基。

在一个实施方案中,本发明的抗衰老酶调节化合物表示为式34:

或其盐,其中:

X1-X4中的两个选自—CR*—和—N—;

X1-X4中的另两个为—CR*—;

R1为增溶基;

R2为任选地被低级烷基、低级烷氧基、卤素、腈或—CF3取代的苯基,或R2为包含N杂原子和任选的选自N、O或S的第二杂原子的5-6元杂环,其中所述杂环任选地被甲基或卤素取代;

R*在每次出现时独立地选自—H、低级烷基或卤素;

R为—H或—CH3

R′为—CH3或卤素;且

n为0-4的整数。

通常,R为—H且n为0,使得式34的化合物表示为式35:

或其盐。

式34和35化合物中优选的值如下:

X1-X4中的两个选自—CR*—和—N—;

X1-X4中的另两个为—CR*—;

R*在每次出现时独立地选自—H、低级烷基或卤素;

R1为增溶基;且

R2选自任选地被独立地选自—CN、—F、—Cl和—CF3的一个或多个取代基取代的苯基,且当X1-X4中的每一个为—CR*—时,R2额外地选自包含N杂原子和任选的选自N、O或S的第二杂原子的5-6元杂环,其中所述杂环任选地被甲基取代。

在某些实施方案中,X1-X4中的每一个为—CR*—。在其它实施方案中,X1-X4中的一个为—N—且其余的为—CR*—。在某些实施方案中,X1-X4中的两个为—N—且其余的为—CR*—。在某些实施方案中,其中X1-X4中的两个为—N—,X1和X2为—N—。在某些实施方案中,其中X1-X4中的两个为—N—,X1和X4为—N—。在某些实施方案中,当X1-X4中的一个为—N—时,X1为—N—。在某些实施方案中,R*为H。

在某些实施方案中,例如当X1-X4中的每一个为—CR*—时,R2选自苯基、氟苯基、二氟苯基、氯苯基、甲基噻唑基、嘧啶基、吡啶基和吡唑基。在某些此类实施方案中,R2选自苯基、氟苯基、二氟苯基、氯苯基,2-甲基噻唑-4-基、吡啶基和吡唑-1-基。优选地,R2为苯基或吡啶基。

在某些实施方案中,R1为—CH2—R3且R3为任选地被一个或多个选自C1-C4烷基、氨基、卤素、甲氧基和甲氧基-C1-C4-烷基的取代基取代的含氮杂环。在这些实施方案中,X1-X4和R2可具备上述任何值。在某些此类实施方案中,R2为苯基、吡啶基或3-氟苯基;X2和X3为—CR*—且X1和X4独立地选自—CR*—或—N—;或二者。

在某些实施方案中,R1为—CH2—R3;且R3选自哌嗪-1-基、4-(甲氧基乙基-哌嗪-1-基、3,5-二甲基哌嗪-1-基、吗啉-4-基、哌啶-1-基、4-氨基哌啶-1-基、吡咯烷-1-基、3-氟吡咯烷-1-基、—NH-(吡咯烷-3-基)和1,4-二氮杂-双环[2.2.1]庚烷-1-基。在这些实施方案中,X1-X4和R2可具备上述任何值,但是通常R2为苯基、吡啶基或3-氟苯基;X2和X3为—CH—且X1和X4独立地选自—CH—或—N—;或二者。

在某些此类实施方案中,R3选自4-(甲氧基乙基)-哌嗪-1-基、吗啉-4-基、哌啶-1-基和4-氨基哌啶-1-基。当R3具有这些值时,R2通常为苯基、3-氟苯基或吡啶基。同样,通常X2和X3为—CH—且X1和X4独立地选自—CH—或—N—。在特定的实施方案中,X1和X4独立地选自—CH—或—N—;X2和X3为—CH—;R2为苯基、3-氟苯基或吡啶基;且R1为—CH2—R3,其中R3选自4-(甲氧基乙基)-哌嗪-1-基、吗啉-4-基、哌啶-1-基和4-氨基哌啶-1-基。

在某个实施方案中,式34涵盖的抗衰老酶调节化合物被表示为式36:

或其盐,其中:

X1-X3中的一个选自—CH—和—N—;

X1-X3中的另两个为—CH—;

R1为增溶基;

R2为任选地被甲基、卤素或—CF3取代的苯基,或R2为包含N杂原子和任选的选自N、O或S的第二杂原子的5-6元杂环,其中所述杂环任选地被甲基或卤素取代;

R为—H或—CH3

R′为—CH3或卤素;且

n为0-4的整数。

通常,R为—H且n为0,从而式36的化合物被表示为式37:

式36和37化合物中优选的值如下:

X1-X3中的一个选自—CH—和—N—;

X1-X3中的另两个为—CH—;

R1为增溶基;且

R2选自苯基和氟苯基,并且,当X1-X3中的每一个均为—CH—时,R2额外地选自包含N杂原子和任选的选自N、O或S的第二杂原子的5-6元杂环,其中所述杂环任选地被甲基取代。

在某些实施方案中,X1-X3中的每一个为—CH—。在其它实施方案中,X1-X3中的一个为—N—且其余的为—CH—。通常,当X1-X3中的一个为—N—时,X1为—N—。

在某些实施方案中,例如当X1-X3中的每一个为—CH—时,R2选自苯基、氟苯基、甲基噻唑基、嘧啶基、吡啶基和吡唑基。在某些此类实施方案中,R2选自苯基、氟苯基、2-甲基噻唑-4-基、吡啶基和吡唑-1-基。优选地,R2为苯基或吡啶基。

在某些实施方案中,R1为—CH2—R3,且R3为任选地被一个或多个选自C1-C4烷基、氨基、卤素、甲氧基和甲氧基-C1-C4-烷基的取代基取代的含氮杂环。在这些实施方案中,X1-X3和R2可具备上述任何值。在某些此类实施方案中,R2为苯基、吡啶基或3-氟苯基;X2和X3为—CH—且X1为—CH—或—N—;或二者。

在某些实施方案中,R1为—CH2—R3;且R3选自哌嗪-1-基、4-(甲氧基乙基-哌嗪-1-基、3,5-二甲基哌嗪-1-基、吗啉-4-基、哌啶-1-基、4-氨基哌啶-1-基、吡咯烷-1-基、3-氟吡咯烷-1-基、—NH-(吡咯烷-3-基)和1,4-二氮杂-双环[2.2.1]庚烷-1-基。在这些实施方案中,X1-X3和R2可具备上述任何值,但是通常R2为苯基、吡啶基或3-氟苯基;X2和X3为—CH—且X1为—CH—或—N—;或二者。

在某些此类实施方案中,R3选自4-(甲氧基乙基)-哌嗪-1-基、吗啉-4-基、哌啶-1-基和4-氨基哌啶-1-基。当R3具有这些值时,R2通常为苯基、3-氟苯基或吡啶基。同样,通常X2和X3为—CH—,且X1为—CH—或—N—。在特定的实施方案中,X1为—CH—或—N—;X2和X3为—CH—;R2为苯基、3-氟苯基或吡啶基;且R1为—CH2—R3,其中R3选自4-(甲氧基乙基)-哌嗪-1-基、吗啉-4-基、哌啶-1-基和4-氨基哌啶-1-基。

在另一个实施方案中,本发明的抗衰老酶调节化合物表示为式38:

或其盐,其中:

环A选自:

R1为增溶基;且

R#为—H或—O—CH3

在另一个实施方案中,本发明的抗衰老酶调节化合物表示为式39:

或其盐,其中:

环B选自:

R1为增溶基。

在一些实施方案中,抗衰老酶途径激活化合物是描述于美国专利No.7,829,556、7,855,289、7,893,086、8,044,198、8,088,928和8,093,401的任一化合物,每个申请通过引用整体并入本文。

在一些实施方案中,抗衰老酶激活化合物被表示为

或其盐。

在一些实施方案中,抗衰老酶途径激活化合物是下式的化合物:

或其盐,其中:

X7、X8、X9和X10中的每一个独立地选自N、CR20或CR1′,其中:

每个R20独立地选自H或增溶基;

每个R1′独立地选自H或任选地被取代的C1-C3直链或支链烷基,其中当R1′被取代时,R1′被—OH、卤素、—ORa、—O—CORa、—CORa、—C(O)Ra、—CN、—NO2、—COOH、—COORa、—OCO2Ra、—C(O)NRaRb、—OC(O)NRaRb、—SO3H、—NH2、—NHRa、—N(RaRb)、—COORa、—CHO、—CONH2、—CONHRa、—CON(RaRb)、—NHCORa、—NRCORa、—NHCONH2、—NHCONRaH、—NHCON(RaRb)、—NRcCONH2、—NRcCONRaH、—NRcCON(RaRb)、—C(═NH)—NH2、—C(═NH)—NHRa、—C(═NH)—N(RaRb)、—C(═NRc)—NH2、—C(═NRc)—NHRa、—C(═NRc)—N(RaRb)、—NH—C(═NH)—NH2、—NH—C(═NH)—NHRa、—NH—C(═NH)—N(RaRb)、—NH—C(═NRc)—NH2、—NH—C(═NRc)—NHRa、—NH—C(═NRc)—N(RaRb)、—NRdH—C(═NH)—NH2、—NRd—C(═NH)—NHRa、—NRd—C(═NH)—N(RaRb)、—NRd—C(═NRc)—NH2、—NRd—C(═NRc)—NHRa、—NRd—C(═NRc)—N(RaRb)、—NHNH2、—NHNHRa、—NHRaRb、—SO2NH2—SO2NHRa、—SO2NRaRb、—CH═CHRa、—CH═CRaRb、—CRc═CRaRb、CRc═CHRa、—CRc═CRaRb、—CCRa、—SH、—SOkRa、—S(O)kORa和—NH—C(═NH)—NH2中的一个或多个取代,其中

k为0、1或2;

Ra—Rd各自独立地为脂肪基、取代的脂肪基、苄基、取代的苄基、芳香基或取代的芳香基;以及

—NRaRb一起也可形成取代的或未取代的非芳香杂环基;

其中非芳香杂环基、苄基或芳基也可具有脂肪基或取代的脂肪基作为取代基;取代的脂肪基也可具有非芳香杂环、取代的非芳香杂环、苄基、取代的苄基、芳基或取代的芳基作为取代基;且取代的脂肪基、非芳香杂环基、取代的芳基或取代的苄基可具有多于一个取代基;

X7、X8、X9和X10中的一个为N且其余的选自CR20或CR1′;以及0-1个R20为增溶基;

R19选自:

其中:

每个Z10、Z11、Z12和Z13独立地选自N、CR20或CR1′;以及

每个Z14、Z15和Z16独立地选自N、NR1′、S、O、CR20或CR1′,

其中:

Z10、Z11、Z12和Z13中的0-2个为N;

Z14、Z15和Z16中的至少一个为N、NR1′、S或O;

Z14、Z15和Z16中的0-1个为S或O;

Z14、Z15和Z16中的0-2个为N或NR1′;

0-1个R20为增溶基;

0-1个R1′为任选地被取代的C1-C3直链或支链烷基;以及

R21选自—NR1′—C(O)—、—NR1′—S(O)2—、—NR1′—C(O)—NR1′—、—NR1′—C(S)—NR1′—、—NR1′—C(S)—NR1′—CR1′R1′—、—NR1′—C(O)—CR1′R1′—NR1′—、—NR1′—C(=NR1′)—NR1′—、—C(O)—NR1′—、—C(O)—NR1′—S(O)2—、—NR1′—、—CR1′R1′—、—NR1′—C(O)—CR1′=CR1′—、—NR1′—S(O)2—NR1′—、—NR1′—C(O)—NR1′—S(O)2—、—NR1′—CR1′R1′—C(O)—NR1′—、—CR1′R1′—C(O)—NR1′—、—NR1′—C(O)—CR1′=CR1′—CR1′R1′—、—NR1′—C(=N—CN)—NR1′—、—NR1′—C(O)—CR1′R1′—O—、—NR1′—C(O)—CR1′R1′—CR1′R1′—O—、—NR1′—S(O)2—CR1′R1′—、—NR1′—S(O)2—CR1′R1′—CR1′R1′—、—NR1′—C(O)—CR1′R′1—CR1′R′1—、—NR1′—C(S)—NR1′—CR1′R′1—CR1′R′1—、—NR1′—C(O)—O—或—NR1′—C(O)—CR1′R1′—;以及

R31选自任选地被取代的单环或双环芳基或任选地被取代的单环或双环杂芳基,条件为:

当X7为N,R19

且每个Z10、Z11、Z12和Z13独立地选自CR20或CR1′时,则:

a)X8、X9和X10中的至少一个为C—(C1-C3直链或支链烷基)或C-(增溶基);或

b)Z10、Z11、Z12和Z13中的至少一个为CR20,其中R20为增溶基。

在一些实施方案中,抗衰老酶途径激活化合物是下式的化合物:

或其盐,其中:

X1-X4中的两个选自—CR*—和—N—;

X1-X4中的另两个为—CR*—;

R*在每次出现时独立地选自—H、低级烷基或卤素;

R1为增溶基;以及

R2选自任选地被一个或多个独立地选自—CN、—F、—Cl和—CF3的取代基取代的苯基,且当X1-X4中的每一个均为—CR*—时,R2额外地选自包含N杂原子和任选的选自N、O或S的第二杂原子的5-6元杂环,其中所述杂环任选地被甲基取代。

在一些实施方案中,抗衰老酶途径激活化合物是下式的化合物:

或其盐。

在一些实施方案中,抗衰老酶途径激活化合物是下式的化合物:

或其盐,其中:

每个X7、X8、X9和X10独立地选自N、CR20和CR1′,其中:

每个R20独立地选自H和增溶基;

每个R1′独立地选自H和任选地被取代的C1-C3直链或支链烷基,其中当R1′被取代时,R1′被—OH、卤素、—ORa、—O—CORa、—CORa、—C(O)Ra、—CN、—NO2、—COOH、—COORa、—OCO2Ra、—C(O)NRaRb、—OC(O)NRaRb、—SO3H、—NH2、—NHRa、—N(RaRb)、—COORa、—CHO、—CONH2、—CONHRa、—CON(RaRb)、—NHCORa、—NRCORa、—NHCONH2、—NHCONRaH、—NHCON(RaRb)、—NRcCONH2、—NRcCONRaH、—NRcCON(RaRb)、—C(═NH)—NH2、—C(═NH)—NHRa、—C(═NH)—N(RaRb)、—C(═NRc)—NH2、—C(═NRc)—NHRa、—C(═NRc)—N(RaRb)、—NH—C(═NH)—NHRa、—NH—C(═NH)—N(RaRb)、—NH—C(═NRc)—NH2、—NH—C(═NRc)—NHRa、—NH—C(═NRc)—N(RaRb)、—NRd—C(═NH)—NH2、—NRd—C(═NH)—NHRa、—NRd—C(═NH)—N(RaRb)、—NRd—C(═NRc)—NH2、—NRd—C(═NRc)—NHRa、—NRd—C(═NRc)—N(RaRb)、—NHNH2、—NHNHRa、—SO2NH2、—SO2NHRa、—SO2NRaRb、—CH═CHRa、—CH═CRaRb、—CRc═CRaRb、CRc═CHRa、—CRc═CRaRb、—CCRa、—SH、—SOkRa、—S(O)kORa和—NH—C(═NH)—NH2中的一个或多个取代,其中

k为0、1或2;

Ra-Rd各自独立地为脂肪基、取代的脂肪基、苄基、取代的苄基、芳香基或取代的芳香基;以及

—NRaRb一起也可形成取代的或未取代的非芳香杂环基;

其中非芳香杂环基、苄基或芳基也可具有脂肪基或取代的脂肪基作为取代基;取代的脂肪基也可具有非芳香杂环、取代的非芳香杂环、苄基、取代的苄基、芳基或取代的芳基作为取代基;以及取代的脂肪基、非芳香杂环基、取代的芳基或取代的苄基可具有多于一个取代基;

X7、X8、X9和X10中的一个为N且其余的选自CR20和CR1′;以及0-1个R20为增溶基;

R19选自:

其中:

每个Z10、Z11、Z12和Z13独立地选自CR20和CR1′;

其中:

0-1个R20为增溶基;

0-1个R1′为任选地被取代的C1-C3直链或支链烷基;以及

R21选自—NR1′—C(O)—和—C(O)—NR1′和

R31选自任选地被取代的单环或双环芳基和任选地被取代的单环或双环杂芳基,条件为:

所述化合物不是:

在一些实施方案中,抗衰老酶途径激活化合物是下式的化合物:

或其盐,其中:

每个R23和R24独立地选自H、—CH3和增溶基;

R25选自H和增溶基;以及

R19为:

其中:

每个Z10、Z11、Z12和Z13独立地选自CR20和CR1″;

其中:

0-1个R20为增溶基;以及

0-1个R1″为任选地被取代的C1-C3直链或支链烷基;

每个R20独立地选自H和增溶基;

R21选自—NR1′—C(O)—和—C(O)—NR1′;以及

每个R1′独立地选自H和任选地被取代的C1-C3直链或支链烷基,其中当R1′和/或R1″被取代时,R1′和/或R1″被—OH、卤素、—ORa、—O—CORa、—CORa、—C(O)Ra、—CN、—NO2、—COOH、—COORa、—OCO2Ra、—C(O)NRaRb、—OC(O)NRaRb、—SO3H、—NH2、—NHRa、—N(RaRb)、—COORa、—CHO、—CONH2、—CONHRa、—CON(RaRb)、—NHCORa、—NRCORa、—NHCONH2、—NHCONRaH、—NHCON(RaRb)、—NRcCONH2、—NRcCONRaH、—NRcCON(RaRb)、—C(═NH)—NH2、—C(═NH)—NHRa、—C(═NH)—N(RaRb)、—C(═NRc)—NH2、—C(═NRc)—NHRa、—C(═NRc)—N(RaRb)、—NH—C(═NH)—NHRa、—NH—C(═NH)—N(RaRb)、—NH—C(═NRc)—NH2、—NH—C(═NRc)—NHRa、—NH—C(═NRc)—N(RaRb)、—NRd—C(═NH)—NH2、—NRd—C(═NH)—NHRa、—NRd—C(═NH)—N(RaRb)、—NRd—C(═NRc)—NH2、—NRd—C(═NRc)—NHRa、—NRd—C(═NRc)—N(RaRb)、—NHNH2、—NHNHRa、—SO2NH2、—SO2NHRa、—SO2NRaRb、—CH═CHRa、—CH═CRaRb、—CRc═CRaRb、CRc═CHRa、—CRc═CRaRb、—CCRa、—SH、—SOkRa、—S(O)kORa和—NH—C(═NH)—NH2中的一个或多个取代,其中

k为0、1或2;

Ra-Rd各自独立地为脂肪基、取代的脂肪基、苄基、取代的苄基、芳香基或被取代的芳香基;以及

—NRaRb一起也可形成取代的或未取代的非芳香杂环基;

其中非芳香杂环基、苄基或芳基也可具有脂肪基或取代的脂肪基作为取代基;取代的脂肪基也可具有非芳香杂环、取代的非芳香杂环、苄基、取代的苄基、芳基或取代的芳基作为取代基;以及取代的脂肪基、非芳香杂环基、取代的芳基或取代的苄基可具有多于一个取代基;以及

R31选自任选地被取代的单环或双环芳基和任选地被取代的单环或双环杂芳基,条件为R31不是2,4-二甲氧基苯基。

在多个其它实施方案中,配制组合物使得其不包含(或排除)一种或多种以下成份:咖啡因、绿茶提取物或瓜拉那种子或瓜拉那植物提取物。

在其它实施方案中,抗衰老酶途径激活剂或AMPK途径激活剂可以是鸢尾素、奎尼酸、肉桂酸、阿魏酸、褐藻素、双胍(例如二甲双胍)、罗格列酮或其任意类似物。备选地,抗衰老酶途径激活剂或AMPK途径激活剂可以是异黄酮、吡咯并喹啉醌(PQQ)、槲皮素、L-肉碱、硫辛酸、辅酶Q10、丙酮酸、5-氨基咪唑-4-甲酰胺核醣酸(ALCAR)、苯扎贝特、奥替普拉和/或染料木黄酮。在一些实施方案中,抗衰老酶途径激活剂为PDE抑制剂。

在一些实施方案中,该组合物可包含二甲双胍、白藜芦醇和支链氨基酸或其代谢物的组合。例如,该组合物可包含二甲双胍、白藜芦醇和HMB,或该组合物可包含二甲双胍、白藜芦醇和亮氨酸。二甲双胍、白藜芦醇和支链氨基酸的组合可导致脂肪酸氧化升高超过700%、800%、900%、1000%、1200%、1400%、1600%或1800%。

在一些实施方案中,该组合物可包含抗衰老酶途径激活剂的协同组合。例如,该组合物可包含协同量的二甲双胍和PDE抑制剂。在一些实施方案中,该组合物包含二甲双胍和咖啡因。

在一些实施方案中,抗衰老酶途径激活剂可以是刺激Fndc5、PGC1-α或UCP1表达的药剂。该表达可在基因或蛋白质表达水平方面进行测定。备选地,抗衰老酶途径激活剂可以是鸢尾素。增加鸢尾素水平的方法描述于等人,“A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogeneis,”Nature,2012年1月11日。

在一些实施方案中,该激活剂为黄酮或查耳酮。在一个实施方案中,示例性的抗衰老酶激活剂是在Howitz等人(2003)Nature 425:191中描述的那些激活剂,并包括,例如,白藜芦醇(3,5,4′-三羟基-反-均二苯代乙烯)、紫铆因(3,4,2′,4′-四羟基查耳酮)、白皮杉醇(3,5,3′,4′-四羟基-反-均二苯代乙烯)、异甘草素(4,2′,4′-三羟基查耳酮)、漆黄素(3,7,3′,4′-四羟基黄酮)、槲皮素(3,5,7,3′,4′-五羟基黄酮)、脱氧土大黄苷(3,5-二羟基-4′-甲氧基均二苯代乙烯3-O-β-D-葡萄糖苷);反-均二苯代乙烯;土大黄苷(3,3′,5-三羟基-4′-甲氧基均二苯代乙烯3-O-β-D-葡萄糖苷);顺-均二苯代乙烯;紫铆因(3,4,2′,4′-四羟基查耳酮);3,4,2′4′6′-五羟基查耳酮;查耳酮;7,8,3′,4′-四羟基黄酮;3,6,2′,3′-四羟基黄酮;4′-羟基黄酮;5,4′-二羟基黄酮5,7-二羟基黄酮;桑色素(3,5,7,2′,4′-五羟基黄酮);黄酮;5-羟基黄酮;(-)-表儿茶素(羟基位点:3,5,7,3′,4′);(-)-儿茶素(羟基位点:3,5,7,3′,4′);(-)-没食子儿茶素(羟基位点:3,5,7,3′,4′,5′)(+)-儿茶素(羟基位点:3,5,7,3′,4′);5,7,3′,4′,5′-五羟基黄酮;木犀草素(5,7,3′,4′-四羟基黄酮);3,6,3′,4′-四羟基黄酮;7,3′,4′,5′-四羟基黄酮;茨非醇(3,5,7,4′-四羟基黄酮);6-羟基芹黄素(5,6,7,4′-四羟基黄酮);野黄芩素);芹黄素(5,7,4′-三羟基黄酮);3,6,2′,4′-四羟基黄酮;7,4′-二羟基黄酮;大豆苷(7,4′-二羟基异黄酮);染料木素(5,7,4′-三羟基黄烷酮);柚皮素(5,7,4′-三羟基黄烷酮);3,5,7,3′,4′-五羟基黄烷酮;黄烷酮;氯化天竺葵色素(3,5,7,4′-四羟基花色基元黄详氯化物);扁柏酚(b-苧侧素;2-羟基-4-异丙基-2,4,6-环庚三烯-1-酮);L-(+)-麦角硫因((S)-a-羧基-2,3-二氢-N,N,N-三甲基-2-硫基-1H-咪唑-4-乙胺内盐);咖啡酸苯基酯;MCI-186(3-甲基-1-苯基-2-吡唑啉-5-酮);HBED(N,N′-二-(2-羟基苄基)乙二胺-N,N′-二乙酸-H2O);氨溴索(反-4-(2-氨基-3,5-二溴苄基氨基)环己烷-HCl;以及U-83836E((-)-2-((4-(2,6-二-1-吡咯烷基-4-嘧啶基)-1-哌嗪基)甲基)-3,4-二氢-2,5,7,8-四甲基-2H-1-苯并吡喃-6-醇.2HCl)。也可使用其类似物和衍生物。

本申请提供了可用于诱导受试者中脂肪酸氧化和线粒体生物发生升高的组合物。该组合物包含:HMB组合白藜芦醇;亮氨酸组合白藜芦醇;亮氨酸和HMB二者组合白藜芦醇;KIC组合白藜芦醇;KIC和HMB二者组合白藜芦醇;KIC和亮氨酸二者组合白藜芦醇;或KIC、HMB和亮氨酸组合白藜芦醇。

磷酸二酯酶抑制剂

在一些实施方案中,抗衰老酶途径激活剂调节磷酸二酯酶(PDE)的活性。在一些实施方案中,抗衰老酶途径激活剂为PDE抑制剂,例如非特异性PDE抑制剂。PDE抑制剂可以是天然存在的或非天然存在的(例如制造的),且可以提供为含PDE抑制剂或其提取物(例如纯化的)的天然来源的形式。非特异性PDE抑制剂的实例包括但不限于咖啡因、茶碱、可可碱、3-异丁基-1-甲基黄嘌呤(IBMX)、己酮可可碱(3,7-二氢-3,7-二甲基-l-(5氧己基)-1H-嘌呤-2,6-二酮)、氨茶碱、副黄嘌呤及其盐、衍生物、代谢物、分解代谢物、合成代谢物、前体及类似物。PDE抑制剂的天然来源的非限制性实例包括咖啡、茶、瓜拉那、巴拉圭茶、可可和巧克力(例如黑巧克力)。

在一些实施方案中,代替白藜芦醇或其它抗衰老酶途径激活剂或除此之外施用PDE抑制剂。在一些实施方案中,包含在此描述的一种或多种组分的组合物包含代替白藜芦醇或其它抗衰老酶途径激活剂的PDE抑制剂或包含此两者。通常,PDE抑制剂以与组合物或治疗方法中的一种或多种其它组分具有协同作用的量进行提供。

支链氨基酸

本发明提供了包含支链氨基酸的组合物。支链氨基酸可具有携带结合至两个或更多其他原子的分支碳原子的脂肪族侧链。所述其他原子可以是碳原子。支链氨基酸的实例包括亮氨酸、异亮氨酸和缬氨酸。支链氨基酸也可包括其它化合物,例如4-羟基异亮氨酸。在一些实施方案中,该组合物可基本上不含一种或多种或全部的非支链氨基酸。例如,该组合物可不含丙氨酸、精氨酸、天冬酰胺、天冬氨酸、半胱氨酸、谷氨酸、谷氨酰胺、甘氨酸、组氨酸、赖氨酸、甲硫氨酸、苯丙氨酸、脯氨酸、丝氨酸、苏氨酸、色氨酸和/或酪氨酸。在一些实施方案中,该组合物可基本上不含异亮氨酸和/或缬氨酸。

不受理论限制,支链氨基酸如亮氨酸的摄取能通过依赖和不依赖mTOR的途径刺激组织蛋白质合成,以及产生抗蛋白水解作用。这些效果主要发生于肌肉,但也可出现在其它组织中,包括脂肪组织。考虑到蛋白质合成和转化的能量成本,亮氨酸可以增加脂肪酸氧化和净能量利用,并缓解肥胖。事实上,已有报道称亮氨酸在能量限制过程中发挥了产热效应并增加了体重和脂肪组织的损失。同样,亮氨酸和富含亮氨酸的饮食能很好地调节脂肪细胞和小鼠中的炎性细胞因子模式。

在一些实施方案中,在此描述的任一组合物可包含任意支链氨基酸的盐、衍生物、代谢物、分解代谢物、合成代谢物、前体及类似物。例如,支链氨基酸的代谢物可包括羟基甲基丁酸酯(HMB)、α-羟基异己酸和酮异己酸(KIC)、酮异戊酸盐和酮异己酸盐。支链氨基酸的非限制性的示例性合成代谢物可包括谷氨酸、谷氨酰胺、苏氨酸、α-酮丁酸、α-乙酰-α-羟基丁酸酯、α,β-二羟基-β-甲基戊酸酯、α-酮-β-甲基戊酸酯、α,β-二羟基异戊酸酯和α-酮异戊酸酯。

在本发明的某些实施方案中,可配制在此公开的任意组合物使得它们不含(或排除)选自赖氨酸、谷氨酸、脯氨酸、精氨酸、缬氨酸、异亮氨酸、天冬氨酸、天冬酰胺、甘氨酸、苏氨酸、丝氨酸、苯丙氨酸、酪氨酸、组氨酸、丙氨酸、色氨酸、甲硫氨酸、谷氨酰胺、牛磺酸、肉碱、胱氨酸和半胱氨酸的一种或多种氨基酸。该组合物可以基本上不含任何非支链氨基酸。非支链氨基酸的质量或摩尔量可少于总组合物的0.01%、0.1%、0.5%、1%、2%或5%。

维生素B6

不受任何特定理论或作用模式限制,活性B6代谢物(磷酸吡哆醛)的升高能够降低脂肪细胞钙通道的张力(tone)和活性。胞内游离的Ca2+是脂肪细胞脂肪酸合成酶表达和活性的主要调节剂,其可导致对脂肪酸合酶的表达和活性的抑制,后者反过来是脂肪细胞中中性脂质合成的限速步骤。

在此使用的维生素B6包括其不同形式,包括吡哆醇、吡哆醇5’-磷酸、吡哆醛、磷酸吡哆醛、吡哆醛5’-磷酸、吡哆胺、吡哆胺5’-磷酸。在其它实施方案中,维生素B6还可包括4-吡哆酸,后者是排出的上述形式的维生素B6的分解代谢物。在此描述的组合物可包含任何一种或多种这些形式的维生素B6。

维生素B6在体内的活性形式为吡哆醛5-磷酸,其是一种用于所有的转氨反应以及一些脱羧和脱氨反应的辅酶。此外,在体内发生的所有转氨反应都需要吡哆醛5-磷酸作为辅酶(Peterson D L,Martinez-Carrion M.The mechanism of transamination.Function of the histidyl residue at the active site of supernatant aspartate transaminase.J Biol Chem.1970年2月25日;245(4):806-13)。

在一些实施方案中,在此描述的任一组合物可以包括任意形式的维生素B6的盐、衍生物、代谢物、分解代谢物、合成代谢物、前体及类似物。维生素B6的示例性的分解代谢物包括2-甲基-3-羟基-5-甲酰吡啶-4-羧酸盐和3-羟基-2-甲基吡啶-4,5,-二羧酸盐。维生素B6的示例性类似物描述于美国专利No.7,230,009和6,369,042。维生素B6的示例性前体描述于美国专利No.7,495,101中。

药学活性剂

联合组合物可以进一步包含一种或多种药学活性剂。治疗活性剂的实例包括布洛芬、aldoril和吉非贝齐、维拉帕米、maxzide、双氯芬酸和美托洛尔、马普替林、三唑仑和米诺地尔。例如,联合组合物可包含药学活性抗糖尿病剂、体重减轻剂或钙调节剂。美国专利No.7,109,198和美国专利申请No.20090142336描述了适于包含在本文描述的联合组合物中的多种药学活性剂或治疗活性剂。抗糖尿病剂的实例包括双胍(如二甲双胍)、噻唑烷二酮和氯茴苯酸(如瑞格列奈、吡格列酮和罗格列酮)、α葡萄糖苷酶抑制剂(如阿卡波糖)、磺脲类(如甲苯磺丁脲、醋酸己脲、妥拉磺脲、氯磺丙脲、格列吡嗪、格列本脲、格列美脲、格列齐特)、肠降血糖素、麦角生物碱(例如溴隐亭)和DPP抑制剂(如西他列汀、维格列汀、沙格列汀、lingliptin、度格列汀、吉格列汀、阿格列汀和小檗碱)。抗糖尿病剂可以是口服抗糖尿病剂。抗糖尿病剂也可以是可注射的抗糖尿病药物,包括胰岛素、糊精类似物(例如普兰林肽)和肠降血糖素模拟物(例如艾塞那肽和利拉鲁肽)。抗肥胖治疗剂的实例包括脂肪酶抑制剂(例如奥利司他)、多巴胺、去甲肾上腺素和血清素化合物、大麻素受体拮抗剂(例如利莫那班)、艾塞那肽、普兰林肽和CNS剂(如topimerate)。仅出于讨论目的提供这些实例,并且是为了说明本发明的适用性范围广至各种各样的药物。并不意味着以任何方式限制本发明的范围。

在一些实施方案中,在此描述的一种或多种组分,例如白藜芦醇、亮氨酸、HMB和KIC可与两种或更多种药学活性剂组合。例如,抗衰老酶途径激活剂可与格列吡嗪和二甲双胍、格列本脲和二甲双胍、吡格列酮和格列美脲、吡格列酮和二甲双胍、瑞格列奈和二甲双胍、罗格列酮和格列美脲,罗格列酮和二甲双胍或西他列汀和二甲双胍组合。

在此描述的联合组合物中使用的药剂或任意其它组分的量可以是亚治疗的量。在一些实施方案中,使用亚治疗量的药剂或组分能够减轻药剂的副反应。亚治疗量的使用仍然可以是有效的,特别是当与其它药剂或组分协同使用时。

亚治疗量的药剂或组分可以使得其量低于被认为是治疗的量。例如,FDA指南可能建议了治疗特定病症的特定剂量水平,而亚治疗量就是低于FDA建议的剂量水平的任何水平。亚治疗量可以比被认为是治疗量的量低约1%、5%、10%、15%、20%、25%、30%、35%、50%、75%、90%或95%。可以对个体受试者或受试者组评估治疗量。受试者组可以是全部潜在受试者或具备特定特征例如年龄、体重、种族、性别或生理活性水平的受试者。

以盐酸二甲双胍为例,医师建议起始剂量为每天1000mg,受试者特异性剂量范围为每天500mg到最大2500mg(盐酸二甲双胍缓释片标签www.accessdata.fda.gov/drugsatfda_docs/label/2008/021574s010lbl.pdf)。对受试者的特定剂量可以由临床医师通过对剂量进行滴定和测定治疗应答来确定。治疗剂量水平可以通过测定空腹血浆葡萄糖水平和测定糖化血红蛋白来确定。亚治疗量可以是低于推荐的二甲双胍剂量的任何水平。例如,如果受试者的治疗剂量水平被确定为700mg每天,则600mg的剂量就是亚治疗量。或者,亚治疗量可以相对于一组受试者而非个体受试者来确定。例如,如果对于体重超过300lbs的受试者,二甲双胍的平均治疗量是2000mg,那么亚治疗量可以是低于2000mg的任何量。在一些实施方案中,该剂量可以由医疗保健提供者推荐,包括但不限于患者的医生、护士、营养师、药剂师或其他健康护理专业人员。卫生保健专业人员可包括与卫生保健系统相关的个人或实体。卫生保健专业人员的实例可包括外科医生、牙医、听力学家、言语病理学家、内科医生(包括全科医生和专科医生)、助理医师、护士、助产士、药师/药剂师、营养师、治疗师、心理学家、物理治疗师、刺络医师、职业治疗师、验光师、脊医、临床医务人员、紧急医疗技术人员、护理人员、医疗化验员、放射技师、医疗假肢技师社会工作者,以及各种各样受训以提供某种类型的医疗保健服务的其他人力资源。

给药剂量

在一些实施方案中,组合物包含一定量的抗衰老酶途径激活剂,例如多酚(例如白藜芦醇)。抗衰老酶途径激活剂的量可以是亚治疗量,和/或与该组合物中的一种或多种其它化合物、或一种或多种与该组合物同时或相邻时间施用的化合物协同作用的量。在一些实施方案中,抗衰老酶途径激活剂以低剂量、中剂量或高剂量施用,其中描述了两种剂量之间的关系,而通常不会定义任何具体的剂量范围。例如,白藜芦醇的每日低剂量可包含约、少于约或多于约0.5mg/kg、1mg/kg、2.5mg/kg、5mg/kg、7.5mg/kg、10mg/kg、12.5mg/kg、15mg/kg、20mg/kg、25mg/kg、50mg/kg、75mg/kg、100mg/kg或更多;白藜芦醇的每日中剂量可包含约、少于约或多于约20mg/kg、25mg/kg、50mg/kg、75mg/kg、100mg/kg、125mg/kg、150mg/kg、175mg/kg、200mg/kg、250mg/kg或更多;以及白藜芦醇的每日高剂量可包含约、少于约或多于约150mg/kg、175mg/kg、200mg/kg、225mg/kg、250mg/kg、300mg/kg、350mg/kg、400mg/kg或更多。

在本发明的一些实施方案中,向受试者施用以下量的亮氨酸、HMB、KIC、维生素D、维生素K2和/或白藜芦醇将:亮氨酸约、少于约或多于约0.5–3.0g/天(例如0.5、0.75、1、1.25、1.5、1.75、2、2.5、3或更多g/天);HMB约、少于约或多于约0.20–3.0g/天(例如0.2、0.4、0.5、0.75、1、1.5、2、2.5、3或更多g/天);KIC约、少于约或多于约0.2–3.0g/天(例如0.2、0.4、0.5、0.75、1、1.25、1.5、1.75、2、2.5、3或更多g/天);维生素D约、少于约或多于约2.5-25μg/天(例如2.5、5、7.5、10、12.5、15、17.5、20、25或更多μg/天);维生素K2约、少于约或多于约5-200μg/天(例如5、10、25、50、75、100、150、200或更多μg/天);和/或白藜芦醇约、少于约或多于约10–500mg/天(例如10、25、50、51、75、100、150、200、250、300、350、400、450、500或更多mg/天)。因此,一个实施方案提供了包含量为约0.75至约3.0g(0.75-3.0g)的亮氨酸和量为约50至约500mg(或50-500mg)的白藜芦醇的组合物。另一实施方案提供了包含量为0.40–3.0g(或0.40-3.0g)的HMB和量为50–500mg(或50-500mg)的白藜芦醇的组合物。另一实施方案提供了包含量为约0.75–约3.0g(或0.75-3.0g)的亮氨酸、量为约0.40至约3.0g(或0.40-3.0g)的HMB和量为约50至约500mg(或50-500mg)的白藜芦醇的组合物。在一些实施方案中,组合物进一步包含协同量的PDE抑制剂。在一些实施方案中,组合物进一步包含协同量的抗衰老酶途径激活剂。在一些实施方案中,白藜芦醇被替换为协同量的PDE抑制剂或其它抗衰老酶途径激活剂。在包含PDE抑制剂的组合物或包括(与一种或多种其它组分分开或同时)施用PDE抑制剂的方法中,可以以产生约、小于约或大于约0.1、1、5、10、25、50、100、500、1000、2500、5000、10000或更高nM的血浆峰值浓度的量提供PDE抑制剂。

本发明的另一方面提供了包含协同量的白藜芦醇和亮氨酸;白藜芦醇和HMB;白藜芦醇、亮氨酸和HMB;白藜芦醇和KIC;白藜芦醇、KIC和亮氨酸;白藜芦醇、KIC和HMB;或白藜芦醇、KIC、亮氨酸和HMB的组合物。在一些实施方案中,白藜芦醇的协同量为至少35mg的白藜芦醇和与亮氨酸和/或HMB组合的不多于500(或约500)mg白藜芦醇(例如35、50、75、100、150、200、250、300、350、400、450或500mg白藜芦醇)的量。包含亮氨酸和/或KIC和白藜芦醇的组合物中亮氨酸和/或KIC的协同量的范围可以为约、少于约或多于约0.50-3.0g(或约0.50至约3.0g;例如0.5、0.75、1、1.5、2、2.5、3或更多克)或0.75-3.0g(或约0.75-3.0g;例如0.75、1、1.25、1.5、1.75、2、2.5、3或更多克)。包含HMB和白藜芦醇的组合物中提供的HMB的协同量含有约、少于约或多于约0.20–3.0g(或约0.20至约3.0g;例如0.2、0.4、0.5、0.75、1、1.5、2、2.5、3或更多克)的HMB。在将亮氨酸和KIC的组合用于组合物的一些实施方案中,亮氨酸和KIC的总量少于或等于3.0g(或少于约3.0g;例如少于约0.7、0.75、1、1.5、2、2.5、3克)和至少(或至少约)0.70g(例如至少约0.7、0.75、1、1.5、2、2.5、3克)。在一些实施方案中,组合物进一步包含协同量的PDE抑制剂。在一些实施方案中,组合物进一步包含协同量的抗衰老酶途径激活剂。在一些实施方案中,白藜芦醇被替换为协同量的PDE抑制剂或其它抗衰老酶途径激活剂。在包含PDE抑制剂的组合物或包括(与一种或多种其它组分分开或同时)施用PDE抑制剂的方法中,可以以产生约、小于约或大于约0.1、1、5、10、25、50、100、500、1000、2500、5000、10000或更高nM的血浆峰值浓度的量提供PDE抑制剂。

另一实施方案提供了包含协同量的HMB、亮氨酸和白藜芦醇的组合物。在该组合物中,亮氨酸和HMB在组合物中的总量可少于3.0g(或少于约3.0g;例如少于约0.7、0.75、1、1.5、2、2.5、3g)和至少0.70g(或至少约0.70g;例如至少约0.7、0.75、1、1.5、2、2.5、3g)。包含亮氨酸和HMB的组合物可包含组合物中总量为约、少于约或多于约0.70g到3.0g(约0.70g至约3.0g;例如0.7、1、1.25、1.5、1.75、2、2.5、3或更多g)、0.75g到3.0g(约0.75g至约3.0g)或1.0g到3.0g(约1.0g至约3.0g)的亮氨酸和HMB和协同量的白藜芦醇(至少35mg的白藜芦醇和不多于500(或约500)mg的白藜芦醇(例如约、少于约或多于约35、50、75、100、150、200、250、300、350、400、450或500mg白藜芦醇)或量为50-500mg(或约50至约500mg)的白藜芦醇。在一些实施方案中,组合物进一步包含协同量的PDE抑制剂。在一些实施方案中,组合物进一步包含协同量的抗衰老酶途径激活剂。在一些实施方案中,白藜芦醇被替换为协同量的PDE抑制剂或抗衰老酶途径激活剂。在包含PDE抑制剂的组合物或包括(与一种或多种其它组分分开或同时)施用PDE抑制剂的方法中,可以以产生约、小于约或大于约0.1、1、5、10、25、50、100、500、1000、2500、5000、10000或更高nM的血浆峰值浓度的量提供PDE抑制剂。

另一个实施方案提供了包含协同量的HMB、亮氨酸、KIC和白藜芦醇的组合物。在这样的组合物中,亮氨酸、KIC和HMB在组合物中的总量可少于3.0g(或少于约3.0g;例如少于约0.7、0.75、1、1.5、2、2.5、3g)和至少0.70g(或至少约0.70g;例如至少约0.7、0.75、1、1.5、2、2.5、3g)。因此,包含亮氨酸、KIC和HMB的组合物可包含组合物中总量为约、少于约或多于约0.70g到3.0g(约0.70g至约3.0g;例如0.7、0.75、1、1.5、2、2.5、3g),0.75g到3.0g(约0.75g至约3.0g)或1.0g到3.0g(约1.0g至约3.0g)的亮氨酸、KIC和HMB和协同量的白藜芦醇(至少35mg的白藜芦醇和不多于500(或约500)mg的白藜芦醇(例如约、少于约或多于约35、50、75、100、150、200、250、300、350、400、450或500mg白藜芦醇)或量为50-500mg(或约50至约500mg)的白藜芦醇。在一些实施方案中,组合物进一步包含协同量的PDE抑制剂。在一些实施方案中,组合物进一步包含协同量的抗衰老酶途径激活剂。在一些实施方案中,白藜芦醇被替换为协同量的PDE抑制剂或抗衰老酶途径激活剂。在包含PDE抑制剂的组合物或包括(与一种或多种其它组分分开或同时)施用PDE抑制剂的方法中,可以以产生约、小于约或大于约0.1、1、5、10、25、50、100、500、1000、2500、5000、10000或更高nM的血浆峰值浓度的量提供PDE抑制剂。

其它实施方案提供了以下组合物,其包含:a)约、少于约或多于约50-100mg的白藜芦醇(例如50、60、70、80、90、100或更多mg)和约、少于约或多于约400mg到500mg HMB(例如400、425、450、475、500或更多mg);b)约、少于约或多于约50-100mg的白藜芦醇(例如50、60、70、80、90、100或更多mg)和约、少于约或多于约750mg到1250mg的亮氨酸(例如750、850、950、1050、1150、1250或更多mg);c)约、少于约或多于约50-100mg的白藜芦醇(例如50、60、70、80、90、100或更多mg)和约、少于约或多于约750mg到1250mg的KIC(例如750、850、950、1050、1150、1250或更多mg);或d)约、少于约或多于约50mg至约100mg的白藜芦醇(例如50、60、70、80、90、100或更多mg)和:i)量为约400mg和约1250mg(例如400、500、600、700、800、900、1000、1100、1250或更多mg)的HMB和KIC的组合;ii)量为约400mg和约1250mg(例如400、500、600、700、800、900、1000、1100、1250或更多mg)的HMB和亮氨酸的组合;iii)量为约400mg和约1250mg(例如400、500、600、700、800、900、1000、1100、1250或更多mg)的KIC和亮氨酸的组合;或iv)量为约400mg和约1250mg(例如400、500、600、700、800、900、1000、1100、1250或更多mg)的HMB、KIC和亮氨酸的组合。在一些实施方案中,组合物进一步包含协同量的PDE抑制剂。在一些实施方案中,组合物进一步包含协同量的抗衰老酶途径激活剂。在一些实施方案中,白藜芦醇被替换为协同量的PDE抑制剂或抗衰老酶途径激活剂。在包含PDE抑制剂的组合物或包括(与一种或多种其它组分分开或同时)施用PDE抑制剂的方法中,可以以产生约、小于约或大于约0.1、1、5、10、25、50、100、500、1000、2500、5000、10000或更高nM的血浆峰值浓度的量提供PDE抑制剂。

在一些实施方案中,单位剂量可包含与一种或多种其它组分组合的白藜芦醇。在一些实施方案中,单位剂量包含以下一种或多种:约、少于约或多于约50、100、200、300、400、500或更多mg的HMB;约、少于约或多于约10、20、30、40、50、75、100或更多mg白藜芦醇;约、少于约或多于约2.5、5、7.5、10、12.5、15、17.5、20或更多mg的维生素B6;约、少于约或多于约2.5、5、7.5、10、12.5、15、17.5、20、25或更多μg的维生素D;约、少于约或多于约5、10、25、50、75、100、150、200或更多μg的维生素K2;以及约、少于约或多于约400、500、600、700、800、900、1000、1100、1250、1500或更多mg的亮氨酸。单位剂量可包含约、少于约或多于约500mg的β羟基、β甲基丁酸酯和约、少于约或多于约50mg的白藜芦醇。单位剂量可包含约、少于约或多于约500mg的β羟基、β甲基丁酸酯;和约、少于约或多于约50mg的白藜芦醇;以及约、少于约或多于约15mg的维生素B6。单位剂量可包含约、少于约或多于约1.125g的亮氨酸和约、少于约或多于约50mg的白藜芦醇。单位剂量可包含约、少于约或多于约1.125g的亮氨酸、50mg白藜芦醇和15mg维生素B6。单位剂量可包含约、少于约或多于约750mg的亮氨酸、35mg白藜芦醇和10mg维生素B6。单位剂量可包含约500mg HMB、51mg白藜芦醇(98%)、12.5μg维生素D和50μg维生素K2。在一些实施方案中,组合物进一步包含协同量的PDE抑制剂。在一些实施方案中,组合物进一步包含协同量的抗衰老酶途径激活剂。在一些实施方案中,白藜芦醇被替换为协同量的PDE抑制剂或抗衰老酶途径激活剂。在包含PDE抑制剂的组合物或包括(与一种或多种其它组分分开或同时)施用PDE抑制剂的方法中,可以以产生约、小于约或大于约0.1、1、5、10、25、50、100、500、1000、2500、5000、10000或更高nM的血浆峰值浓度的量提供PDE抑制剂。

在一些实施方案中,单位剂量可包含与约、少于约或多于约指示量的一种或多种其它组分组合的绿原酸(例如约、少于约或多于约25、50、75、100、150、200或mg)。单位剂量可包含500mgβ羟基、β甲基丁酸酯(例如50、100、200、300、400、500或更多mg)和100mg绿原酸。单位剂量可包含500mgβ羟基、β甲基丁酸酯(例如50、100、200、300、400、500或更多mg);和100mg绿原酸;以及15mg维生素B6。单位剂量可包含1.125g亮氨酸(例如400、500、600、700、800、900、1000、1100、1250或更多mg)和100mg绿原酸。单位剂量可包含1.125g亮氨酸(例如400、500、600、700、800、900、1000、1100、1250或更多mg);100mg绿原酸;和15mg维生素B6(例如2.5、5、7.5、10、12.5、15、17.5、20或更多mg)。单位剂量可包含750mg亮氨酸、75mg绿原酸和10mg维生素B6。

在一些实施方案中,单位剂量可包含与约、少于约或多于约指示量的一种或多种其它组分组合的约、少于约或多于约指示量(例如10、15、20、25、30、40、50或更多mg)的奎尼酸。单位剂量可包含500mgβ羟基、β甲基丁酸酯(例如50、100、200、300、400、500或更多mg)和25mg奎尼酸。单位剂量可包含500mgβ羟基、β甲基丁酸酯(例如50、100、200、300、400、500或更多mg)、25mg奎尼酸和15mg维生素B6(例如2.5、5、7.5、10、12.5、15、17.5、20或更多mg)。单位剂量可包含1.125g亮氨酸(例如400、500、600、700、800、900、1000、1100、1250或更多mg)和25mg奎尼酸。单位剂量可包含1.125g亮氨酸(例如400、500、600、700、800、900、1000、1100、1250或更多mg)、25mg奎尼酸和15mg维生素B6(例如2.5、5、7.5、10、12.5、15、17.5、20或更多mg)。单位剂量可包含750mg亮氨酸、15mg奎尼酸和10mg维生素B6。

在一些实施方案中,单位剂量可包含与约、少于约或多于约指示量的一种或多种其它组分组合的约、少于约或多于约指示量(例如0.5、0.75、1、1.25、1.5、1.75、2、2.25、2.5、3,5或更多mg)的褐藻素。单位剂量可包含500mgβ羟基、β甲基丁酸酯(例如50、100、200、300、400、500或更多mg)和2.5mg褐藻素。单位剂量可包含500mgβ羟基、β甲基丁酸酯(例如50、100、200、300、400、500或更多mg)、2.5mg褐藻素和15mg维生素B6(例如2.5、5、7.5、10、12.5、15、17.5、20或更多mg)。单位剂量可包含1.125g亮氨酸(例如400、500、600、700、800、900、1000、1100、1250或更多mg)和2.5mg褐藻素。单位剂量可包含1.125g亮氨酸(例如400、500、600、700、800、900、1000、1100、1250或更多mg)、2.5mg褐藻素和15mg维生素B6(例如2.5、5、7.5、10、12.5、15、17.5、20或更多mg)。单位剂量可包含750mg亮氨酸、1.5mg褐藻素和10mg维生素B6。

在一些实施方案中,组合物包含一定量的抗糖尿病剂,例如双胍(例如二甲双胍)。抗糖尿病剂的量可以是亚治疗量,和/或与组合物中的一种或多种其它化合物或与组合物同时或以相近的时间施用的一种或多种化合物协同作用的量。在一些实施方案中,抗糖尿病剂以非常低剂量、低剂量、中剂量或高剂量施用,其描述了两种剂量之间的关系,而通常不定义任何具体的剂量范围。例如,二甲双胍的每日非常低剂量可包含约、少于约或多于约5mg/kg、10mg/kg、25mg/kg、50mg/kg、75mg/kg、100mg/kg或更多;二甲双胍的每日低剂量可包含约、少于约或多于约75mg/kg、100mg/kg、150mg/kg、175mg/kg、200mg/kg或更多;二甲双胍的每日中剂量可包含约、少于约或多于约150mg/kg、175mg/kg、200mg/kg、250mg/kg、300mg/kg或更多;且二甲双胍的每日高剂量可包含约、少于约或多于约200mg/kg、250mg/kg、300mg/kg、350mg/kg、400mg/kg、500mg/kg、700mg/kg或更多。

在一些实施方案中,单位剂量可包含与约、少于约或多于约指示量的一种或多种其它组分(例如10、20、30、40、50、75、100或更多mg的白藜芦醇;50、100、200、300、400、500或更多mg的HMB;和/或400、500、600、700、800、900、1000、1100、1250或更多mg的亮氨酸)组合的约、少于约或多于约指示量(例如25、50、100、150、200、250、300、400、500或更多mg)的二甲双胍。单位剂量可包含约、少于约或多于约50mg的二甲双胍、500mgβ羟基、β甲基丁酸酯和50mg白藜芦醇。单位剂量可包含约、少于约或多于约50mg的二甲双胍、1.125g亮氨酸和50mg白藜芦醇。单位剂量可包含约、少于约或多于约100mg的二甲双胍、500mgβ羟基、β甲基丁酸酯和50mg白藜芦醇。单位剂量可包含约、少于约或多于约100mg的二甲双胍、1.125g亮氨酸和50mg白藜芦醇。单位剂量可包含约、少于约或多于约250mg的二甲双胍、500mgβ羟基、β甲基丁酸酯和50mg白藜芦醇。单位剂量可包含约、少于约或多于约250mg的二甲双胍、1.125g亮氨酸和50mg白藜芦醇。在一些实施方案中,组合物进一步包含协同量的PDE抑制剂。在一些实施方案中,二甲双胍组合物进一步包含协同量的抗衰老酶途径激活剂。在一些实施方案中,在示例性组合物中的白藜芦醇被代替为协同量的PDE抑制剂或抗衰老酶途径激活剂。在包含PDE抑制剂的组合物或包括(与一种或多种其它组分分开或同时)施用PDE抑制剂的方法中,可以以产生约、小于约或大于约0.1、1、5、10、25、50、100、500、1000、2500、5000、10000或更高nM的血浆峰值浓度的量提供PDE抑制剂。

在本发明的一些实施方案中,联合组合物可具有特定的支链氨基酸和/或其代谢物与抗衰老酶途径激活剂的比值。所述特定比值可以提供能量代谢的有效和/或协同调节。例如,所述特定比值可以导致受试者的体重增加降低、受试者的内脏脂肪体积减小、受试者的脂肪氧化增加、受试者的胰岛素敏感度升高、受试者的肌肉中葡萄糖摄取增加、炎症标志物降低、血管舒张增强和/或体温升高。这些有益效应可能部分是由于线粒体生物发生的升高或能量代谢途径中的很多其它变化。支链氨基酸和/或其代谢物与抗衰老酶途径激活剂的比值可以是质量比、摩尔比或体积比。

在一些实施方案中,(a)支链氨基酸和/或其代谢物与(b)抗衰老酶途径激活剂的摩尔比为约或大于约20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、100、120或150。在其它实施方案中,本发明的组合物中包含的一种或多种支链氨基酸和/或其代谢物与抗衰老酶途径激活剂的摩尔比为约或大于约20、30、40、50、60、70、80、90、95、90、95、100、105、110、120、130、140、150、160、170、180、190、200、220、250、300、350、400或500。在一些实施方案中,所述组合物中组分(a)与(b)的摩尔比为大于约20、40、60、80、100、120或150。在一些实施方案中,所述组合物中组分(a)与(b)的摩尔比为大于约80、100、120或150。在一些实施方案中,所述组合物中组分(a)与(b)的摩尔比为大于约80、100、120或150。在一些实施方案中,所述组合物中组分(a)与(b)的摩尔比为大于约200、250或300。在一些实施方案中,所述组合物中组分(a)与(b)的摩尔比为大于约40、150、250或500。

在一些实施方案中,摩尔比或质量比是对受试者施用一种或多种组合物后获得的循环摩尔比或质量比。该组合物可以是在此描述的联合组合物。可以调节剂型中的联合组合物的摩尔比以获得期望的循环摩尔比。可以调节摩尔比以利于该联合组合物的一种或多种组分的生物利用、吸收和代谢过程。例如,如果一种组分的生物利用度很低,那么该组分的摩尔量可以相对于联合组合物中的其他组分增加。在一些实施方案中,循环摩尔比或质量比在施用约0.1、0.5、0.75、1、3、5或10、12、24或48小时后达到。循环摩尔比或质量比可维持约或大于约0.1、1、2、5、10、12、18、24、36、48、72或96小时。

在一些实施方案中,亮氨酸与白藜芦醇(或抗衰老酶途径激活剂)的循环摩尔比为约或大于约1000、1500、2000、2500、3000、3500、4000、10000、50000或更多。在一些实施方案中,亮氨酸与白藜芦醇的质量比为约或大于约750、1000、1200、1500、1700、2000或2500。

HMB与白藜芦醇(或抗衰老酶途径激活剂)的循环摩尔比可以是约或大于约3、5、10、15、20、25、30、35、40、50、60、75、100、250、500或更多。在一些实施方案中,HMB与白藜芦醇的质量比为约或大于约1、3、6、9、12、15、20或25。

在一些实施方案中,HMB与白藜芦醇(或抗衰老酶途径激活剂)的循环质量比为约或大于约100、120、140、160、180、200、220或250。在一些实施方案中,HMB与白藜芦醇的质量比为约或大于约400、600、800、1000、1200或1400。

在一些实施方案中,HMB与绿原酸的循环摩尔比为约或大于约5、10、20或40。在一些实施方案中,亮氨酸与绿原酸的摩尔比为约或大于约500、1000、2000或4000。

在一些实施方案中,HMB与咖啡酸的循环摩尔比为约或大于约2、5、10或20。在一些实施方案中,亮氨酸与咖啡酸的摩尔比为约或大于约200、500、1000或2000。

在一些实施方案中,HMB与奎尼酸的循环摩尔比为约或大于约5、10、20或40。在一些实施方案中,亮氨酸与奎尼酸的摩尔比为约或大于约500、1000、2000或4000。

在一些实施方案中,HMB与肉桂酸的循环摩尔比为约或大于约5、10、20或40。在一些实施方案中,亮氨酸与肉桂酸的摩尔比为约或大于约500、1000、2000或4000。

在一些实施方案中,HMB与阿魏酸的循环摩尔比为约或大于约5、10、20或40。在一些实施方案中,亮氨酸与阿魏酸的摩尔比为约或大于约500、1000、2000或4000。

在一些实施方案中,HMB与白皮杉醇的循环摩尔比为约或大于约2000、5000、10000或20000。在一些实施方案中,亮氨酸与白皮杉醇的摩尔比为约或大于约200000、500000、1000000或2000000。

在一些实施方案中,HMB与鞣花酸的循环摩尔比为约或大于约0.05、0.1、0.2或0.4。在一些实施方案中,亮氨酸与鞣花酸的摩尔比为约或大于约5、10、20或40。

在一些实施方案中,HMB与表没食子儿茶素没食子酸酯的循环摩尔比为约或大于约2、5、10或20。在一些实施方案中,亮氨酸与表没食子儿茶素没食子酸酯的摩尔比为约或大于约200、500、1000或2000。

在一些实施方案中,HMB与褐藻素的循环摩尔比为约或大于约20、50、100或200。在一些实施方案中,亮氨酸与褐藻素的摩尔比为约或大于约2000、5000、10000或20000。

在一些实施方案中,HMB与葡萄籽提取物的循环质量比为约或大于约0.3、0.6、1.2或2.4。在一些实施方案中,亮氨酸与葡萄籽提取物的质量比为约或大于约30、65、130或260。

在一些实施方案中,HMB与二甲双胍的循环摩尔比为约或大于约0.02、0.05、0.1或0.2。在一些实施方案中,亮氨酸与二甲双胍的摩尔比为约或大于约2、5、10或20。

在一些实施方案中,HMB与罗格列酮的循环摩尔比为约或大于约10、25、50或100。在一些实施方案中,亮氨酸与罗格列酮的摩尔比为约或大于约1000、2500、5000或10000。

剂型

本文描述的组合物可以配制成多种不同的剂型。其可作为片剂、可咀嚼片剂、囊片、胶囊、软明胶胶囊、锭剂或溶液口服使用。其也可以在其溶液形式下用作鼻腔喷雾剂或用于注射。在一些实施方案中,所述组合物可以是适于口服的液体组合物。适合于口服的本发明的组合物可以作为离散的剂型,如各自含有作为粉末或颗粒剂的预定量的活性成分的胶囊、扁囊剂或片剂、或液体或喷雾剂,溶液,水性或非水性液体中的悬浮液,水包油乳剂或油包水液体乳剂,包括液体剂型(例如,悬浮液或浆液),和口服固体剂型(例如,片剂或散装粉末)。口服剂型可以配制成片剂、丸剂、锭剂、胶囊剂、乳剂、亲脂和亲水性混悬剂、液体、凝胶、糖浆、浆液、悬浮液等,用于待治疗的个体或患者口服摄入。这样的剂型可以通过任何制剂方法来制备。例如,活性成分可以与构成一种或多种必要成分的载体联合。适合于口服给药的胶囊包括由明胶制成的推入配合(push-fit)胶囊,以及软的、由明胶和增塑剂(如甘油或山梨糖醇)制成的密封胶囊。推入配合胶囊可以包含与填充剂(例如乳糖)、粘合剂(如淀粉)和/或润滑剂(如滑石粉或硬脂酸镁)和任选的稳定剂混合的活性成分。任选地,可通过将组合物与固体赋形剂混合,任选地通过研磨得到混合物,并在加入合适的助剂(如果需要)后加工颗粒混合物以获得片剂或糖衣丸芯,来获得用于口服的本发明的组合物。合适的赋形剂特别是填料,如糖,包括乳糖、蔗糖、甘露醇或山梨糖醇;纤维素制剂,例如,玉米淀粉,小麦淀粉,大米淀粉,马铃薯淀粉,明胶,黄蓍胶,甲基纤维素,羟丙基甲基纤维素,羧甲基纤维素钠和/或聚乙烯吡咯烷酮(PVP)。通常,通过将活性成分与液体载体或细碎的固体载体或两者均匀地和紧密地混合,然后,如果需要,将产品成型为所需的形式,来制备组合物。例如,片剂可以通过任选地与一种或多种辅助成分一起压制或模制来制备。压制片剂可通过在合适的机器中压缩自由流动形式如粉末或颗粒存在的活性成分进行制备,其中任选地与赋形剂混合,例如但不限于,粘合剂、润滑剂、惰性稀释剂和/或表面活性剂或分散剂。模制片剂可通过在合适的机器中对用惰性液体稀释剂润湿的粉状化合物的混合物进行模制来制备。

可包含本文公开的用于口服给药或通过注射给药的液体形式的制剂包括水溶液、适当调味的糖浆、水或油悬浮液和调味的食用油乳液如棉籽油、芝麻油、椰子油或花生油乳液以及酏剂和类似的药物载体。用于水性混悬剂的合适的分散剂或悬浮剂包括合成的天然树胶,诸如黄蓍胶、阿拉伯胶、藻酸盐、葡聚糖、羧甲基纤维素钠、甲基纤维素、聚乙烯吡咯烷酮或明胶。

可以通过可注射组合物和口服组合物的组合对受试者进行治疗。

用于口服给药的液体制剂可采用例如溶液、糖浆或悬浮液的形式,或它们可以呈现为干燥产品,使用前用水或其它合适的载体进行重构。这类液体制剂可以通过常规方法用药学上可接受的添加剂如悬浮剂(例如,山梨糖醇糖浆、甲基纤维素或氢化食用脂肪);乳化剂(如卵磷脂或阿拉伯胶);非水性载体(例如,杏仁油、油酯或乙醇);防腐剂(如甲基或丙基对羟基苯甲酸酯或山梨酸);以及人造的或天然的增色剂和/或甜味剂进行制备。

本发明的药学组合物的制备按照普遍接受的药物制剂制备程序进行。参见,例如Remington's Pharmaceutical Sciences第18版(1990),E.W.Martin编,Mack Publishing Co.,PA。根据预期用途和给药模式,可能需要在药物组合物的制备中进一步处理镁—反离子化合物。合适的处理可以包括与适当的非毒性和非干扰性组分混合、灭菌、分成剂量单位并包埋在递送装置内。

本发明进一步包括含有活性成分的无水组合物和剂型,因为水可以促进一些化合物的降解。例如,本领域中可以采用加水(例如5%)作为模拟长期贮存的手段,以确定如贮存期限或制剂随时间的稳定性的特性。本发明的无水组合物和剂型可以使用无水或低含水成分在低水分或低湿度条件下进行制备。如果在制造、包装和/或存储过程中预期到会与水分和/或潮湿大量接触,那么含有乳糖的本发明的组合物和剂型可制成无水的。可以制备和贮存无水组合物,使得其无水性质得以保持。因此,无水组合物可以使用已知能防止暴露于水的材料包装,使得它们可以包含在合适的处方试剂盒中。合适的包装的实例包括但不限于密封的箔、塑料等、单位剂量容器、泡罩包装和条状包装。

本文所述的成分可以按照常规药物配制技术在紧密掺合物中与药物载体进行组合。取决于给药所需的剂型,载体可以采取多种形式。在制备口服剂型的组合物时,任何常用的药物介质都可用作载体,例如,在口服液体制剂(如混悬剂、溶液剂和酏剂)或气雾剂的情况下采用水、二醇、油、醇、调味剂、防腐剂、着色剂等;或在口服固体制剂的情况下可以使用载体如淀粉、糖、微晶纤维素、稀释剂、成粒剂、润滑剂、粘合剂和崩解剂,在一些实施方案中不使用乳糖。例如,对于固体口服制剂,合适的载体包括粉末、胶囊和片剂。如果需要,片剂可以通过标准水性或非水性技术进行包衣。

可以作为药学上可接受的载体的材料的一些实例包括:(1)糖,如乳糖、葡萄糖和蔗糖;(2)淀粉,如玉米淀粉和马铃薯淀粉;(3)纤维素及其衍生物如羧甲基纤维素钠、乙基纤维素和醋酸纤维素;(4)黄蓍胶粉;(5)麦芽;(6)明胶;(7)滑石;(8)赋形剂,如可可脂和栓剂蜡;(9)油类,如花生油、棉籽油、红花油、芝麻油、橄榄油、玉米油和大豆油;(10)二元醇,如丙二醇;(11)多元醇,如甘油、山梨糖醇、甘露醇和聚乙二醇;(12)酯类,如油酸乙酯和月桂酸乙酯;(13)琼脂;(14)缓冲剂,如氢氧化镁和氢氧化铝;(15)藻酸;(16)无热原水;(17)等渗盐水;(18)林格溶液;(19)乙醇;(20)磷酸盐缓冲溶液;和(21)在药物制剂中使用的其它无毒的相容性物质。

适用于剂型中的粘合剂包括但不限于玉米淀粉、马铃薯淀粉或其它淀粉、明胶、天然和合成胶如阿拉伯胶、藻酸钠、藻酸、其它藻酸盐、黄蓍胶粉、瓜尔豆胶、纤维素及其衍生物(例如乙基纤维素、醋酸纤维素、羧甲基纤维素钙、羧甲基纤维素钠)、聚乙烯吡咯烷酮、甲基纤维素、预胶化淀粉、羟丙基甲基纤维素、微晶纤维素,以及它们的混合物。

可用于形成本发明的组合物和剂型的润滑剂包括但不限于硬脂酸钙、硬脂酸镁、矿物油、轻质矿物油、甘油、山梨糖醇、甘露醇、聚乙二醇、其它二醇、硬脂酸、十二烷基硫酸钠、滑石粉、氢化植物油(例如花生油、棉籽油、葵花籽油、芝麻油、橄榄油、玉米油和大豆油)、硬脂酸锌、油酸乙酯、月桂酸乙酯、琼脂,或它们的混合物。额外的润滑剂包括,例如,syloid硅胶、合成二氧化硅的凝聚型气溶胶或其混合物。可任选地加入少于组合物重量的约1%的润滑剂。

润滑剂还可以与组织障碍物结合使用,该组织障碍物包括但不限于多糖、多聚糖、生物膜、interceed和透明质酸。

崩解剂可用于本发明的组合物中,以提供当暴露于水性环境中时发生崩解的片剂。太多的崩解剂可能会产生在瓶中可崩解的片剂。太少可能不足以导致崩解的发生,并因此可能改变活性成分从剂型中释放的的速率和程度。因此,可以使用既不太少也不太多而不会有害地改变活性成分的释放的足够量的崩解剂,用于形成本文所公开的化合物的剂型。所用的崩解剂的量可以根据制剂类型和给药方式而变化,并且本领域的普通技术人员可以容易地辨别。在药物组合物中可使用约0.5%至约15%重量百分比的崩解剂或约1至约5重量百分比的崩解剂。可用于形成本发明的组合物和剂型的崩解剂包括但不限于琼脂、藻酸、碳酸钙、微晶纤维素、交联羧甲基纤维素钠、交聚维酮、聚克立林钾、羟基乙酸淀粉钠、马铃薯或木薯淀粉、其它淀粉、预胶化淀粉、其它淀粉、粘土、其它藻胶、其它纤维素、树胶或其混合物。

用于本文所公开的组合物和剂型的合适的填充剂的实例包括但不限于滑石、碳酸钙(例如颗粒或粉末)、微晶纤维素、粉状纤维素、葡聚糖结合剂、高岭土、甘露醇、硅酸、山梨糖醇、淀粉、预胶化淀粉,以及它们的混合物。

当期望使用水性混悬剂和/或酏剂用于口服给药时,其中的活性成分可以与多种甜味剂或调味剂、着色物质或染料组合,并且如果需要的话,可以与乳化剂和/或悬浮剂,以及稀释剂如水、乙醇、丙二醇、甘油和它们的各种组合进行组合。

片剂可以不包衣或通过已知的技术包衣以延迟在胃肠道中的崩解和吸收,并由此在一个较长时期内提供持续作用。例如,可采用时间延迟材料例如单硬脂酸甘油酯或二硬脂酸甘油酯。用于口服用途的制剂还可以呈现为硬明胶胶囊,其中活性成分与惰性固体稀释剂例如碳酸钙、磷酸钙或高岭土混合,或者作为软明胶胶囊,其中活性成分与水或油介质例如花生油、液体石蜡或橄榄油混合。

在一个实施方案中,该组合物可包括增溶剂以确保本发明的化合物的良好的增溶和/或溶解,并使本发明的化合物的沉淀最小化。这对于非口服使用的组合物,例如,用于注射的组合物是特别重要的。也可加入增溶剂来增加亲水性药物和/或其他组分如表面活性剂的溶解度,或者维持组合物为稳定或均一的溶液或分散液。

该组合物可以进一步包含一种或多种药学上可接受的添加剂和赋形剂。这样的添加剂和赋形剂包括但不限于防粘剂、消泡剂、缓冲剂、聚合物、抗氧化剂、防腐剂、螯合剂、粘度调节剂(viscomodulators)、张力调节剂(tonicifier)、调味剂、着色剂、增味剂、遮光剂、助悬剂、粘合剂、填充剂、增塑剂、润滑剂以及它们的混合物。赋形剂的实例的非穷举列表包括单酰甘油、硬脂酸镁、改性食用淀粉、明胶、微晶纤维素、甘油、硬脂酸、二氧化硅、黄蜂蜡、卵磷脂、羟丙基纤维素、交联羧甲基纤维素钠和交聚维酮。

本文描述的组合物也可以配制成缓释、持续释放或定时释放,使得一个或多个组分随时间释放。延迟释放可通过将该一种或多种组分配制在各种材料的基质中或通过微囊化来实现。该组合物可以配制为在4、6、8、12、16、20或24小时的时间内释放一种或多种组分。一种或多种成分的释放可以以恒定的或变化的速率进行。

使用本文提供的控释剂型时,一种或多种辅因子在其剂型中可以比在组分量相同的即释制剂中所观察到的更慢的速度释放。在一些实施方案中,根据从控释制剂的给药至其最大浓度的规定时间内的浓度变化所测量得到的生物样品的改变速率小于即释制剂速率的约80%、70%、60%、50%、40%、30%、20%或10%。此外,在一些实施方案中,浓度随时间的改变速率小于即释制剂速率的约80%、70%、60%、50%、40%、30%、20%或10%。

在一些实施方案中,通过以相对比例的方式增加达到最大浓度的时间来降低浓度随时间的改变速率。例如,达到最大浓度的时间增加2倍可降低约2倍的浓度改变速率。因此,可以提供一种或多种辅因子从而使其以显著低于即释制剂的速率达到其最大浓度。可将本发明的组合物配制为能在24小时、16小时、8小时、4小时、2小时或至少1小时内提供最大浓度的改变。浓度改变速率的相关减少系数可以是约0.05、0.10、0.25、0.5或至少0.8。在某些实施方案中,这通过在该给药后的1小时内向循环系统释放少于约30%、50%、75%、90%或95%的该一种或多种辅因子来实现。

任选地,控释制剂表现的血浆浓度曲线具有小于相同辅因子的相同剂量的即释制剂的75%、50%、40%、30%、20%或10%的起始(例如,给药后2小时至给药后4小时)斜率。

在一些实施方案中,在开始的1、2、4、6,8,10或12小时内,溶出度研究中测定的辅因子释放速率小于相同辅因子的即释制剂的约80%、70%、60%、50%、40%、30%、20%或10%。

在此提供的控释制剂可采用多种形式。在一些实施方案中,该制剂为口服剂型,包括液体剂型(例如,悬浮液或浆液)和口服固体剂型(例如,片剂或整装散剂),例如但不限于在此描述的那些剂型。

在此公开的制剂的控释片可以是基质、贮存或渗透系统的。虽然三个系统都适用,但是后两个系统可具备更优的包封相对较大质量的能力,例如用于容纳大量的单一辅因子或容纳多种辅因子,其取决于个体的遗传构成。在一些实施方案中,缓释片基于贮存型系统,其中包含一种或多种辅因子的核心被多孔膜包衣包裹,所述包衣通过水化允许该一种或多种辅因子扩散通过。由于有效成分的组合质量通常是克级数量,所以有效的递送系统能够提供最优化的结果。

因此,片剂或丸剂也可以被包衣或以其他方式制剂,以提供具有延长作用优点的剂型。例如,片剂或丸剂可以包含内剂量和外剂量组分,后者以包被的形式包裹前者。这两种组分可被肠溶层分隔,肠溶层在胃中能够抵抗崩解并允许内部成分完整地进入十二指肠,或延迟其释放。多种材料可用于这样的肠溶层或包衣,这些材料包括多种聚合酸和聚合酸与诸如紫胶、鲸蜡醇和醋酸纤维素这样的材料的混合物。在一些实施方案中,含有多种辅因子的制剂可以具有以不同速率或在不同时间释放的不同辅因子。例如,可以存在散布有肠溶层的额外的辅因子层。

制备缓释片的方法是本领域已知的,例如参见美国专利公开2006/051416和2007/0065512或其它在此公开的参考文献。例如在美国专利No.4,606,909、4,769,027、4,897,268和5,395,626中描述的方法可用于制备由个体的遗传构成决定的一种或多种辅因子的持续释放制剂。在一些实施方案中,使用例如在美国专利No.6,919,373、6,923,800、6,929,803和6,939,556中描述的技术来制备制剂。例如在美国专利No.6,797,283、6,764,697和6,635,268中描述的其它方法,也可用于制备在此公开的制剂。

在一些实施方案中,所述组合物可配制在食物组合物中。例如,该组合物可以是饮料或其它液体、固体食品、半固体食品,其具有或不具有食物载体。例如,该组合物可以包括补充有在此描述的任一组合物的红茶。该组合物可以是补充有在此描述的任一组合物的乳制品。在一些实施方案中,该组合物可配制在食物组合物中。例如,该组合物可包括饮料、固体食品、半固体食品或食物载体。

在一些实施方案中,可以使用液体食物载体,如以饮料的形式,如添加的果汁、咖啡、茶、汽水、加味水等。例如,所述饮料可以包含制剂以及液体组分,如各种除臭剂或存在于常规饮料中的天然碳水化合物。天然碳水化合物的实例包括但不限于,单糖,如葡萄糖和果糖;二糖,如麦芽糖和蔗糖;常规糖,如糊精和环糊精;和糖醇,如木糖醇和赤藓糖醇。也可使用天然除臭剂如索马甜、甜叶菊提取物、levaudiosideA、甘草苷,和合成的除臭剂如糖精和天冬甜素。也可以使用例如调味剂、着色剂以及其他试剂。例如,也可使用果胶酸及其盐、藻酸及其盐、有机酸、保护性胶体粘合剂、pH调节剂、稳定剂、防腐剂、甘油、醇或碳化剂。也可以在制备含有在此讨论的制剂的食品或饮料中使用水果和蔬菜。

备选地地,所述组合物可以是补充有本文所述的任何组合物的小吃棒。例如,该小吃棒可以是巧克力棒、燕麦(granola)棒、或什锦杂果(trail mix)棒。在另一个实施方案中,本膳食补充剂或食物组合物配制成具有合适的和期望的口感、质地和粘度用于消费。任何合适的食物载体可在本发明的食物组合物中使用。本发明的食物载体包括几乎任何食品。这类食物载体的实例包括但不限于食物棒(燕麦棒,蛋白棒、糖果棒等)、谷物制品(燕麦片、早餐麦片、燕麦等)、烘焙食品(面包、甜甜圈、饼干、百吉饼、糕点、蛋糕等)、饮料(牛奶为主的饮料、运动饮料、果汁、酒精饮料、瓶装水)、面食、谷物(大米、玉米、燕麦、黑麦、小麦、面粉等)、蛋制品、零食(糖果、薯片、口香糖、巧克力等)、肉类、水果和蔬菜。在一个实施方案中,本文所采用的食物载体可掩盖不良的味道(例如苦味)。当需要时,本文中所呈现的食物组合物比在此描述的任何组分表现出更理想的质地和香味。例如,根据本发明可以使用液体食物载体来获得本发明的食物组合物的饮料形式,如添加果汁、咖啡、茶等。在其它实施方案中,可以根据本发明使用固体食物载体来获得本发明的食物组合物的代餐形式,如添加小吃棒、面食、面包等。在其他实施方案中,可以根据本发明使用半固体食物载体来获得本发明的食物组合物的口香糖、咀嚼糖果或零食等形式。

该联合组合物的给药可以每天施用约、少于约或多于约1、2、3、4、5、6,7、8、9、10或更多次。受试者可以在约、少于约或大于约1、2、3、4、5、6,7、8、9、10、11、12、13、14或更多天、周或月内接受给药。单位剂量可以是每日剂量的一部分,例如日剂量除以每天待施用的单位剂量数。单位剂量可以是每日剂量的一部分,其为日剂量除以每天待施用的单位剂量数,再除以每次给药的单位剂量数(例如片数)。每次给药的单位剂量数可以为约、少于约或多于约1、2、3、4、5、6,7、8,9、10或更多。每天的剂量数可以为约、少于约或多于约1、2、3、4、5、6,7、8、9、10或更多。每天的单位剂量数可以通过用日剂量除以单位剂量来确定,且其可以为约、少于约或多于约1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、6、17、18、19、20或更多单位剂量每天。例如,单位剂量可以是约1/2、1/3、1/4、1/5、1/6,1/7、1/8、1/9、1/10。单位剂量可以是每天量的约三分之一并对受试者每天给药三次。单位剂量可以是每天量的约二分之一并对受试者每天给药两次。单位剂量可以是每天量的约四分之一并对受试者每天给药两次,每次两个单位剂量。在一些实施方案中,单位剂量包含约、少于约或多于约50mg白藜芦醇。在一些实施方案中,单位剂量包含约、少于约或多于约550mg亮氨酸。在一些实施方案中,单位剂量包含约、少于约或多于约200mg的一种或多种亮氨酸代谢物。在一些实施方案中,单位剂量(例如包含亮氨酸的单位剂量)每天给药两次,每次两个单位剂量。在一些实施方案中,单位剂量(例如包含一种或更多亮氨酸代谢物如HMB的单位剂量)每天给药两次,每次一个单位剂量。

在此公开的组合物可以进一步包含增香剂,并可以是固体、液体、凝胶或乳液。

方法

本申请提供了在受试者中增加抗衰老酶途径输出(包括AMPK,抗衰老酶途径中的一种信号分子)的方法。如在此描述的,抗衰老酶途径的输出可在分子水平上或通过获得的生理效应进行表征。在一些实施方案中,本发明提供了增加受试者中脂肪酸氧化的方法,包括对受试者施用在此公开的组合物。在本发明的各种实施方案中,以递送足以增加受试者细胞内脂肪酸氧化的协同量的一种或多种支链氨基酸和多酚的量向受试者施用组合物。

在此描述的方法可用于多种应用。这些应用包括(a)抗衰老酶途径输出的升高、(b)线粒体生物发生的升高、(c)新线粒体形成的增加、(d)线粒体功能的增强、(e)脂肪酸氧化的升高、(f)热量产生的增加、(g)胰岛素敏感度升高、(h)葡萄糖摄取的升高、(i)血管舒张的增强、(j)体重降低、(k)脂肪细胞体积的减少、(l)受试者中炎症应答或标志物的降低,和(m)鸢尾素产量的增加。可以通过施用在此描述的一种或多种组合物实现这些应用中的任一种应用。

据此,本发明提供了一种施用组合物的方法,该组合物包含(a)一种或多种类型的支化氨基酸和/或其代谢物和(b)以亚治疗量存在的抗衰老酶途径激活剂,其中与单独使用组分(b)相比,该组合物使抗衰老酶途径输出协同有效地增加至少约5倍。

该途径的输出可使用在此公开的和/或本领域已知的一种或多种方法来测量。例如,脂肪酸氧化可以通过测量氧消耗或3H标记的棕榈酸盐氧化进行测定。线粒体生物发生可以通过使用荧光的线粒体探针进行检测。AMPK活性可以通过ELISA分析或蛋白质印迹检测AMPK磷酸化来确定。Sirt1活性可以通过测定可使用荧光团检测的底物的去乙酰化来确定。

通过将对应的底物应用于体外去乙酰化分析观察到sirt1、sirt2或sirt3的升高。测定SIRT1活性的底物可以是本领域已知的任何底物(例如包含人p53的氨基酸379-382(Arg-His-Lys-Lys[Ac])的肽)。测定SIRT3活性的底物可以是本领域已知的任何底物(例如包含人p53的氨基酸317-320(Gln-Pro--Lys-Lys[Ac])的肽)。在一些情况下,与只存在联合组合物的一种组分的情况下测定的活性相比,在存在在此描述的一种或多种联合组合物的情况下进行的一种或多种分析中sirt活性的增加导致活性增加至少约1、2、3、5或10倍。例如,与只存在单独的(a)或(b)的情况下测定的活性相比,包含(a)抗衰老酶途径激活剂(例如白藜芦醇)和(b)支链氨基酸或其代谢物(例如HMB)的联合组合物的应用导致sirt3活性升高了至少约5倍。同样,包含白藜芦醇和亮氨酸的联合组合物的应用导致sirt1活性比只存在白藜芦醇或亮氨酸的情况下测定的活性高1.5、2、5或10倍。

本发明提供了一种施用组合物的方法,该组合物包含:(a)一种或多种类型的支化氨基酸和/或其代谢物,和(b)抗衰老酶途径激活剂,其中所述组合物中组分(a)与(b)的摩尔比为大于约20,且其中当施用至有需要的受试者时,该组合物协同地增强由受试者的体重增加降低、受试者的内脏脂肪体积减小、受试者的脂肪氧化增加、受试者的胰岛素敏感度升高、受试者的肌肉中葡萄糖摄取增加,炎症标志物降低、血管舒张增强和/或体温升高所测量的线粒体生物发生。

本发明提供了一种施用组合物的方法,该组合物包含:适于口服的单位剂量,所述单位剂量包含:(a)一种或多种类型的支化氨基酸和/或其代谢物,和(b)基本上同质的一组多酚分子,且其中该单位剂量能有效地诱导受试者的体重增加降低、受试者的内脏脂肪体积减小、受试者的脂肪氧化增加、受试者的胰岛素敏感度升高、受试者的肌肉中葡萄糖摄取增加、血管舒张增强和/或体温升高。

本发明提供了一种施用食物组合物的方法,该食物组合物包含:(a)一种或多种类型的支化氨基酸和/或其代谢物;(b)抗衰老酶途径激活剂,其中(a)和(b)以协同地实现受试者的体重增加降低、受试者的内脏脂肪体积减小、受试者的脂肪氧化增加、受试者的胰岛素敏感度升高、受试者的肌肉中葡萄糖摄取增加、血管舒张增强、氧化应激降低、炎性应激降低和/或体温升高的量存在;和(c)食物载体。

本发明提供了一种施用组合物的方法,该组合物包含:协同有效量的(a)一种或多种类型的支化氨基酸和/或其代谢物;和(b)抗衰老酶途径激活剂,其中该组合物基本上不含非支化氨基酸,其中当将该组合施用至有需要的受试者时,较之将组分(a)或组分(b)单独施用至受试者而言,以更大的程度增强了线粒体生物发生,且其中线粒体生物发生的增强由受试者的体重降低、受试者的内脏脂肪体积减小、受试者的脂肪氧化增加、受试者的胰岛素敏感度升高、受试者的肌肉中葡萄糖摄取增加、血管舒张增强、氧化应激降低,炎性应激降低和/或体温升高来测量。

本发明提供了一种施用组合物的方法,该组合物包含:协同有效量的(a)一种或多种类型的支化氨基酸和/或其代谢物;和(b)抗衰老酶途径激活剂,其中该组合物基本上不含非支化氨基酸,其中当将该组合施用至有需要的受试者时,较之将组分(a)或组分(b)单独施用至受试者而言,以更大的程度增强了线粒体生物发生,且其中线粒体生物发生的增强由受试者的体重降低、受试者的内脏脂肪体积减小、受试者的脂肪氧化增加、受试者的胰岛素敏感度升高、受试者的肌肉中葡萄糖摄取增加、血管舒张增强、氧化应激降低,炎性应激降低和/或体温升高来测量。

本发明提供了一种施用组合物的方法,该组合物包含:(a)一种或多种类型的支化氨基酸和/或其代谢物,和(b)抗衰老酶信号途径中

PGC1α下游的信号分子。

本发明提供了一种增强有需要的受试者中的脂肪氧化的方法,包括对受试者施用在此描述的任一组合物一段时间,其中受试者中的脂肪氧化在此段时间内增强。脂肪氧化可增加约或大于约5%、10%、15%、20%、50%、100%、200%或500%。

本发明提供了一种降低有需要的受试者中的炎症应答的方法,包括对受试者施用在此描述的任一组合物一段时间,其中受试者中的炎症应答在此段时间内降低。炎症应答可降低约或大于约5%、10%、15%、20%、50%或100%。

炎性标志物和细胞因子水平,包括但不限于血浆中的IL-6、脂连蛋白、TNF-α和CRP水平可通过免疫方法例如ELISA(Assay Designs,Ann Arbor,MI;Linco Research,St.Charles,MO;和Bioscience,San Diego,CA)来确定。

本发明提供了一种升高或保持受试者体温的方法,包括对受试者施用在此描述的任一组合物一段时间,其中受试者的体温在此段时间内升高。体温可升高约或大于约1%、2%、3%、4%、5%、10%、15%或20%。

本发明提供了一种诱导血管舒张的方法,包括对受试者施用在此描述的任一组合物一段时间,其中受试者中的血管舒张在此段时间内得到诱导。血管的血管舒张可增加约或大于约1%、2%、3%、5%、10%、20%、50%或100%。可通过光学检测、通过测量血管限制(vasorestriction)或通过许多其它技术来测量血管舒张。这些技术包括侵入性前臂技术、肱动脉超声技术和脉波分析。用于测量血管舒张的方法描述于Lind等人,“Evaluation of four different methods to measure endothelium-dependent vasodilation in the human peripheral circulation,”Clinical Science 2002,102,561-567。

本发明提供了一种增加鸢尾素产量的方法,包括对受试者施用在此描述的任一组合物一段时间,其中受试者中的鸢尾素产量在此段时间内增加。在一些实施方案中,鸢尾素产量的增加(或提供其证据的指示物的增加)是增加约或多于约5%、10%、20%、30%、40%、50%、60%、70%、80%、90%、100%、125%、150%、175%、200%或更多。在一些实施方案中,鸢尾素产量的增加(或提供其证据的指示物的增加)是增加约或多于约1倍、3倍、5倍、6倍、8倍、10倍、15倍、20倍、50倍或更多。在一些实施方案中,鸢尾素产量的增加由FNDC5表达(例如由mRNA和/或蛋白质水平测定的)的升高所证实。在一些实施方案中,鸢尾素产量的增加由一种或多种脂肪细胞褐化指示物的升高(例如脂肪酸氧化和/或脂肪组织中一种或多种褐色脂肪选择性基因表达的升高)所证实。褐色脂肪选择性基因的非限制性实例包括Ucp1、Cidea、Prdm16和Ndufs。在一些实施方案中,鸢尾素产量的增加由细胞中鸢尾素分泌的增加(例如由培养细胞的培养基或受试者的循环血浆测定的)所证实。基因水平的增加可直接测定(例如mRNA或蛋白质水平的改变)或间接测定(与表达增加相关的效应变化,例如下游基因表达的增加)。检测基因表达水平变化的方法是本领域已知的,且包括但不限于检测mRNA的方法(例如RT-PCR、RNA印迹和微阵列杂交)、蛋白质产物的检测(例如蛋白质印迹和ELISA)、一种或多种翻译后蛋白质活性的检测(例如酶活性分析)。

本发明提供了一种治疗糖尿病的方法,包括对受试者施用在此描述的任一组合物一段时间,其中受试者中的胰岛素敏感度在此段时间内升高。胰岛素敏感度可以增加约或大于约1%、2%、3%、5%、10%、20%、50%、100%或200%。在一些实施方案中,以减少用于受试者的二甲双胍的治疗有效量的量施用支链氨基酸(或其代谢物)和/或抗衰老酶途径激活剂。在一些实施方案中,二甲双胍的治疗有效量减少约或多于约50%、60%、70%、80%、90%、95%、97.5%、99.9%、99.99%或更多。在一些实施方案中,本发明的组合物的施用使体脂肪(例如内脏脂肪)减少了约或多于约5%、10%、15%、20%、25%、50%或更多。

胰岛素敏感度可使用包括HOMAIR在内的多种技术来测定。HOMAIR,作为胰岛素耐量的稳态模型评估,可被用作胰岛素敏感度变化的筛查指数。HOMAIR可用空腹血浆胰岛素和葡萄糖通过标准公式计算如下:HOMAIR=[胰岛素(uU/mL)X葡萄糖(mM)]/22.5。

在一些实施方案中,也可以检测胰岛素信号。可以通过用来自Invitrogen Life Science的Luminex试剂盒“Akt Pathway Total 7-Plex Panel”(目录号LHO0002)和“Akt Pathway Phospho 7-Plex Panel“(目录号LHO0001)检测组织裂解物中的全部和磷酸化的Akt、GSK-3β、IGF-1R、IR、IRS-1、p70S6K和PRAS40来检测胰岛素信号。

本申请还提供了增加受试者中线粒体生物发生的方法,包括对受试者施用在此公开的组合物。在本发明的多个实施方案中,将组合物以递送足以增加受试者细胞内线粒体生物发生的协同量的HMB和白藜芦醇的量施用至受试者。另一实施方案提供了以足以增加受试者细胞内线粒体生物发生的量对受试者施用包含协同量的亮氨酸和白藜芦醇的组合物。另一实施方案提供了以足以增加受试者细胞内线粒体生物发生的量对受试者施用包含协同量的亮氨酸、HMB和白藜芦醇的组合物。线粒体生物发生和脂肪氧化可在包括肌细胞和脂肪细胞在内的多种细胞中诱导。

本发明的另一方面提供了在受试者中减少体重增加或减少脂肪细胞体积的方法,包括施用在此公开的组合物。可使用刻度秤测量体重,通过壁挂式测量仪测量身高,通过标准公式计算人体质量指数(kg/m2)。可以通过双能X-射线吸光测定法在基线及12和24周评估脂肪量。可以维护和校准LUNAR Prodigy双能X-线吸光测定系统(GE Healthcare,Madison,WI)或本领域已知的任意其它X-线吸光测定系统以供使用。可以每天评估脊柱体模(spine phantom)来确定仪器是否发生任何偏移,然后对每天的校准块(calibration block)进行评估。

在本发明的这一方面,将组合物以递送足以减少受试者体重增加的协同量的HMB和白藜芦醇的量施用至受试者。另一实施方案提供了以足以减少受试者体重增加的量对受试者施用包含协同量的亮氨酸和白藜芦醇的组合物。而其他实施方案提供了以足以减少受试者体重增加的量对受试者施用包含协同量的亮氨酸、HMB和白藜芦醇的组合物。

本文所公开的增加SIRT1及SIRT3活性的组合物的施用在需要代谢激活脂肪细胞或其一种或多种肌肉(例如,骨骼肌、平滑肌或心肌或其肌细胞)的任何受试者中可能是有用的。受试者可以是患有恶病质或肌肉萎缩的受试者。增加SIRT3的活性也可以用于增加或保持例如低温受试者的体温,而增加SIRT1的活性有利于治疗糖尿病(2型糖尿病)和葡萄糖耐量降低并减轻受试者的炎症应答。

增加SIRT3的活性也可用于治疗或预防心血管疾病,通过血管舒张降低血压,增加心血管健康以及增加血管组织例如血管和动脉的收缩功能(例如,通过影响平滑肌)。通常,SIRT3的激活可用于刺激脂肪细胞或任何类型的肌肉(例如,肠道或消化系统或泌尿道的肌肉)的代谢,并且由此可用来控制肠道蠕动,如便秘和失禁。SIRT3激活在勃起功能障碍中也是有用的。它也可以用来刺激精子活力,例如被用作生育药。其他实施方案中其对于增加SIRT3是有用的,包括修复肌肉(如手术或事故后)、增加肌肉量和增加运动表现。

因此,本发明提供了通过使一种或多种肌细胞与增加细胞中SIRT3的蛋白质水平或活性水平的试剂接触而产生有益效果的方法。这些方法有效地促进、增加或刺激以下的一项或多项:模拟肌细胞热量限制或锻炼的益处、增加线粒体生物发生或代谢、提高肌细胞中线粒体活性和/或持久性、使肌细胞对葡萄糖的摄取敏感化、增加肌细胞中脂肪酸氧化、减少肌细胞中的活性氧(ROS)、增加肌细胞中PGC-1α和/或UCP3和/或GLUT4的表达和激活肌细胞中的AMP活化的蛋白激酶(AMPK)。根据本发明,可接触各种类型的肌细胞。在一些实施方案中,肌细胞是骨骼肌细胞。在某些实施方案中,肌细胞是慢缩肌细胞,如比目鱼肌细胞。

通过间接量热法使用开路技术在12小时禁食和48小时禁运动后的6AM和10AM之间用SensorMedics Vmax 29n代谢车(Sensor Medics,Anaheim,CA)测定静息代谢率(RMR)/底物氧化。在尿排空后,受试者在隔离室内温度受控(21-24℃)的环境中安静休息30分钟。然后将受试者置于通风橱中至少30分钟,直到达到稳定状态。有效测量的标准可以是最小15分钟的稳定状态,稳定状态确定为每分钟通气量和耗氧量小于10%的波动和呼吸商小于5%的波动。代谢率用Weir方程计算,RQ计算为CO2生产/O2消耗,底物氧化由尿氮损失修正后的RQ来计算。

葡萄糖摄取可以使用体内或体外技术进行测量。例如,可在体内使用PET扫描结合标记的葡萄糖或葡萄糖类似物来测量葡萄糖摄取。葡萄糖摄取的测量可以由PET扫描或通过本领域中已知的任何其它技术来量化。在一些实施方案中,葡萄糖的摄取可以通过对经由PET外源施用的18-F-脱氧葡萄糖摄取进行定量来测量。

ROS/氧化应激可以通过抽血至EDTA处理的试管中,离心分离血浆并等分样品用于个别分析来测量。测量前可以将血浆维持在-80℃的氮气中以防止氧化改变。血浆丙二醛(MDA)可使用荧光分析进行测量,血浆8-异前列腺素F通过ELISA测量(Assay Designs,Ann Arbor,MI)。

另一实施方案提供了以足以增加受试者细胞内的脂肪酸氧化的量对受试者施用包含协同量的亮氨酸和白藜芦醇的组合物。而其他实施方案提供了以足以增加受试者内的脂肪酸氧化的量对受试者施用包含协同量的亮氨酸、HMB和白藜芦醇的组合物。

可以通过口服或通过任意其它方法将组合物施用至受试者。口服给药的方法包括施用作为液体、固体或半固体的组合物,其可以采用膳食补充剂或食品的形式。

可以定期施用组合物。例如,组合物可以每天施用1、2、3、4次或更频繁。可以每隔1、2、3、4、5、6或7天对受试者进行施用。在一些实施方案中,组合物每天施用3次。给药可以与受试者的用餐时间同时。治疗或饮食补充的周期可以是约1、2、3、4、5、6、7、8或9天、2周、1-11个月或1年、2年、5年或更久。在本发明的一些实施方案中,治疗过程中对受试者施用的剂量可以发生变化或保持不变。例如,可根据给药周期增加或减少每日剂量。

给药的周期长度和/或剂量可以由医师、营养学家或其他任何类型的临床医生进行确定。医师、营养学家或临床医生可观察受试者对施用的组合物的应答并基于受试者的表现调节剂量。例如,对表现出能量调节效果减弱的受试者可以增加剂量,以获得期望的结果。

在一些实施方案中,对于给定的受试者可以优化对该受试者施用的组合物。例如,可以调节支链氨基酸与抗衰老酶途径激活剂的比值或联合组合物中的特定组分。可以在对受试者施用具有不同的支链氨基酸与抗衰老酶途径激活剂比值或不同的联合组合物组分的一种或多种组合物后对受试者进行评估,然后选定该比值和/或特定组分。

本发明的另一方面提供了在施用在此描述的联合组合物特定时间段后在一个或多个受试者中获得期望的效果。

施用组合物6周后,包含(a)一定剂量水平的白藜芦醇和剂量水平的HMB或(b)一定剂量水平的白藜芦醇和一定剂量水平的亮氨酸的联合组合物可以使该一个或多个受试者的体重增加减少至少约10%、15%、20%或20.5%。p-值可小于0.05(例如小于约0.05、0.03、0.02、0.01、0.001、0.0001或更低)。用相同剂量水平的一种组分(白藜芦醇,亮氨酸或HMB)治疗的一个或多个受试者可能具有不显著的体重减轻或少于约0%、5%或10%的体重减轻。

给药2周后,包含(a)一定剂量水平的白藜芦醇和一定剂量水平的HMB或(b)一定剂量水平的白藜芦醇和一定剂量水平的亮氨酸的组合物可以使该一个或多个受试者中的全身脂肪氧化增加至少约10%、15%或20%。P-值可小于0.05(例如小于约0.05、0.03、0.02、0.01、0.001、0.0001或更低)。可以在对受试者施用组合物时维持全身脂肪氧化的增加或维持至少2、4、6、10、13、26或52周。用相同剂量水平的一种组分(白藜芦醇,亮氨酸或HMB)治疗的一个或多个受试者可能具有不显著的全身脂肪氧化增加或少于约0%、5%或10%的全身脂肪氧化增加。

给药2周后,包含(a)一定剂量水平的白藜芦醇和一定剂量水平的HMB或(b)一定剂量水平的白藜芦醇和一定剂量水平的亮氨酸的组合物可以使该一个或多个受试者中食物的热效应增加至少约10%、15%、17%或20%。p-值可小于0.05(例如小于约0.05、0.03、0.02、0.01、0.001、0.0001或更低)。可以在对受试者施用组合物时维持食物热效应的增加或维持至少2、4、6、10、13、26或52周。用相同剂量水平的一种组分(白藜芦醇,亮氨酸或HMB)治疗的一个或多个受试者可能具有不显著的食物热效应增加或少于约0%、5%或10%的食物热效应增加。

给药2周后,包含(a)一定剂量水平的白藜芦醇和一定剂量水平的HMB或(b)一定剂量水平的白藜芦醇和一定剂量水平的亮氨酸的组合物可以使该一个或多个受试者中总能量消耗增加至少约10%、15%、17%或20%。p-值可小于0.05(例如小于约0.05、0.03、0.02、0.01、0.001、0.0001或更低)。可以在对受试者施用组合物时维持总能量消耗的增加或维持至少2、4、6、10、13、26或52周。用相同剂量水平的一种组分(白藜芦醇,亮氨酸或HMB)治疗的一个或多个受试者可能具有不显著的总能量消耗增加或少于约0%、5%或10%的总能量消耗增加。

对受试者施用在此描述的组合物,例如联合组合物,能够允许对受试者能量代谢的调节或维持。能量代谢的调节或维持可以允许受试者经历多种有益效果。这些有益效果包括体重减轻、脂肪组织减少、脂肪酸氧化升高、褐化脂肪组织增加(如一种或多种脂肪细胞褐化指示物所示)、胰岛素敏感度升高、氧化应激的降低和/或炎症降低。与治疗前的基线相比,这些效果能够导致约或大于约5%、10%、15%、20%、30%、40%、50%、75%或更多的改善。在一些实施方案中,与处理前的基线相比,这些效果能够导致约或大于约100%、125%、150%、200%、250%、300%、400%、500%或更多的改善。或者,在此描述的组合物的施用可允许维持受试者的体重、脂肪组织量、脂肪酸氧化量、胰岛素敏感度水平、氧化应激水平和/或炎症水平。这些量和/或水平可维持在给药起始时的量和/或水平的约0%、1%、5%或10%。

本发明提供了一种治疗受试者的方法,包括鉴定能治疗的受试者群。鉴定步骤可以包括一种或多种筛查测试或分析。例如,可选择被鉴定为糖尿病或具有超过平均或显著大于平均体重指数和/或重量的受试者进行治疗。鉴定步骤可以包括遗传测试,其鉴定一种或多种表明受试者适合治疗的遗传变异。然后可以用一种或多种在此描述的组合物对鉴定的受试者进行治疗。例如,可以用包含抗衰老酶途径激活剂和支链氨基酸的联合组合物对其进行治疗。

本发明还提供了生产在此描述的组合物的方法。在一些实施方案中,在此描述的组合物的生产包括混合或组合两种或更多组分。这些组分可以包括抗衰老酶或AMPK途径激活剂(例如多酚或多酚前体如白藜芦醇、绿原酸、咖啡酸、肉桂酸、阿魏酸、EGCG、白皮杉醇或葡萄籽提取物或其它试剂如奎尼酸、褐藻素或PDE抑制剂)、支链氨基酸或其代谢物(例如亮氨酸、缬氨酸、异亮氨酸、HMB或KIC)和/或抗-糖尿病剂(例如二甲双胍)。在一些实施方案中,抗衰老酶激活剂为多酚。在其它实施方案中,抗衰老酶激活剂为多酚前体。组分的量或比值可以是本文所述的量或比值。例如,与白藜芦醇组合的亮氨酸的质量比可以大于约80。

在一些实施方案中,组合物可以与药物活性剂、载体和/或赋形剂组合或混合。本文描述了此类组分的实例。联合组合物可配制为片剂、胶囊、凝胶胶囊、缓释片等的单位剂量。

在一些实施方案中,制备组合物以获得包含该一种或多种组分的基本上同质的混合物的固体组合物,从而该一种或多种组分均匀分散于组合物中,使得能够将该组合物容易地细分为等量的有效单位剂型,例如片剂、丸剂和胶囊。

试剂盒

本发明还提供了试剂盒。该试剂盒包括适当包装的本文所述的一种或多种组合物和可以包括使用说明、临床研究的讨论、副作用列表等的书面材料。这样的试剂盒还可以包括如科学文献参考、包装说明书材料、临床试验结果和/或这些的摘要等信息,其表明或建立该组合物的活性和/或优势,和/或其描述剂量、给药、副作用、药物相互作用或对医疗保健提供者有用的其他信息。这样的信息可以基于多种研究的结果,例如,使用涉及体内模型的实验动物的研究和基于人类临床试验的研究。该试剂盒可进一步包含另一种试剂。在一些实施方案中,本发明的化合物和试剂作为试剂盒内单独的容器中的单独组合物来提供。在一些实施方案中,本发明的化合物和试剂作为试剂盒的容器中的单一组合物来提供。合适的包装和附加制品的使用(例如,用于液体制剂的量杯、使暴露于空气最小化的箔包装等)是本领域已知的并且可以被包括在试剂盒中。本文所述试剂盒可以提供、销售和/或推销给医疗服务提供者,包括医生、护士、药剂师、处方官员,等等。在一些实施方案中,试剂盒也可以直接销售给消费者。

本发明提供了包括但不限于以下实施方案:

1.一种增加细胞中的鸢尾素产量的方法,其包括施用一种组合物,该组合物包含:

(a)亮氨酸和/或其一种或多种代谢物;和

(b)抗衰老酶途径激活剂;

其中所述施用增加细胞中鸢尾素的产量。

2.实施方案1的方法,其中所述组合物包含亮氨酸和一种或多种(i)白藜芦醇和(ii)肉桂酸。

3.实施方案1的方法,其中所述组合物包含HMB和一种或多种(i)白藜芦醇和(ii)肉桂酸。

4.实施方案1的方法,其中所述鸢尾素的产量增加了至少约2倍。

5.实施方案1的方法,其中所述抗衰老酶途径激活剂为磷酸二酯酶抑制剂。

6.实施方案1的方法,其中所述鸢尾素的产生由所述细胞中鸢尾素分泌的增加所证实。

7.实施方案1的方法,其中所述抗衰老酶途径激活剂为多酚或多酚前体。

8.实施方案7的方法,其中所述多酚或多酚前体选自绿原酸、白藜芦醇、咖啡酸、肉桂酸、阿魏酸、白皮杉醇、鞣花酸、表没食子儿茶素没食子酸酯、葡萄籽提取物及其任意类似物。

9.实施方案1的方法,其中所述组合物包含至少约500mg亮氨酸和/或至少约200mg的所述一种或多种代谢物。

10.一种组合物,其包含协同有效量的:

(a)一种或多种类型的支化氨基酸和/或其代谢物;和

(b)抗衰老酶途径激活剂;

其中所述组合物基本上不含非支化氨基酸,

其中当施用至有需要的受试者时,所述组合较之对受试者单独施用组分(a)或组分(b)而言,以更大的程度增强线粒体生物发生,且

其中增强的线粒体生物发生由受试者的体重降低、受试者的内脏脂肪体积减小、受试者的脂肪氧化增加、受试者的胰岛素敏感度升高、受试者的肌肉中葡萄糖摄取增加、血管舒张增强和/或体温升高所测量。

11.一种食物组合物,其包含:

(a)一种或多种类型的支化氨基酸和/或其代谢物;

(b)抗衰老酶途径激活剂;

其中(a)和(b)以协同地实现受试者的体重增加降低、受试者的内脏脂肪体积减小、受试者的脂肪氧化增加、受试者的胰岛素敏感度升高、受试者的肌肉中葡萄糖摄取增加、血管舒张增强和/或体温升高的量存在;和

(c)食物载体。

12.实施方案11的组合物,其中所述食物载体为果汁、咖啡、茶、苏打或小吃棒。

13.一种组合物,其包含:

(a)一种或多种类型的支化氨基酸和/或其代谢物;和

(b)以亚治疗量存在的抗衰老酶途径激活剂;

其中较之单独使用时的组分(b)而言,所述组合物协同有效地使抗衰老酶途径输出增加至少约5倍。

14.一种配制用于口服的组合物,其包含:

(a)亮氨酸和/或一种或多种其代谢物;和

(b)抗衰老酶途径激活剂;

其中较之单独使用时的组分(a)或(b)而言,所述组合物协同有效地使抗衰老酶途径输出增加至少约1倍,

其中,当(i)将来自用所述组合物处理的肌管或脂肪细胞的培养基施用至其它肌管或脂肪细胞,(ii)将所述组合物施用至肌管或脂肪细胞,或(iii)将所述组合物施用至受试者时,所述增加的抗衰老酶途径输出由选自下述的生理效应的升高所证实:脂肪酸氧化、线粒体生物发生、葡萄糖摄取、棕榈酸盐摄取、氧消耗、体重减轻、内脏脂肪组织减少、胰岛素敏感度、炎症标志物水平、血管舒张和体温。

15.实施方案14的组合物,其中较之单独使用时的组分(a)或(b)而言,所述组合物能协同有效地使抗衰老酶途径输出增加至少约1倍,其中,当(i)将来自用所述组合物处理的肌管或脂肪细胞的培养基施用至其它肌管或脂肪细胞,或(ii)将所述组合物施用至肌管或脂肪细胞时,所述增加的抗衰老酶途径输出由选自下述的生理效应的升高所证实:脂肪酸氧化、葡萄糖摄取、氧消耗、胰岛素敏感度。

16.一种组合物,其包含:

(a)一种或多种类型的支化氨基酸和/或其代谢物;和

(b)抗衰老酶途径激活剂;

其中所述组合物中组分(a)与(b)的摩尔比大于约20,且其中当施用至有需要的受试者时,所述组合物协同地增强线粒体生物发生,所述线粒体生物发生通过受试者的体重增加降低、受试者的内脏脂肪体积减小、受试者的脂肪氧化增加、受试者的鸢尾素产量增加、受试者的胰岛素敏感度升高、受试者的肌肉中葡萄糖摄取增加、炎症标志物降低、血管舒张增强和/或体温升高进行测量。

17.一种组合物,其包含适于口服的单位剂量,所述单位剂量包含:

(a)一种或多种类型的支化氨基酸和/或其代谢物;和

(b)基本上同质的一组多酚或多酚前体分子;

其中所述单位剂量能有效地诱导抗衰老酶途径输出升高,所述抗衰老酶途径输出通过受试者的体重增加降低、受试者的内脏脂肪体积减小、受试者的脂肪氧化增加、受试者的胰岛素敏感度升高、受试者的肌肉中葡萄糖摄取增加、血管舒张增强和/或体温升高进行测量。

18.一种组合物,其包含:

(a)一种或多种类型的支化氨基酸和/或其代谢物;和

(b)抗衰老酶信号途径中的PGC1α下游的信号分子。

19.实施方案18的组合物,其中所述PGC1α下游的信号分子为鸢尾素或其类似物。

20.一种组合物,其包含:

(a)一种或多种类型的支化氨基酸和/或其代谢物;和

(b)亚治疗量的一种或多种抗糖尿病剂,其选自双胍、氯茴苯酸、磺酰脲、噻唑烷二酮、α葡萄糖苷酶抑制剂和麦角生物碱;

其中当施用至受试者时,所述组合较之对受试者单独施用组分(a)或组分(b)而言,协同增加所述受试者中的胰岛素敏感度。

21.实施方案20的组合物,其中所述一种或多种抗糖尿病剂选自双胍和噻唑烷二酮。

22.实施方案20的组合物,其中所述一种或多种抗糖尿病剂包含格列吡嗪和二甲双胍。

23.实施方案20的组合物,其中所述抗糖尿病剂是抗衰老酶途径激活剂。

24.前述任一实施方案的组合物,其中一种或多种组分的以协同地实现抗衰老酶途径输出升高的量存在。

25.实施方案24的组合物,其中所述抗衰老酶途径输出的增加通过受试者的体重增加降低、受试者的内脏脂肪体积减小、受试者的脂肪氧化增加、受试者的胰岛素敏感度升高、受试者的肌肉中葡萄糖摄取增加、血管舒张增强和/或体温升高进行测量。

26.实施方案24的组合物,其中所述抗衰老酶途径输出的增加由选自下述的生理效应的升高所证实:线粒体生物发生、脂肪酸氧化、葡萄糖摄取、棕榈酸盐摄取、氧消耗、二氧化碳生成、体重减轻、热量产生、内脏脂肪组织减少、呼吸交换率、胰岛素敏感度、炎症标志物水平和血管舒张。

27.实施方案24的组合物,其中抗衰老酶途径输出的增加由SIRT1、SIRT3和PGC1-α组成的组中的一种或多种的表达或活性水平的升高所证实。

28.实施方案24的组合物,其中所述抗衰老酶途径输出的增加是至少约1、3、5、6、8、10、15、20或50倍。

29.前述任一实施方案的组合物,其中所述一种或多种类型的支化氨基酸和/或其代谢物选自亮氨酸和其一种或多种代谢物。

30.实施方案14或29的组合物,其中所述一种或多种亮氨酸代谢物选自酮异己酸(KIC)、α-羟基-异己酸和HMB。

31.前述任一实施方案的组合物,其中所述一种或多种类型的支化氨基酸和/或其代谢物选自亮氨酸、缬氨酸、异亮氨酸、4-羟基异亮氨酸、酮异己酸(KIC)、α-羟基-异己酸和HMB。

32.前述任一实施方案的组合物,其中所述抗衰老酶途径激活剂激活SIRT1、SIRT3、AMPK和PGC1α中的一种或多种。

33.前述任一实施方案的组合物,其中所述组合物基本上不含非支化氨基酸。

34.前述任一实施方案的组合物,其中所述抗衰老酶途径激活剂为多酚或多酚前体。

35.实施方案17和34中任一项的组合物,其中所述多酚或多酚前体分子以有效增加抗衰老酶途径输出的量存在,该抗衰老酶途径输出的增加由选自以下的生理效应的升高所证实:脂肪酸氧化、线粒体生物发生、葡萄糖摄取、棕榈酸盐摄取、氧消耗、体重减轻、内脏脂肪组织减少、胰岛素敏感度、炎症标志物水平和血管舒张。

36.实施方案17和34中任一项的组合物,其中所述多酚或多酚前体选自绿原酸、白藜芦醇、咖啡酸、肉桂酸、阿魏酸、白皮杉醇、鞣花酸、表没食子儿茶素没食子酸酯、葡萄籽提取物及其任意类似物。

37.实施方案17和34中任一项的组合物,其中所述多酚或多酚前体为白藜芦醇或其类似物。

38.实施方案17和34中任一项的组合物,其中所述多酚或多酚前体为绿原酸。

39.前述任一实施方案的组合物,其中所述抗衰老酶途径激活剂为磷酸二酯酶抑制剂。

40.前述任一实施方案的组合物,其中所述组合物为膳食补充剂。

41.实施方案40的组合物,其中所述膳食补充剂被包装为饮料、固体食品或半固体食品。

42.前述任一实施方案的组合物,其中所述组合物被包装为液体、固体或半固体。

43.前述任一实施方案的组合物,其中所述组合物包含至少约500mg的亮氨酸和/或至少约200mg的所述一种或多种代谢物。

44.前述任一实施方案的组合物,其中所述组合物中的组分(a)与组分(b)的摩尔比大于约20、40、150、250或500。

45.前述任一实施方案的组合物,其中当施用至有需要的受试者时,所述组合物协同地增强由受试者的体重增加降低、受试者的内脏脂肪体积减小、受试者的脂肪氧化增加、受试者的鸢尾素产量增加、受试者的胰岛素敏感度升高、受试者的肌肉中葡萄糖摄取增加、炎症标志物降低、血管舒张增强和/或体温升高所测量的线粒体生物发生。

46.实施方案45的组合物,其中线粒体生物发生增加了至少约1、3、5、6、8、10、15、20或50倍。

47.前述任一实施方案的组合物,其中所述抗衰老酶途径激活剂选自奎尼酸、褐藻素、双胍、罗格列酮或其任意类似物。

48.实施方案20、21和47中任一项的组合物,其中所述双胍为二甲双胍。

49.前述任一实施方案的组合物,其中所述组合物为食物组合物。

50.前述任一实施方案的组合物,其中所述组合物被配制为口服剂型。

51.前述任一实施方案的组合物,其中所述组合物为适于对受试者非口服施用的液体形式。

52.前述任一实施方案的组合物,其中所述组合物为适于对受试者注射施用的液体形式。

53.前述任一实施方案的组合物,其中所述组合物被包装为单位剂量。

54.实施方案17和53的组合物,其中所述单位剂量被配制为片剂、胶囊或凝胶胶囊。

55.前述任一实施方案的组合物,其进一步包含药物活性剂。

56.前述任一实施方案的组合物,其中所述组合物进一步包含抗糖尿病剂。

57.前述任一实施方案的组合物,其中所述组合物为进一步包含药学上可接受的赋形剂的药物组合物。

58.一种增强有需要的受试者中的脂肪氧化的方法,包括对所述受试者施用前述任一实施方案的组合物一段时间,其中所述受试者中的脂肪氧化在此段时间内增强。

59.一种治疗糖尿病的方法,包括对所述受试者施用前述任一实施方案的组合物一段时间,其中所述受试者中的胰岛素敏感度在此段时间内升高。

60.一种降低有需要的受试者中的炎症应答的方法,包括对所述受试者施用前述任一实施方案的组合物一段时间,其中所述受试者中的所述炎症应答在此段时间内降低。

61.一种升高或保持受试者的体温的方法,包括对所述受试者施用前述任一实施方案的组合物一段时间,其中所述受试者的体温在此段时间内升高。

62.一种诱导血管舒张的方法,包括对所述受试者施用前述任一实施方案的组合物一段时间,其中所述受试者中的血管舒张在此段时间内被诱导。

63.一种制备前述任一实施方案的组合物的方法,包括将组分(a)和(b)混合以形成基本上同质的混合物,并使组合物形成为单位剂量。

64.一种增强双胍的治疗效果的方法,包括对受试者同时或相继施用前述任一实施方案的组分(a)和组分(b),其中(a)和(b)以协同增加胰岛素敏感度的量施用。

65.前述任一实施方案的组合物,其中所述组合物使胰岛素敏感度增加至少约1倍。

实施例

实施例1–亮氨酸、KIC和HMB单独或与白藜芦醇组合对线粒体生物发生的效果

实验表明,亮氨酸通过部分不依赖mTOR的机制刺激肌肉蛋白质的合成。我们已经证明,分解代谢系统也受到刺激来推动这个过程,导致线粒体生物发生和脂肪酸氧化(FAO)的增加。为了研究此效果的机理,我们首先通过在存在和不存在20nM的雷帕霉素下评估FAO的亮氨酸刺激来确定mTOR依赖性;虽然雷帕霉素在C2C12肌管中抑制FAO,但是亮氨酸刺激的程度被保持(~50%,p<0.03;图1)。

我们接下来考察了完整亮氨酸(0-0.5mM)及其代谢物,α-酮异己酸(KIC)(0-0.5mM)和HMB(0-50μM)的作用。所有三种化合物都诱导了FAO的显著增加(~60-70%,p<0.001;图2)。亮氨酸和HMB都使得肌管的线粒体生物发生(通过NAO结合进行荧光评估)增加了~50%(p<0.005,图3)。与此相一致,HMB和亮氨酸都刺激了线粒体调控(PGC-1α和NRF-1)和组分(UCP3)基因的表达(p<0.01,图4)。这些数据表明亮氨酸不依赖mTOR刺激线粒体生物发生和脂肪酸氧化,且这些效果看上去是由其代谢物例如HMB介导的。

实施例2–对SIRT1和SIRT3的刺激

在无细胞系统中在存在或不存在白藜芦醇的情况下评价了亮氨酸、KIC和HMB对SIRT1活化的影响。SIRT1活性通过使用SIRT1荧光药物发现试剂盒(BML-AK555,ENZO Life Sciences International,Inc.PA,USA)进行测定。在此分析中,SIRT1活性通过含乙酰化赖氨酸侧链的标准化底物的去乙酰化程度进行评价。所使用的底物为含人p53的氨基酸379-382(Arg-His-Lys-Lys[Ac])的肽,一种确立的SIRT1活性靶标;SIRT1活性与Lys-382的去乙酰化程度成正比。样品在37℃于水平摇床上在肽底物(25μM)和NAD+(500μM)的磷酸盐缓冲生理盐水溶液中孵育45分钟。通过加入2mM的烟酰胺和结合到去乙酰化赖氨酸形成荧光团的显影溶液停止反应。在37℃下孵育10分钟后,在读板荧光计上读出360nm的激发波长和450nm的发射波长的荧光。白藜芦醇(100mM)作为SIRT1激活剂(阳性对照),苏拉明钠(25mM)为SIRT1抑制剂(阴性对照)。标准曲线用去乙酰底物(0-10μM)形成。亮氨酸、KIC和HMB都以剂量响应方式显著增加了SIRT1的活性,而缬氨酸(支链氨基酸对照)无显著效果产生。图5显示了在富含亮氨酸的餐后发现的各化合物的生理浓度下亮氨酸和其代谢物对SIRT1活性的影响。如图所示,这些影响在数量上可以与那些由低剂量的白藜芦醇(例如10μM)产生的作用相比(而不是显著不同)。

为了分析SIRT3的活性,使脂肪细胞(3T3-L1)生长至汇合,进行分化并与亮氨酸(0.5mM)、HMB(5uM)、白藜芦醇(200nM)、HMB(5uM)+白藜芦醇(200nM)或载体一起孵育4小时。然后从细胞中分离线粒体蛋白质,通过荧光检测Sirt3底物的去乙酰化来对Sirt3活性进行评价,与上述用于Sirt1的方法相似。Sirt3底物为含有人p53的氨基酸317-320(Gln-Pro--Lys-Lys[Ac])的肽。白藜芦醇、亮氨酸和HMB对Sirt3活性未表现显著的独立影响。然而,组合白藜芦醇(200nM)与HMB(5uM)导致Sirt3活性增加了58%(p<0.03,图6)。

实施例3–亮氨酸和HMB协同白藜芦醇刺激脂肪酸氧化

使脂肪细胞(3T3-L1)生长至汇合,进行分化并在低(5mM)或高(25mM)葡萄糖下与亮氨酸(0.5mM)、HMB(5uM)、白藜芦醇(200nM)、HMB(5uM)+白藜芦醇(200nM)或载体一起孵育4小时,使用3H-棕榈酸盐检测脂肪酸氧化。在低葡萄糖下,只有联合治疗(200nM白藜芦醇+5uMHMB;200nM白藜芦醇+0.5mM亮氨酸)刺激了脂肪酸氧化的中度增加(18%,p<0.05),而个体组分未表现出独立的效果(图7)。高葡萄糖培养基使脂肪酸氧化减少了46%(p<0.05)。在高葡萄糖条件下使用的低剂量的白藜芦醇未对脂肪酸氧化表现出效果,而亮氨酸和HMB表现出中度但显著的效果(分别为27%和29%,相对于对照p<0.05,图8)。相反,亮氨酸-白藜芦醇和HMB-白藜芦醇组合都各自表现出显著增强的效果(分别为118%和91%的刺激;相对于对照和相对于亮氨酸、HMB和白藜芦醇的独立效果p<0.005;图8)。这些数据表明白藜芦醇和亮氨酸或其代谢物HMB在刺激脂肪氧化和促进高血糖症模型条件下的更多氧化表型中的协同作用。

使用3H标记的棕榈酸盐氧化测定脂肪酸氧化,其中由于脂肪的氧化该3H标记作为水被俘获。然后通过闪烁记数器测量3H。

实施例4–用白藜芦醇和亮氨酸或HMB处理的动物中的体重增加、脂肪氧化、胰岛素敏感度和炎性应激

6周龄的雄性c57/BL6小鼠用具有增加45%能量的脂肪的高脂肪饮食(研究饮食D12451)喂养6周诱发肥胖。在该肥胖诱导期结束时,将动物随机分为以下7个不同饮食处理组,10只动物一组(共70只动物),并维持这些饮食6周:

·组别1(标记为“对照组”):仅高脂肪饮食(与肥胖诱导期相同(研究饮食D12451))。

将该饮食以下述方式调整用于组别2-7:

·组别2(标记为“低剂量白藜芦醇”):高脂肪饮食混合有12.5mg白藜芦醇/kg食物。

·组别3(标记为“高剂量白藜芦醇”):高脂肪饮食混合有225mg白藜芦醇/kg食物。

·组别4(标记为“低剂量HMB”):高脂肪饮食混合有2g的羟基甲基丁酸酯的钙盐,亮氨酸的天然代谢物(CaHMB)。

·组别5(标记为“低剂量白藜芦醇+低剂量CaHMB”):高脂肪饮食混合有12.5mg的白藜芦醇/kg食物和2g CaHMB/kg食物。

·组别6(标记为“低剂量白藜芦醇+高剂量HMB”):高脂肪饮食混合有12.5mg的白藜芦醇/kg食物和10g CaHMB/kg食物。

组别7(标记为“低剂量白藜芦醇+亮氨酸”):高脂肪饮食混合有12.5mg的白藜芦醇/kg食物,且亮氨酸增加至其对照饮食正常水平的200%(从1.21%变为2.42%重量比)

将动物置于室温22±2℃下的聚丙烯笼子中,并生活在12h光/暗循环下。动物在实验中随意饮水及进食实验食物。在治疗周期结束(6周)时所有的动物被人道安乐死并采集血样和组织用于进一步实验。

氧消耗/底物利用:在肥胖诱导期结束(治疗组的第0天)和治疗的2周和6周时,通过使用实验室动物综合监测系统(CLAMS,Columbus Instruments,Columbus,OH)的代谢室对每个治疗组的亚组中的氧消耗和底物利用进行测定。将每只动物置于各自的笼子里,不铺垫子以便于自动的、非侵入性的数据收集。每个笼子都是间接开放回路热量计,其提供氧消耗、二氧化碳生成的测定并同时测定食物摄入。实验前使所有小鼠适应室24小时,并保持规律的12:12光:暗循环,随意饮水进食。所有实验在早上开始,24小时收集数据。每个室通风0.6升空气/min,并以32分钟的间隔采样2min。将每个室排出的O2和CO2含量与环境O2和CO2含量对比。用电子秤测量食物消耗。

微PET/CT(葡萄糖和棕榈酸盐摄取):在治疗周期结束(治疗6周)时使用每个处理饮食组(5只动物/组,共35只动物)的亚组通过PET/CT成像检测全身葡萄糖和棕榈酸盐摄取。为了使用微PET成像对这些化合物进行显像,分别用氟-18(108分钟半衰期)或碳-11(20分钟半衰期)标记葡萄糖或棕榈酸盐。每只小鼠禁食4小时,然后用1-3%异氟醚通过鼻锥给药或在专用于小动物成像流程的小鼠大小的诱导室中进行麻醉。在麻醉下将小鼠静脉注射<2mCi的每种示踪剂,然后放置一段时间(数分钟至最多约1小时),以允许所述示踪剂的摄取。在扫描过程中,小鼠使用恒温控制的加热床保温,并在扫描前用眼药膏处理。将活体扫描后的小鼠送回其笼内进行恢复。在此期间不断地对小鼠进行监测。实时数据采集后的小鼠用过量异氟醚处死并收集器官用于进一步的实验。

RNA提取:用Ambion完全RNA分离试剂盒(Ambion公司,Austin,Tex.,USA)根据制造商的说明书来从组织中提取总RNA。分离的RNA的浓度、纯度和质量将通过利用ND-1000分光光度计(NanoDrop Technologies公司,Del.USA)测量260/280比值(1.8–2.0)和260/230比值(接近2.0)来进行评估。可以在RNA水平上对抗衰老酶途径、细胞因子和炎症标志物的生物标志物(包括但不限于C-反应蛋白、IL-6、MCP-1和脂连蛋白分子)进行评价。

基因表达:18S、Sirt1、SIRT3、PGC1-α,细胞色素C氧化酶亚基VIIc1(COX7)、线粒体NADH脱氢酶、核呼吸因子1(NRF1)、解偶联蛋白(UCP2(脂肪细胞)/UCP3(肌细胞)、P53、AMPK、Akt/PKB和GLUT4的表达通过定量实时PCR使用ABI7300实时PCR系统(Applied Biosystems,Branchburg,NJ)用核心试剂盒测定。所有引物和探针组可以从Applied Biosystems Assays-on-Demand获得并根据生产商的说明进行使用。将来自每种细胞类型的合并的RNA在0.0156-50ng的范围内进行连续稀释,并用于建立标准曲线;每个未知样品的总RNA也在此范围内稀释。根据ABI实时PCR系统和TaqMan实时PCR核心试剂盒的说明书进行RT-PCR反应。然后使用相应的18S定量将每个感兴趣的基因的表达归一化。

SIRT1活性:使用SIRT1荧光药物发现试剂盒(BML-AK555,ENZO Life Sciences International公司,PA,USA)测定SIRT1的活性。在该试验中,通过含有乙酰化赖氨酸侧链的标准化底物的去乙酰化的程度评估SIRT1的活性。所用的底物是含人p53的379-382氨基酸的肽(Arg-His-Lys-Lys[Ac]),一种已建立的SIRT1活性的靶标;SIRT1的活性与Lys-382的去乙酰化程度成正比。样品在37℃于水平摇床上在肽底物(25μM)和NAD+(500μM)的磷酸盐缓冲生理盐水溶液中孵育45分钟。通过加入2mM的烟酰胺和结合到去乙酰化赖氨酸形成荧光团的显影溶液停止反应。在37℃下孵育10分钟后,在读板荧光计上读出360nm的激发波长和450nm的发射波长的荧光。白藜芦醇(100mM)作为SIRT1激活剂,苏拉明钠(25mM)为SIRT1抑制剂,各组反应中包括其各自的孔被用作阳性和阴性对照。标准曲线用去乙酰底物(0-10μM)形成。将数据对通过BCA测定法测定的细胞蛋白质浓度归一化。

蛋白质印迹分析:组织样品(脂肪和肌肉)在含有150mM氯化钠、1.0%Triton X-100、0.5%脱氧胆酸钠、0.1%SDS和50mM Tris(pH 8.0)、抑肽酶(1μg/ml)、亮抑酶肽(10μg/ml)、胃蛋白酶抑制剂A(1μg/ml)、1mMPMSF、5mM EDTA、1mM EGTA、10mM NaF、1mM原钒酸钠的冰RIPA裂解缓冲液中用电动均质器进行均质化,然后保持4℃恒定搅拌2小时并且在4℃ 4000×g下离心30分钟。上清液(含有15-25μg总蛋白质)的等分试样用含100mM二硫苏糖醇的2x Laemmli样品缓冲液处理并在10%(或15%(对于SIRT3))的SDS-PAGE上运行。将解析的蛋白质转移到PVDF膜上,并在5%脱脂奶粉的含有0.1%的Tween 10,pH值7.5的Tris缓冲盐水中封闭。膜被封闭后,将膜在TBST中漂洗,与适当的抗体孵育过夜,在TBST中漂洗,并与辣根过氧化物酶偶联的抗兔IgG孵育120分钟。抗体结合的蛋白质用增强的化学发光可视化(ECL,Amersham)。

使用了以下抗体:抗-Sirt3抗体(Cell Signaling Technology,Beverly,MA)、抗-Idh2(异柠檬酸脱氢酶2)(Santa Cruz,CA)、抗-COX抗体(Santa Cruz)。

低剂量的白藜芦醇和HMB未对体重、体重增加、内脏脂肪组织重量、脂肪氧化、呼吸交换率(RER)或热量产生表现出显著的独立效果,而高剂量的白藜芦醇显著地增加了热量产生和骨骼肌脂肪氧化并减少了RER,表明了向脂肪氧化的全身变化(表1);然而,高剂量白藜芦醇未对体重、体重增加或内脏脂肪组织重量表现出显著的效果。与低剂量的白藜芦醇或HMB缺乏独立效果相反,组合低剂量的白藜芦醇与HMB或亮氨酸导致体重、体重增加、内脏脂肪组织重量、脂肪氧化和热量产生的显著减少和相应的RER下降(表1)。

表1.白藜芦醇、亮氨酸和HMB在饮食诱导肥胖的小鼠中对体重、体重增加、肥胖和脂肪氧化的效果。1

1每行的非匹配字母上标表示指明的p值的显著差异

2低白藜芦醇:12.5mg白藜芦醇/kg食物

3高白藜芦醇:225mg白藜芦醇/kg食物

4低HMB:2g羟基甲基丁酸酯(钙盐)

5亮氨酸:亮氨酸增加2倍,从其它饮食的1.21%变为2.42%

表2显示了饮食处理对胰岛素敏感度指数的影响。所有的处理都没有表现出对血浆葡萄糖的影响。任何剂量的白藜芦醇或HMB都没有表现出对血浆胰岛素或肌肉葡萄糖摄取的显著影响。然而,低剂量白藜芦醇与HMB或亮氨酸的组合产生了显著的血浆胰岛素降低。该胰岛素降低而血浆葡萄糖不变反映了肌肉和全身胰岛素敏感度的显著改变,其表现为HOMAIR(胰岛素耐量的稳态评价)的显著和大幅降低和对应的骨骼肌18F-脱氧葡萄糖摄取的增加(表2和图9)。

表2.白藜芦醇、亮氨酸和HMB在饮食诱导肥胖的小鼠中对胰岛素敏感度指数的影响。1

1每行的非匹配字母上标表示指明的p值的显著差异

2低白藜芦醇:12.5mg白藜芦醇/kg食物

3高白藜芦醇:225mg白藜芦醇/kg食物

4低HMB:2g羟基甲基丁酸酯(钙盐)

5亮氨酸:亮氨酸增加2倍,从其它饮食的1.21%变为2.42%

图10显示了饮食治疗对脂肪组织中SIRT1活性的影响。白藜芦醇和HMB都未对SIRT1的活性表现出显著独立的影响,尽管高剂量白藜芦醇表现出了非显著的增加的趋势。与此相反,组合低剂量的白藜芦醇与HMB或亮氨酸导致~2倍增加的组织Sirt1活性。这样的抗衰老酶活化预计将减少炎症应答。与此理念相一致,高剂量白藜芦醇显著降低循环IL-6,而低剂量的白藜芦醇(其没有表现出独立作用)与HMB的组合导致IL-6显著地更大降低(表3)。类似地,虽然HMB和低剂量白藜芦醇都未对MCP-1或C-反应蛋白表现出任何影响,但是低剂量白藜芦醇与HMB或亮氨酸的组合导致了两种炎症标志物显著下降。此外,对低剂量白藜芦醇与HMB或亮氨酸的组合的应答使得抗炎细胞因子脂连蛋白增加,而这些剂量的个体组分未表现出显著作用(表3)。

表3.白藜芦醇、亮氨酸和HMB在饮食诱导肥胖的小鼠中对炎性生物标志物的影响。1

1每行的非匹配字母上标表示指明的p值的显著差异

2低白藜芦醇:12.5mg白藜芦醇/kg食物

3高白藜芦醇:225mg白藜芦醇/kg食物

4低HMB:2g羟基甲基丁酸酯(钙盐)

5亮氨酸:亮氨酸增加2倍,从其它饮食的1.21%变为2.42%

这些数据共同显示了低剂量的白藜芦醇和亮氨酸或其代谢物HMB对于激活Sirt1和Sirt1依赖的结果的协同作用。这些包括增加的脂肪氧化及脂肪过多和肥胖的缓解、胰岛素敏感度的增大和胰岛素抗性的反转和全身性炎性应激的缓解。

实施例5–多酚和相关化合物对抗衰老酶活化和下游途径的协同效果

对所有化合物测试了其通过直接刺激或间接经由上游信号通过AMPK进行的独立或协同调节抗衰老酶信号传导的潜力。Sirt1的信号传导的主要结果是PGC1-α的刺激和线粒体生物发生和脂肪酸氧化的随后刺激。因此,将由如下所述的棕榈酸盐诱导的耗氧量测量的脂肪酸氧化用作筛查有氧线粒体代谢的第一敏感水平。对研究的每种化合物建立了脂肪酸氧化的剂量响应曲线,并且将“亚治疗剂量”定义为在该系统中不表现效果的最高剂量。然后将该剂量(对研究的大多数化合物而言通常认为是在200-1000nM范围内)用于评估与亮氨酸、HMB或亚治疗剂量的其它化合物的协同效果。这些实验是在完全分化的脂肪细胞(3T3-L1)和肌管(C2C12)中进行的。为了评价这些组合对脂肪和肌肉组织之间的串扰(cross-talk)的影响,将脂肪细胞处理48小时,收集培养基(条件培养基,CM),然后暴露于肌管;类似实验是用处理过的肌管进行的,收集CM并暴露于脂肪细胞。在对脂肪酸氧化进行评估后,评价了主要的组合和适当的对照的SIRT1活性、AMPK活性、线粒体生物发生和葡萄糖利用(在不存在脂肪酸的介质中测量葡萄糖诱导的细胞外酸化)。

细胞培养:将C2C12和3T3-L1前脂肪细胞(美国典型培养物保藏中心)以8000细胞/cm2(10cm2的培养皿)的密度接种,并在含有10%胎牛血清(FBS)和抗生素(生长培养基)的Dulbecco改良的Eagle培养基(DMEM)中于37℃和5%CO2中生长。汇合的3T3-L1前脂肪细胞用含有补充10%FBS、250nM的地塞米松、0.5mM的3-异丁基-1-甲基黄嘌呤(IBMX)和1%青霉素-链霉素的DMEM培养基组成的标准分化培养基进行诱导分化。前脂肪细胞在该分化培养基中维持3天,随后培养于生长培养基中。每2-3天对培养物重新补料,使>90%的细胞在进行化学处理前达到完全分化。为了进行C2C12细胞的分化,使细胞生长至100%汇合,转移到分化培养基(具有2%马血清和1%青霉素-链霉素的DMEM),并且每天补充新鲜分化培养基直到肌管完全形成(3天)。

检测:

脂肪酸氧化:在24孔板中37℃下使用Seahorse Bioscience XF24分析仪(Seahorse Bioscience,Billerica,MA)对细胞耗氧量进行了测定,如Feige等人所述(Feige J,Lagouge M,Canto C,Strehle A,Houten SM,Milne JC,Lambert PD,Mataki C,Elliott PJ,Auwerx J.Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation.Cell Metabolism 2008;8:347-358),并稍作修改。细胞按每孔40,000个细胞接种,如上文所述进行分化,用指出的处理方法处理24小时,用非缓冲无碳酸盐的pH 7.4的低葡萄糖(2.5mM)并含肉碱(0.5mM)的DMEM洗涤两次,用550μL的相同培养基在无CO2培养箱中平衡45分钟,然后插入仪器中进一步平衡15分钟,随后测量氧气的消耗量。在注射棕榈酸盐(200μM终浓度)之前,间隔五分钟进行连续三次基线测量。然后进行四次连续5分钟的氧气消耗量测量,然后进行10分钟再平衡,和另外3-4次的5分钟测量。然后在4-6小时内重复这种测量模式。将每个样本数据归一化到该样品注射棕榈酸盐之前的基线,并表示为基线%变化。棕榈酸盐注射前的值为肌管371±14pmol O2/分钟和脂肪细胞193±11pmol O2/分钟。然后计算各样品从基线的O2消耗量变化曲线下的面积,并用于随后的分析。

葡萄糖利用:在不存在脂肪酸源和氧化代谢下,糖酵解和随后的乳酸产生导致细胞外酸化,其同样用Seahorse Bioscience XF24分析仪测量。制备细胞并用与上述针对脂肪酸氧化所述的相似的方法进行平衡,其中将肉碱从培养基中排除。在仪器平衡和3次基线测量后,将葡萄糖在每个孔中注射至10mM的终浓度。利用细胞外酸化而不是O2消耗量的传感器如上所述进行测量。将胰岛素(5nM的最终浓度)加入一些孔中作为阳性对照。将每个样品的数据用该样品注射葡萄糖之前的基线归一化,并表示为基线%变化。然后计算各样品从基线的胞外酸化变化曲线下的面积,并用于随后的分析。

线粒体生物发生:线粒体生物发生被评价为线粒体质量的变化,如Sun等人所述(Sun X和Zemel MB(2009)Leucine modulation of mitochondrial mass and oxygen consumption in skeletal muscle cells and adipocytes.Nutrition and Metabolism 6:26(doi:10.1.1186/1743-707S-6-26))。通过荧光(激发485nm和发射520nm)使用线粒体探针NAO(Invitrogen,Carlsbad,CA)分析线粒体质量,定量数据通过荧光酶标仪(Synergy HT,BioTek Instruments,Winooski,VT)获得。荧光强度表达为任意单位每μg蛋白质并在各分析中用对照值归一化。

AMPK活性:使用市售的试剂盒(CycLex AMPK激酶分析试剂盒,CycLex有限公司,Nagano,Japan)测定AMP激活的蛋白激酶(AMPK)。该测定基于IRS-1S789的AMPK磷酸化。然后通过抗-磷酸-小鼠IRS-1S789单克隆抗体检测磷酸化的IRS-1S789,然后将其结合到辣根过氧化物酶偶联的抗小鼠IgG,后者催化与四甲基联苯胺的显色反应。颜色形成与AMPK的活性成正比,使用酶标仪(Synergy HT,BioTek Instruments,Winooski,VT)在96孔ELISA板中双波长(450/540nm)下进行测定。将这些值表示为荧光单位/mg蛋白质并在各分析中用对照值归一化。

Sirt1活性:SIRT1活性通过使用SIRT1荧光药物发现试剂盒(BML-AK555,ENZO Life Sciences International公司,PA,USA)进行测定。该分析通过含乙酰化赖氨酸侧链的标准化底物的去乙酰化程度测量SIRT1活性。所使用的底物为含人p53的氨基酸379-382(Arg-His-Lys-Lys[Ac])的肽,一种确立的SIRT1活性靶标;SIRT1活性与Lys-382的去乙酰化程度成正比。样品在37℃于水平摇床上在肽底物(25μM)和NAD+(500μM)的磷酸盐缓冲生理盐水溶液中孵育45分钟。通过加入2mM的烟酰胺和结合到去乙酰化赖氨酸形成荧光团的显影溶液停止反应。在37℃下孵育10分钟后,在读板荧光计(Synergy HT,BioTek Instruments,Winooski,VT)上读出360nm的激发波长和450nm的发射波长处的荧光。白藜芦醇(100mM)作为SIRT1激活剂(阳性对照),苏拉明钠(25mM)为SIRT1抑制剂(阴性对照)。标准曲线用去乙酰底物(0-10μM)形成。

统计:通过单向方差分析对数据进行分析,使用最小显著差异检验分离显著差异的组平均值。

结果:

白藜芦醇-亮氨酸和白藜芦醇-HMB:亮氨酸(0.5mM)和HMB(5μM)刺激了30–50%的Sirt1活性和脂肪酸氧化,与10μM白藜芦醇的效果相似,而低水平的白藜芦醇(在此为200nM)未表现出效果;亮氨酸、HMB和低剂量的白藜芦醇对于Sirt3未表现出独立的效果。然而,亮氨酸或HMB与200nM白藜芦醇的组合产生了~90%的Sirt1刺激、~60%的Sirt3刺激和91%-118%的脂肪酸氧化增加(p<0.005)。

下述所有实验中亮氨酸和HMB的浓度为0.5mM(亮氨酸)和5μM(HMB)。对所研究的与亮氨酸或HMB组合的各化合物在对所研究的变量未表现出独立的效果的研究浓度下进行了研究,以评价潜在的协同作用。对下述每种化合物定义这些浓度。

绿原酸:绿原酸是一种天然存在的多酚,其被描述为羟基肉桂酸;它是咖啡酸和L-奎尼酸(在下文评价的)的酯。绿原酸的剂量-响应曲线表明500nM或低于500nM的浓度未表现出效果;从而,这就是协同作用实验中所使用的浓度。

图12显示了绿原酸组合在肌管中的效果,显著的定量数据总结在图3中。在骨骼肌细胞(肌管)中,绿原酸(500nM)/HMB处理6小时产生脂肪酸氧化42%的增加(p=0.003),处理24小时产生441%的增加(p=0.05),而在脂肪细胞中未观察到显著效果。特别是,添加白藜芦醇(200nM)减弱或消除了这些效果,表明对共同的作用位点存在潜在的竞争(图13)。

绿原酸/HMB组合刺激脂肪细胞的Sirt1活性至40%(p=0.005),而绿原酸/亮氨酸组合刺激Sirt1至67%(p=0.0001)(图14)并更温和地刺激AMPK活性(30-35%,NS:p=0.078)。与肌管相反,绿原酸/HMB和绿原酸/亮氨酸组合对脂肪细胞的脂肪酸氧化未表现出直接效果;然而,脂肪细胞条件化培养基实验表明用这些组合处理脂肪细胞48小时产生条件化培养基,其刺激肌管脂肪酸氧化至76%(p=0.013)。

绿原酸-亮氨酸和绿原酸-HMB都对如通过对葡萄糖添加的胞外酸化响应所测定的葡萄糖利用表现出显著效果(绿原酸-亮氨酸:53%,p=0.007;绿原酸-HMB:35%,p=0.045;图15)。

咖啡酸:咖啡酸是另一种天然存在的酚化合物,其被描述为另一种羟基肉桂酸。咖啡酸剂量-响应曲线表明1μM或低于1μM的浓度未表现出效果;从而,这就是协同作用实验中所使用的浓度。

图16和图17显示了咖啡酸组合在肌管中的效果,定量数据汇总于图18。咖啡酸-亮氨酸组合表现出温和的、非统计学显著的肌管脂肪酸氧化增加(35%),而咖啡酸-HMB组合表现出对脂肪酸氧化在脂肪细胞(361%,p=0.05)和肌管(182%,p=0.016)中的显著的效果。这些效果被添加200nM白藜芦醇所抑制,表明存在与绿原酸中观察到的相似的竞争(图17)。

奎尼酸:奎尼酸是一种天然存在的多元醇,见于咖啡豆和一些其它植物产品中。虽然不是多酚,但是在此对其进行了评价,因为它是绿原酸的一种组分,并且可通过绿原酸水解产生。奎尼酸的剂量-响应曲线表明500nM或低于500nM的浓度未表现出效果;从而,这就是协同作用实验中所使用的浓度。

图19和图20显示了奎尼酸组合在脂肪细胞中的效果,定量数据汇总于图21。奎尼酸-HMB和奎尼酸-亮氨酸组合产生了脂肪细胞脂肪酸氧化的强烈增加(奎尼酸-HMB组合为141%,p=0.05;奎尼酸-亮氨酸组合为320%,p=0.012;图21)和肌管中的比较温和的增加(~30%,p=0.03)。与绿原酸和咖啡酸不同,添加白藜芦醇(200nM)没有减弱这些效果。奎尼酸组合似乎不直接表现出对Sirt1的效果,因为不存在对Sirt1活性的短期效果,相反,其在上游作用导致AMPK活性的显著增加(47%、p<0.0001;图22)。奎尼酸-亮氨酸和奎尼酸-HMB组合都对如通过在脂肪细胞和肌管中添加葡萄糖的胞外酸化响应所测量的葡萄糖利用表现出显著效果(奎尼酸-HMB,99%,p=0.05;奎尼酸-亮氨酸,224%,p=0.0003;图23)。

其它多元醇:如上所述,对作为绿原酸的水解产物的奎尼酸进行了评价。为了确定奎尼酸的强烈效果是只反映了独特的分子(奎尼酸)还是作为一类化合物的多元醇的效果,对其它多元醇进行了评估,如下所述。这些数据表明奎尼酸的效果不容易外推至其它多元醇。

山梨糖醇是葡萄糖的糖醇类似物。山梨糖醇的剂量-响应曲线表明500nM或低于500nM的浓度未表现出效果;从而,这就是协同作用实验中所使用的浓度。将此水平的山梨糖醇添加至HMB或亮氨酸产生肌管脂肪酸氧化的刺激(44–70%,p=0.023)。然而,在不含山梨糖醇的情况下,这些效果不显著不同于亮氨酸和HMB的独立效果,表明没有协同作用。

肌醇是葡萄糖的多元醇代谢物。肌醇的剂量-响应曲线表明100nM或低于100nM的浓度未表现出效果;从而,这就是协同作用实验中所使用的浓度。将100nM肌醇与亮氨酸或HMB组合产生了脂肪氧化60%的增加,与不含肌醇的情况下的亮氨酸和HMB的独立效果相差无几,表明没有协同作用。

麦芽糖醇是一种由麦芽糖氢化产生的二糖。麦芽糖醇的剂量-响应曲线表明100nM或低于100nM的浓度未表现出效果;从而,这就是协同作用实验中所使用的浓度。然而,未注意到协同作用。

肉桂酸:肉桂酸是一种见于肉桂油的天然存在的酚。其具有与咖啡酸和绿原酸很强的结构同源性。肉桂酸的剂量-响应曲线表明500nM或低于500nM的浓度未表现出效果;从而,这就是协同作用实验中所使用的浓度。

肉桂酸组合在脂肪细胞和肌管中都表现出强烈效果。图24和图25显示了肉桂酸组合在肌管中的效果,脂肪细胞和肌管的定量数据分别总结于图26和图27中。肉桂酸-HMB和肉桂酸-亮氨酸组合分别使脂肪细胞脂肪酸氧化增加了290%(p=0.004)和1227%(p=0.006)(图26)。在肌管中,相同的组合使脂肪酸氧化增加了199%(p=0.02)和234%(p=0.05)(图27)。此外,用这些肉桂酸组合处理脂肪细胞以产生脂肪细胞条件化培养基,随后将其用于肌管,导致肌管脂肪酸氧化增加了273%(p=0.0002)。对于奎尼酸,这些效果没有被添加200nM白藜芦醇所减弱,且不存在对Sirt1活性的短期效果。相反,这些组合的主要效果似乎是AMPK-介导的,Sirt1效果在下游发生较长一段时间,因为这些组合导致AMPK活性增加136–157%(p=0.0001;图28)。

阿魏酸:阿魏酸是另一种羟基肉桂酸。阿魏酸是咖啡和苹果以及一些其它水果、豆类和谷物中天然存在的。阿魏酸的剂量-响应曲线表明500nM或低于500nM的浓度未表现出效果;从而,这就是协同作用实验中所使用的浓度。阿魏酸组合对脂肪酸氧化表现出很强的效果。阿魏酸-HMB组合使脂肪细胞中的脂肪酸氧化增加了1281%(p=0.018)(图29和图30),在肌管中增加了82%(p=0.05)(图31和图32)。然而,阿魏酸-亮氨酸组合在脂肪细胞中未表现出显著的效果(图30),而在肌管中增加了137%的脂肪酸氧化(p=0.034;图32)。类似于肉桂酸,阿魏酸-HMB组合在脂肪细胞中的效果以及阿魏酸-亮氨酸组合在肌细胞中的效果没有被添加白藜芦醇所减弱,且不存在对Sirt1活性的短期直接效果,但是存在对AMPK活性的显著刺激(55-62%,p=0.05;图33)。

白皮杉醇:白皮杉醇是一种被分类为均二苯代乙烯的多酚。其为天然存在于红葡萄酒中的白藜芦醇代谢物。白皮杉醇的剂量-响应曲线表明1nM或低于1nM的浓度未表现出效果;从而,这就是协同作用实验中所使用的浓度。目前,只进行了脂肪酸氧化实验(图34-36)。来自这些实验的数据显示了两种组合在脂肪细胞和肌管中都具有显著的效果。白皮杉醇-亮氨酸组合使脂肪细胞中的脂肪酸氧化增加了73%(p=0.05)并使肌管中的脂肪酸氧化增加了2301%(p=0.039),白皮杉醇-HMB组合使得在脂肪细胞中产生了60%的增加(p=0.05)和肌管中产生了6085%的增加(图36)。

鞣花酸:鞣花酸是一种在草莓、红莓和葡萄以及很多其它植物产品中天然存在的大型多酚。这种多酚在我们大多数分析中没有显示出显著的效果,鞣花酸的剂量-响应曲线即使在高浓度(50μM)下也表现出很少的活性。

表没食子儿茶素没食子酸酯(EGCG):EGCG为一种表没食子儿茶酸和没食子酸的多酚酯。EGCG是绿茶中主要的儿茶素。尽管有相反的观点,我们还是发现该化合物在直接刺激脂肪酸氧化中只有最小程度的活性,且在刺激脂肪酸氧化中未检测到与HMB或亮氨酸的协同效应。然而,EGCG(1μM)的确表现出对于葡萄糖利用的显著效果,如通过胞外酸化所检测的。这种水平的EGCG对葡萄糖利用未表现出独立的效果,但是当与HMB组合时刺激了94%的葡萄糖利用增加(p=0.015;图37),当与亮氨酸组合时增加了156%的葡萄糖利用(p=0.017;图37)。值得注意的是,在该组合中添加白藜芦醇未表现出额外的效果,但也没有减轻所观察到的效果。这些组合对AMPK和Sirt1活性的效果尚未确定。

褐藻素:褐藻素为发现于褐藻(“海芥”;Undaria pinnatifida)中的非多酚色素。褐藻素的剂量-响应曲线表明100nM或低于100nM的浓度未表现出效果;从而,这就是协同作用实验中所使用的浓度。

褐藻素-HMB和褐藻素-亮氨酸组合都对脂肪细胞(褐藻素-HMB,425%增加,p=0.033;褐藻素-亮氨酸,148%增加,p=0.05;图38-40)和肌管(褐藻素-HMB,236%增加,p=0.05;褐藻素-亮氨酸,82%增加,p=0.024)的脂肪酸氧化表现出强烈效果。添加白藜芦醇既没有减轻这些效果,也没有放大。

褐藻素组合HMB和亮氨酸都显著地增加了肌管和脂肪细胞中的葡萄糖利用(图41和图42)。在肌管中,褐藻素-HMB组合产生59%的增加(p=0.038),褐藻素-亮氨酸组合产生63%的增加(p=0.034)(图41)。在脂肪细胞中,褐藻素-HMB组合产生321%的增加(p=0.02),褐藻素-亮氨酸组合产生557%的增加(p=0.003;图42)。

褐藻素组合对AMPK和Sirt1活性的效果尚未测定。

葡萄籽提取物:葡萄籽提取物(GSE)为未分化的多酚混合物,包括白藜芦醇和葡萄中的其它天然存在的化合物。其作为与天然存在的多酚组协同作用的广泛实例被选定用于研究。由于其为混合物,无法以摩尔单位定义浓度,因此在本部分使用了质量单位。GSE的剂量-响应曲线表明1μg/mL或低于1μg/mL的浓度未表现出效果;从而,这就是协同作用实验中所使用的浓度。GSE-亮氨酸使脂肪细胞的脂肪酸氧化增加了74%,但这并没有达到统计显著性。GSE-HMB组合使脂肪酸氧化增加了2262%(p=0.04;图43和图44)。两种组合的效果都被在组合中添加白藜芦醇所减弱(图44)。GSE-亮氨酸和GSE-HMB组合适当地增加了AMPK活性(40–80%,p<0.01;图45)和Sirt1活性(15-20%,p<0.03)。

二甲双胍:二甲双胍,一种双胍,是一种常规的处方口服降血糖药。其已知的作用机理为通过刺激AMPK,导致胰岛素敏感度的升高以及脂肪氧化的增加。从而,二甲双胍、HMB、亮氨酸和上述几种多酚都作用于相同的信号途径。从而,我们试图确定二甲双胍与这些化合物的组合是否表现出协同效应,从而降低达到治疗效果所必需的二甲双胍的浓度。

二甲双胍的剂量-响应曲线表明0.1mM或低于0.1mM的浓度未表现出效果;从而,这就是协同作用实验中所使用的浓度。该水平较之用于评价二甲双胍在细胞研究中的独立效果的浓度(2-10mM)大为降低。将二甲双胍与白藜芦醇(200nM)和HMB组合导致肌管脂肪酸氧化增加了1607%(p=0.0001;图46),而二甲双胍-亮氨酸-白藜芦醇组合产生了1039%的增加(p=0.001)。从组合中去除白藜芦醇产生了统计学显著的、但更为温和的与二甲双胍的协同相互作用(图46)。二甲双胍-HMB肌管使脂肪酸氧化产生了58%的增加(p=0.05),而二甲双胍-亮氨酸产生了176%的增加(p=0.03)。这些组合同样使得肌管中的葡萄糖利用分别显著增加了61%和51%(二者的p=0.028)。二甲双胍-HMB和二甲双胍-亮氨酸都刺激了50-60%的肌管葡萄糖利用(p=0.03;图47)。

与这些数据相一致,这些组合还显著地增加了AMPK活性(图48)。二甲双胍-HMB组合使肌管AMPK活性增加了50%(p=0.031),二甲双胍-亮氨酸组合使其增加了22%。白藜芦醇(200nM)的引入显著地增强了这些效果;二甲双胍-HMB-白藜芦醇使得AMPK活性增加了86%(p=0.026),二甲双胍-亮氨酸-白藜芦醇组合产生了95%的增加(p=0.017)。这些组合对Sirt1活性表现出类似效果。二甲双胍-HMB在脂肪细胞和肌管中使Sirt1活性分别增加了38%和58%(二者的p=0.001)。对线粒体生物发生观察到可比较的效果(二甲双胍-HMB-白藜芦醇,35%,p=0.001;二甲双胍-亮氨酸-白藜芦醇,27%,p=0.013;图49)。

值得注意的是,将二甲双胍与葡萄籽提取物或绿原酸组合产生了对Sirt1活性的类似刺激。二甲双胍-葡萄籽提取物使活性增加了24%(p=0.001),二甲双胍-绿原酸使活性增加了42%(p=0.004)。

罗格列酮:罗格列酮为噻唑烷二酮(TZD)类口服降血糖药。其不良事件谱受到了显著的关注,限制了其目前的使用,虽然它仍然得到了批准。TZD通过结合到过氧化物酶体增殖物激活受体γ(PPARγ)而发生作用。PPARγ的一个靶标是过氧化物酶体增殖物激活受体γ共激活因子1-α(PGC-1α),一种线粒体生物发生和脂肪酸氧化的调节剂,其是Sirt1的下游介体。因此,我们试图确定罗格列酮与在此研究的化合物的组合是否产生了协同效应,从而降低达到治疗效果所需的二甲双胍的浓度。

罗格列酮的剂量-响应曲线表明低于1nM的浓度未表现出效果;从而,这就是协同作用实验中所使用的浓度。该水平低于细胞培养实验中通常使用的浓度(10nM–10μM),并显著低于通常在静脉注射或口服给药后达到的血浆水平(400nM–1.7μM)。

将罗格列酮与亮氨酸或HMB组合在肌管(图50)和脂肪细胞(图51)中都产生了对脂肪酸氧化的显著刺激。罗格列酮-HMB组合刺激了521%的脂肪酸氧化(p=0.004),罗格列酮-亮氨酸组合刺激了231%的脂肪酸氧化(p=0.023)和92%的肌管脂肪酸氧化(p=0.009)。罗格列酮与白藜芦醇(200nM)组合同样产生对脂肪酸氧化的刺激(177%,p=0.003);然而,将白藜芦醇添加至罗格列酮-HMB或罗格列酮-亮氨酸组合在肌管中并不比不含白藜芦醇的组合更有效,且其在脂肪细胞中减弱了这些组合的效果。

将罗格列酮与HMB或亮氨酸组合产生了葡萄糖利用的显著增加(图52)。罗格列酮-HMB组合刺激了322%的增加(p=0.05)和罗格列酮-亮氨酸组合刺激了341%的增加。当白藜芦醇(200nM)与罗格列酮组合时发现了可比的增加(415%,p=0.001),但是将白藜芦醇添加至罗格列酮-HMB或罗格列酮-亮氨酸组合并没有进一步增强葡萄糖利用。

磷酸二酯酶(PDE)抑制剂:白藜芦醇对Sirt1活化的效果部分可能是由抑制cAMP磷酸二酯酶所介导的,其产生AMPK的上调和随后的Sirt1活化,而不是直接效应。然而,其它的这种效果可能只在高浓度(>50μM)白藜芦醇中相关。从而我们评价了多种非特异性PDE抑制剂的效果,如下。

咖啡因是一种主要发现于咖啡、茶、瓜拉那和巴拉圭茶中的天然产生的甲基-黄嘌呤。咖啡因既是腺苷拮抗剂也是非特异性PDE抑制剂。咖啡因的剂量-响应曲线表明低于10nM的浓度未表现出效果;从而,这就是协同作用实验中所使用的浓度。该水平为咖啡因消耗后观察到的血浆浓度(1–10μM)的~0.1%。10nM咖啡因与白藜芦醇(200nM)的组合导致肌管脂肪酸氧化增加了254%(p=0.03;图53),而没有一种组分表现出独立的效果。咖啡因与0.5mM亮氨酸的组合刺激脂肪细胞脂肪酸氧化732%(p=0.008;图54和55),咖啡因与5μM HMB组合导致肌管脂肪酸氧化增加334%(p=0.05;图53)。咖啡因-亮氨酸组合同样显著改善了肌细胞的葡萄糖利用,如通过对葡萄糖添加的胞外酸化响应所测量的(574%的改善,p=0.003)。咖啡因还表现出与二甲双胍(0.1mM)的显著协同作用,产生240%的肌管脂肪酸氧化增加(p=0.013;图53),虽然其对葡萄糖利用未表现出协同效应。

茶碱是一种咖啡因代谢物,其同样天然存在于茶和可可中。茶碱的剂量-响应曲线表明低于1μM的浓度未表现出效果;从而,这就是协同作用实验中所使用的浓度。茶碱与5μM HMB组合导致肌管脂肪酸氧化增加了396%(p=0.03;图56)。类似的协同效应发生于茶碱和白藜芦醇之间(486%、p=0.03),而组合HMB、白藜芦醇和HMB没有进一步增强该效果(382%,p=0.05;图56)。茶碱在脂肪细胞中表现出与HMB和亮氨酸的类似的协同效应(图57和图58),虽然在脂肪细胞中未观察到与白藜芦醇的协同效应。

可可碱是一种主要发现于可可和黑巧克力以及巴拉圭茶和茶中的天然存在的甲基黄嘌呤。对标准化为12%的可可碱的可可提取物进行了实验;剂量-响应曲线表明低于0.1μg/mL的浓度未表现出效果;从而,这就是协同作用实验中所使用的浓度。组合可可提取物/可可碱与5μMHMB导致脂肪氧化增加260%(p=0.021),可可提取物/可可碱与0.5mM亮氨酸的组合导致了673%的增加(p=0.00035)(图59和图60)。组合可可提取物/可可碱和白藜芦醇对脂肪氧化未表现出显著的效果(图59和图60)。

异丁基甲基黄嘌呤(3-异丁基-1-甲基黄嘌呤;IBMX)是一种类似于咖啡因的甲基黄嘌呤。其既是腺苷拮抗剂也是非特异性PDE抑制剂。IBMX的剂量-响应曲线表明低于50nM的浓度未表现出效果;从而,这就是协同作用实验中所使用的浓度。IBMX在刺激肌管脂肪氧化(73%增加,p=0.05)和葡萄糖利用(66%,p=0.05)中表现出与HMB而不是亮氨酸的微弱但统计学显著的协同作用。

这些数据表明当一些天然存在的多酚与HMB或亮氨酸组合时,这些多酚对脂肪氧化和葡萄糖利用的显著的协同效应。这些效果发生于不产生独立效果且容易通过饮食或补充给药获得的水平。通过Sirt1和AMPK信号介导的这些效果对一些多酚而言显著地强于我们之前观察到的与HMB或亮氨酸组合的低剂量的白藜芦醇的那些效果,也显著强于我们和其他人观察到的高剂量白藜芦醇的效果。绿原酸(羟基肉桂酸)及其水解产物奎尼酸,以及与绿原酸结构相关的化合物(肉桂酸、阿魏酸)表现出特别强的效果。还在白藜芦醇代谢物白皮杉醇以及来自海藻的非多酚化合物(褐藻素,一种表现出通常在多酚中观察到的高度共振结构的叶黄素)中观察到了高度显著的效果。这些效果也可在天然存在的非特异性PDE抑制剂中概括得到。从而,中等水平的亮氨酸和HMB可用于与多种多酚和相关化合物的协同组合中来刺激AMPK和抗衰老酶信号并获得可比较的或超过用高剂量白藜芦醇获得的益处。

这些数据还表明亮氨酸和HMB表现出与共同作用于相同信号途径的药物的显著的协同作用,从而赋予其他非治疗剂量的这些药物以效果。这可以是减少这些药物获得治疗效果所需水平的有效策略,从而减轻以其他方式与其相关的副作用和不良反应。

实施例6–二甲双胍与白藜芦醇-羟基甲基丁酸酯混合物对糖尿病小鼠中胰岛素敏感度的协同效应

将8-10周龄的雄性糖尿病db/db小鼠(C57BLKS/J-leprdb/leprdb)随机分为6个治疗组(如下所述),10只动物/组,对其保持2周的饮食:

·组别1(标记为“对照组”):仅标准饮食(AIN 93G)

·组别2(标记为“高二甲双胍”(在此为300mg/kg BW)):标准饮食混合1.5g二甲双胍/kg食物(计算:平均食物消耗=8g/天,平均BW=40g,300mg x 0.04kg=12mg二甲双胍/天/8g食物=1.5mg Met/g饮食)

·组别3(标记为“低二甲双胍”(在此为150mg/kg BW):标准饮食混合0.75g二甲双胍/kg食物

·组别4(标记为“非常低的二甲双胍”(在此为50mg/kg BW):标准饮食混合0.25g二甲双胍/kg食物

·组别5(标记为“低二甲双胍+白藜芦醇和CaHMB”):标准饮食混合0.75g二甲双胍+12.5mg白藜芦醇和2g CaHMB/kg食物

·组别6(标记为“非常低的二甲双胍+白藜芦醇和CaHMB”):标准饮食混合0.25g二甲双胍+12.5mg的白藜芦醇和2g CaHMB/kg食物。

将动物置于室温22±2℃下的聚丙烯笼子中,生活在12h光/暗循环下。动物在实验中可随意饮水及进食实验食物。在治疗周期结束(2周)时所有的动物被禁食过夜并在第二天早上使其人道地安乐死,收集血样和组织用于如下所述的进一步实验。

胰岛素耐量测试(ITT):胰岛素耐量测试在第7天2pm进行。对小鼠腹膜内注射胰岛素(0.75U/kg)的~0.1ml 0.9%NaCl溶液。在胰岛素注射前和注射后15、30、45和60min从切尾静脉取一滴血(5微升)用于血糖的测定。然后计算了血糖随响应曲线的线性比例的变化。

胰岛素:血清的血胰岛素通过来自Millipore的胰岛素ELISA试剂盒(编号EZRMI-13K)进行测量。

葡萄糖:血葡萄糖通过来自Cayman的葡萄糖分析试剂盒(编号EZRMI-13K)进行测量。

统计分析:所有数据表达为平均值±STD。通过单向方差分析对数据进行分析,使用SPSS(SPSS公司,Chicago,IL)通过最小显著差异检验分离显著差异的组平均值(p<0.05)。

结果

高剂量(300mg/kg bw)减少了27%的血浆胰岛素(从62至45uU/mL,p<0.02,图61),在HOMAIR指数中减少了35%(从29至18单位,p<0.025,图62),但在这些高胰岛素抗性动物中对血浆葡萄糖未表现出显著效果。然而,对于身体成分没有显著效果。低剂量的二甲双胍(在此为150mg/kg)和非常低剂量(50mg/kg)对任何研究变量都未表现出显著的独立效果。相反,组合低或非常低剂量的二甲双胍与HMB导致血浆胰岛素从62uU/mL到43uU/mL的显著降低(p<0.02,图61),可与高剂量二甲双胍的结果相比,且低二甲双胍-HMB混合物与非常低的二甲双胍-HMB混合物之间不存在显著差异。与此结果一致,HOMAIR指数从对照饮食的29单位下降至低二甲双胍-HMB混合物的19单位和非常低的二甲双胍-HMB混合物的16单位(p<0.025,图62),反映了可与高剂量二甲双胍中观察到的相比的胰岛素敏感度改善。这也反映在胰岛素耐量测试的结果中;对照、低剂量或非常低剂量的二甲双胍中的动物表现出响应于胰岛素挑战的血糖的最小改变(图63)。相反,在标准二甲双胍剂量和低或非常低剂量的与HMB组合的二甲双胍中的动物在响应曲线的30分钟线性部分表现出~60mg/dL的血糖降低(p<0.02;图63)。此外,二甲双胍-HMB混合物减轻了内脏肥胖(图64)。对照饮食的动物具有4.5g的平均内脏脂肪量,其没有受到不含HMB的任何剂量的二甲双胍的影响。低剂量的二甲双胍+HMB和非常低剂量的二甲双胍+HMB使内脏脂肪减少了~20%,分别减少至3.8和3.6g(p<0.03;图64)。这些处理同样减轻了肝脏质量,分别从2.78g(对照)至2.35g和2.41g(二者的p<0.05,图65)。

实施例7–糖尿病小鼠中二甲双胍与白藜芦醇-羟基甲基丁酸酯混合物对胰岛素敏感度的协同细胞信号传导效果

按照实施例6处理6组小鼠,包括收集血液和组织用于如下所述的进一步实验。

SIRT1活性:使用SIRT1荧光药物发现试剂盒(BML-AK555,ENZO Life Sciences International公司,PA,USA)测定细胞裂解物中SIRT1的活性。在该试验中,SIRT1活性通过含有乙酰化赖氨酸侧链的标准化底物的去乙酰化的程度进行评估。所用的底物是含人p53的379-382氨基酸的肽(Arg-His-Lys-Lys[Ac]),一种SIRT1活性靶标;SIRT1的活性与Lys-382的去乙酰化程度成正比。样品在37℃于水平摇床上在肽底物(25μM)和NAD+(500μM)的磷酸盐缓冲生理盐水溶液中孵育45分钟。通过加入2mM的烟酰胺和结合到去乙酰化赖氨酸形成荧光团的显影溶液停止反应。在37℃下孵育10分钟后,在读板荧光计上读出360nm的激发波长和450nm的发射波长的荧光。白藜芦醇(100mM)作为SIRT1激活剂,苏拉明钠(25mM)为SIRT1抑制剂;各组反应中包括其各自的孔被用作阳性和阴性对照。标准曲线用去乙酰底物(0-10μM)形成。将数据对通过BCA测定法测定的细胞蛋白质浓度归一化。

从细胞裂解物中提取线粒体:使用来自BioChain的线粒体分离试剂盒(编号KC010100)分离和裂解线粒体。

Sirt3活性:从细胞裂解物中提取线粒体后,通过使用SIRT3荧光药物发现试剂盒(ENZO,BML-AK557)测定SIRT3活性。该分析类似于SIRT1活性,但使用不同的p53氨基酸序列(317-320:Gln-Pro-Lys(Ac))作为底物。该底物最有效地被SIRT3去乙酰化。

胰岛素信号:通过用来自Invitrogen Life Science的Luminex试剂盒“Akt Pathway Total 7-Plex Panel”(编号LHO0002)和“Akt Pathway Phospho 7-Plex Panel“(编号LHO0001)测定组织裂解物中的全部和磷酸化的Akt、GSK-3β、IGF-1R、IR、IRS-1、p70S6K和PRAS40。

AMPK活性:通过来自CycLex的非放射同位素AMPK激酶分析试剂盒(编号CY-1182)测定细胞裂解物中的AMPK活性。

RNA提取:用Ambion完全RNA分离试剂盒(Ambion公司,Austin,Tex.,USA)根据制造商的说明书来从组织中提取总RNA。分离的RNA的浓度、纯度和质量将通过利用分光光度计测量260/280比值(1.8–2.0)和260/230比值(接近2.0)来进行评估。

基因表达:18S、Sirt1、Sirt3、PGC1-α,细胞色素C氧化酶亚基VIIc1(COX7)、线粒体NADH脱氢酶、核呼吸因子1(NRF1)、解偶联蛋白(UCP2(脂肪细胞)/UCP3(肌细胞)和GLUT4的表达通过定量实时PCR使用ABI7300实时PCR系统(Applied Biosystems,Branchburg,NJ)用TaqMan核心试剂盒测定。所有引物和探针组可以从Applied Biosystems TaqMan Assays-on-Demand获得并根据生产商的说明进行使用。将来自每种细胞的合并的RNA在0.0156-50ng的范围内连续稀释,并用于建立标准曲线;每个未知样品的总RNA也在这个范围内进行稀释。根据ABI实时PCR系统和TaqMan实时PCR核心试剂盒的说明书进行RT-PCR反应。然后使用相应的18S rRNA定量将每个感兴趣的基因的表达归一化。每个基因的数据表示为与18S rRNA的比值。

实施例8–亮氨酸及其代谢物与多酚对鸢尾素的协同效应

测试对于脂肪酸氧化不具备独立效应的剂量的化合物对脂肪酸氧化和鸢尾素分泌的协同组合效应。使用的化合物包括白藜芦醇(200nM)、肉桂酸(1μM)、绿原酸(0.5μM)、奎尼酸(500nM)、咖啡因(10nM)、亮氨酸(0.5mM)和HMB(5μM)。如实施例5描述的,将用所指出的组合的化合物处理的C2C12肌管用于生产条件化培养基,其随后用于处理3T3-L1脂肪细胞。按照实施例5测定脂肪酸氧化。由在按照实施例4处理的小鼠的条件化培养基和血浆中的蛋白质印迹和ELISA来测定鸢尾素水平。

蛋白质印迹:FNDC5抗体(其结合鸢尾素)由Abcam(Cambridge,MA)获得。如实施例5所述用指出的化合物组合处理C2C12肌管,培养基和细胞部分按照Bostrom等人(Nature(2012)481:463-468)的描述制备。蛋白质通过BCA试剂盒(Thermo Scientific)测定。进行蛋白质印迹时,将6μg蛋白质(培养基)或25μg(细胞裂解物)在4-20%梯度聚丙烯酰胺凝胶上分析(标准预制凝胶,Bio-Rad Laboratroies,Hercules,CA),转移至PVDF膜,在封闭缓冲液(3%BSA的TBS溶液)中孵育,然后与第一抗体(FNDC5)孵育,洗涤并与辣根过氧化物酶偶联的第二抗体孵育。使用BioRad ChemiDoc设备和软件(Bio-Rad Laboratories,Hercules,CA)进行显像和化学发光检测,用Image Lab 4.0(Bio-Rad Laboratories,Hercules,CA)评价谱带强度,其中针对背景和加载的对照进行校正。将纯化的FNDC5(Abcam,Cambridge,MA)用作这些印迹的阳性对照。在26-28kDA检测FNDC5,并在22-24kDA检测鸢尾素。

ELISA:还使用来自Phoenix Pharmaceuticals公司(Burlingame,CA)的市售酶联免疫分析试剂盒检测了来自处理的细胞的C2C12孵育培养基和小鼠血浆中的鸢尾素。该试剂盒使用鸢尾素(FNDC5[16-127]片段)和链亲和素-辣根过氧化物酶在酶标仪上于450nm处检测。

结果:

体外:来自用组合的白藜芦醇和亮氨酸、白藜芦醇和HMB、肉桂酸和亮氨酸以及肉桂酸和HMB处理的细胞的条件化培养基增加脂肪细胞的脂肪酸氧化,其在单独使用所述化合物时没有观察到(图66)。白藜芦醇与亮氨酸或HMB、肉桂酸与HMB和绿原酸与亮氨酸或HMB的组合导致肌细胞的FNDC5蛋白表达的显著增加(图67),而个体组分未表现出效果。奎尼酸与亮氨酸组合也产生FNDC5表达(图71)和鸢尾素向培养基的分泌的显著增加(图72和图73),而个体组分未表现出效果。鸢尾素向培养基的分泌是通过检测蛋白质印迹(图68和图72)和ELISA(图69)进行测量的。白藜芦醇与亮氨酸组合导致鸢尾素分泌增加了234%,从6.76至22.55ng/ml(p=0.008),白藜芦醇-HMB组合产生122.5%的增加(p=0.00001,图68和图69)。类似的,肉桂酸-亮氨酸组合刺激了40%的增加(p=0.0005),而肉桂酸-HMB组合不显著刺激鸢尾素向培养基的释放(图68)。虽然绿原酸与亮氨酸或HMB的组合增加了肌肉FNDC5蛋白的表达,但该组合对鸢尾素向培养基的分泌只产生温和的、非显著的增加。然而,绿原酸、咖啡因与亮氨酸或HMB的三方组合导致骨骼肌细胞FNDC5蛋白表达和鸢尾素向培养基分泌均显著增加(图74)。

体内:在饮食诱导肥胖的小鼠的饮食中补充低剂量的白藜芦醇(12.5mg/kg食物)和2倍的饮食亮氨酸增加(从1.21至2.42%),持续6周,导致血浆鸢尾素增加86%,从200+23至372+49ng/ml(p=0.03,图70)。低剂量白藜芦醇对此变量未表现出独立的效果。

这些数据表明,除了直接刺激骨骼肌和脂肪细胞的抗衰老酶信号传导和脂肪酸氧化之外,亮氨酸-多酚组合还刺激鸢尾素从骨骼肌的释放,从而进一步促进脂肪细胞的脂肪氧化。

实施例9–通过体外鸢尾素的BCAA+抗衰老酶途径激活剂组合物的信号

对C2C12肌管用支链氨基酸或其代谢物(BCAA)、抗衰老酶途径激活剂、两者一起进行处理,或不处理作为对照,如实施例5中所述。支链氨基酸可以是例如0.5mM的亮氨酸。抗衰老酶途径激活剂可以是例如200nM的白藜芦醇。根据实施例5中所述的一种或多种实验处理肌管产生条件化培养基。将条件化培养基分为两个样品,一种不处理的,一种被处理以减少或去除鸢尾素。减少或使鸢尾素失活的处理可包括鸢尾素免疫沉淀、添加鸢尾素中和抗体或体积排阻(例如通过过滤或肌管与脂肪细胞共培养,其中两种细胞由具有大小小于鸢尾素的大小的孔的膜分隔)。FNDC5(鸢尾素前体蛋白)的mRNA和/或蛋白质水平的测量值用于确认通过联合组合物处理而协同诱导的FNDC5的表达增加。条件化培养基处理前后的鸢尾素水平的测量值(例如通过实施例8中所述的蛋白质印迹或ELISA)用于确认未处理培养基中鸢尾素产量的增加和处理的培养基中的减少程度。然后用处理或未处理的条件化培养基处理3T3-L1脂肪细胞。然后测定线粒体生物发生的输出,例如脂肪酸氧化、葡萄糖利用、氧消耗、线粒体质量或一种或多种脂肪细胞褐化指示物(例如褐化相关基因的表达,例如Ucp1;以及脂肪酸氧化的增加)。可以如实施例4所述测定基因表达。线粒体生物发生的其它测定可以如实施例5所述进行测定。预计组合的BCAA(或BCAA代谢物)和抗衰老酶途径激活剂协同增加鸢尾素表达,且暴露于未处理培养基的脂肪细胞(如实施例5所述)会显示线粒体生物发生协同增加的迹象。进一步预计处理条件化培养基以从具有协同效应的条件化培养基中去除或使鸢尾素失活会显著地降低以其他方式观察到的线粒体生物发生。这一结果将表明此类联合组合物通过鸢尾素信号产生至少一部分协同效应。

实施例10–通过体内鸢尾素的BCAA+抗衰老酶途径激活剂组合物的信号

6周龄的雄性c57/BL6小鼠用具有增加45%能量的脂肪的高脂肪饮食(研究饮食D12451)喂养6周诱发肥胖。在该肥胖诱导期的最后,将动物随机分为7个不同饮食处理组,10只动物一组(共70只动物),并维持这些饮食6周,按照实施例4中的组。检测、样品和组织按照实施例4所述收集。收集的组织包括皮下脂肪组织,其通常为白色脂肪组织。从皮下脂肪组织中提取RNA,按照实施例4中描述的方法评价基因表达。基因表达分析包括测定PGC1α(一种已知的FNDC5表达激活剂,为鸢尾素的前体)和UCP1(一种褐化脂肪选择性基因,其表达升高受到鸢尾素的刺激)的表达水平。还评价了鸢尾素的血浆水平,其结果描述于实施例8并在图70中示出。还评价了小鼠脂肪细胞褐化的其它指示物的增加,包括在皮下脂肪和其它脂肪组织中的一种或多种其它褐化脂肪选择性基因(例如Cidea、Prdm16和Ndufs1)的表达的增加。还可以通过如实施例8中的蛋白质印迹或ELISA测定蛋白质表达。脂肪细胞中脂肪酸氧化的升高也指示了脂肪细胞褐化。

在对照小鼠的白色皮下脂肪组织中检测到最低UCP1表达。然而,对这些饮食诱导肥胖的小鼠的饮食补充低剂量的白藜芦醇(12.5mg/kg食物)和饮食中2倍增加的亮氨酸(从1.21至2.42%)6周后产生了UCP1表达344%的增加(p<0.05,图75)。低剂量的白藜芦醇对此变量未表现出独立的效果,HMB-白藜芦醇组合未表现出可检测的效果。与这些结果相一致,响应白藜芦醇-亮氨酸组合的喂养,在白色脂肪组织中存在2倍的PGC1α表达上调(p=0.04,图76)。

这些数据表明,除了在骨骼肌和脂肪细胞中直接刺激抗衰老酶信号和脂肪酸氧化,白藜芦醇-亮氨酸组合也刺激了白色脂肪组织的褐化。这与我们观察到的亮氨酸-白藜芦醇组合在体外和体内刺激鸢尾素从肌肉中释放相一致(参见,例如,实施例8)。

从上文应当可以理解,尽管已经示出和描述了特定实施方案,但仍可以对此做出各种修改,其也是本文所设想到的。这也并不意味着本发明受到说明书中提供的具体实施例的限制。虽然本发明已参照前述说明书进行了描述,在此优选的实施方案中的描述和图示并不意味着被解释为限制的意义。此外,应当理解,本发明的各方面不限于在此提出的具体描述、构造或相对比例,其取决于多种条件和变量。对本发明的实施方案的形式和细节的各种修改对于本领域技术人员将是显而易见的。因此,可以预期,本发明还应当包括任何这样的修改、变化和等价方案。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1