水溶性紫杉醇产品的制作方法

文档序号:1063701阅读:1141来源:国知局

专利名称::水溶性紫杉醇产品的制作方法
技术领域
:本发明涉及用于治疗癌症、自身免疫疾病和再狭窄的药学组合物。还涉及药用抗癌制剂,例如紫杉醇(紫杉酚)和紫杉酯(taxotere),尤其涉及通过将此药物与水溶性部分产生共轭作用来制备水溶性紫杉醇。紫杉醇是一种从太平洋紫杉-短叶红豆杉的针叶和树皮中提取的抗微管剂,在Ⅰ期临床研究和Ⅱ、Ⅲ期临床试验早期显示出对人类癌症具有明显的抗瘤作用(Horwitzetetal.,1993)。这一作用最初是在晚期卵巢和乳腺肿瘤中发现的。也已有文献记载它对小细胞和非小细胞肺癌、头颈部癌和转移黑素瘤有显著作用。但是,紫杉醇用于临床试验开发的主要难点是其不溶于水的特性。紫杉酯是由10-脱乙酰浆果赤霉素制成的半合成品,10-脱乙酰浆果赤霉素是一种从浆果红豆杉的针叶提取并经化学合成的侧链酯化而得到的无细胞毒性前体(Cortes和Pazdur,1995)。已知紫杉酯对各种癌细胞系,包括乳腺、肺、卵巢和结肠直肠癌和黑素瘤有治疗作用。在临床实验中,已将紫杉酯用于乳腺、卵巢、头颈部癌和恶性黑素瘤以达到部分或全部的治疗效果。有代表性的是将紫杉醇配制成浓缩溶液,即每ml乳浮EL(聚氧乙烯蓖麻油)和脱水乙醇(50%v/v)含6mg紫杉醇,用药前需将它进一步稀释(Goldspiel,1994)。运送所需剂量紫杉醇所需要的乳浮EL的量明显高于在乳浮(Cremophor)中配制的任何其它药物的用量。乳浮有一些毒性作用,包括血管舒张、呼吸困难和低血压。已发现这种载体也会导致实验动物和人严重的超敏反应(Weissetal.,1990)。事实上,可以给小鼠静脉注射的紫杉醇的最大剂量是按乳浮载体的急性致死毒性而定的(Eisemanetal.,1994)。另外,已知表面活性剂乳浮EL可以从聚氯乙烯袋和静脉内给药管中滤去邻苯二甲酸酯增塑剂,如二(2-乙基己基)邻苯二甲酸酯(DEHP)。已知DEHP可引起动物的肝细胞毒性,并使啮齿动物致癌。还已知这种紫杉醇制剂经过一段时间后会形成颗粒物,因此用药期间需过滤(Goldspiel,1994)。因此,需要对这种紫杉醇溶液的制备和给药进行特殊预制,以确保给患者用药时的安全,这些预制毫无疑问成本较高。现有的得到水溶性紫杉醇的试验包括制备紫杉醇的前体药物,即在2’-羟基或7-羟基位置上加上琥珀酸和氨基酸之类的助溶部分(Deutschelal,1989;Mathewetal.,1992)。但是,还没有证实这些前体药物具有足够的化学稳定性以用于进一步生产。例如,Deutschetal.(1989)报道了一种紫杉醇的2’-琥珀酸衍生物,但钠盐的水溶性仅约为0.1%,三乙醇胺和N-甲基葡糖胺盐仅约1%可溶解。另外,有报道认为氨基酸酯不稳定。Methewetal.,(1992)报道了类似的结果。Greenwaldetal.报道了紫杉酚的高度水溶性2’和7-聚乙二醇酯的合成(Greenwaldetal.,1994),但是没有记载这些化合物的体内抗癌活性的数据(Greenwaldetal.,1995)。解决这些问题的其它试验包括将脂质体和小球中的紫杉醇制成微型胶囊(Bartoni和Boitard,1990)。已知这种脂质体制剂如游离紫杉醇一样是有效的,但只有仅含少于2%紫杉醇的脂质体制剂在物理上是稳定的(Sharma和Straubinger,1994)。遗憾的是已证实小球制剂有毒。因此仍需要有一种能运输有效量紫杉醇的水溶性紫杉醇制剂,它不具有药物不溶性所带来的缺陷。另一个防碍紫杉醇推广运用的原因是生产紫杉醇的来源有限,导致用紫杉醇治疗费用昂贵。例如一个疗程可能要花几千美元。另一缺陷是紫杉醇并不是对所有肿瘤有效,这可能是由于紫杉醇不能进入肿瘤中。因此,急需血清半衰期长、水溶性的紫杉醇的有效制剂和相关药物,以用于治疗肿瘤、类风湿性关节炎之类的自身免疫疾病,以及用于预防因创伤而致的血管再狭窄,例如血管成形术和植入斯坦特印固定模。本发明为了克服现有技术的这些或其它缺陷,即通过提供了包含化疗和抗血管原药物的组合物,例如与聚谷氨酸或聚天冬氨酸之类的水溶性聚合物,或与水溶性金属螯合剂共轭的紫杉醇或紫杉酯。令人惊奇的是,本文所述的组合物可有效地作为抗典型的肿瘤模型的抗肿瘤剂,并且预计至少与紫杉醇或紫杉酯治疗的任何疾病或症状(已知用紫杉烷或taxoid治疗是有效的)是一样有效的。本发明组合物提供了克服药物自身不溶性的水溶性taxoid,还具有控制释放的优点,以便单独静脉注射用药后使本文所述的动物模型中的肿瘤消除。本文所述的方法也可用于制备其它治疗剂、造影剂和药物的水溶性共轭聚合物,包括依托泊甙、替尼泊甙、氟达拉滨、阿霉素、柔红霉素、大黄素、5-氟尿嘧啶、5-氟脱氧尿苷(FUDR)、雌二醇、喜树碱、维生素A酸、维拉帕米、epothilones和环孢菌素。尤其是这些含游离羟基的药剂可以按本文所述的与紫杉醇相似的化学反应与聚合物进行共轭。这种共轭作用应该不超出化学
技术领域
的常规技术范围以及本发明权利要求的范围。这些药剂包括但不局限于依托泊甙、替尼泊甙、喜树碱和epothilones。正如本文所述,与水溶性聚合物共轭是指药物与聚合物或螯合剂的共价键合。还应理解本发明的水溶性共轭物也可以与包括其它抗肿瘤药或抗癌药在内的药物一起使用。这种结合在本
技术领域
是公知的。在某些治疗中,本发明的水溶性紫杉醇或紫杉酯可以与含铂药物、阿霉素或道诺红霉素之类的抗生素、或者其它用于与紫杉酚结合的药物相结合使用。化疗药物与聚合物的共轭作用是为了达到减少系统毒性和提高治疗指标的目的。分子质量大于30KDa的聚合物不容易通过正常毛细管和小球的内皮,因此,使正常组织减少了由药物介导的不相关的毒性(Maeda和Matsumura,1989;Regnolds,1995)。另一方面,恶性肿瘤常常使毛细管内皮紊乱,且较正常组织的脉管系统的渗透性更强(Maeda和Matsumura,1989;Fidleretal.,1987)。因此,通常残留在脉管系统中的聚合物-药物共轭物会选择性地从血管中滤出进入肿块,导致活性治疗药物的肿瘤块聚集。另外,聚合物-药物共轭物也可作为药物持续释放的仓库,对肿瘤细胞产生长期的药物作用。最后,水溶性聚合物可用于使药物保持稳定,以及使其它不溶的化合物加溶。目前,已经对各种合成的和天然的聚合物的促进肿瘤专一性药物的运输的能力进行了检测(Kopecek,1990,Maeda和Matsumura,1989)。但是,目前仅很少一些正进行临床评定,包括日本的SMANCS和英国的HPMA-Dox(Maeda,1991;Kopecek和Kopeckoua,1993)。在本说明书中,已知taxoid是指包括紫杉醇和紫杉酯以及其它含紫杉烷结构的化合物在内的那些化合物(Cortes和Pazdur,1995),可以从天然资源如紫杉,或从细胞培养、或化学合成分子中分离出来,制剂优选化学通式为C47H51NO14的化合物,包括[2aR-[2aα,4β,4αβ,6β,9α(αR*,βS*),11α,12α,12aα,12bα,]]-β-(苯甲酰氨基)-α-羟基苯丙酸6,12b,双(乙酰氧基)-12-(苯甲酰氧基)-2a,3,4,4a,5,6,9,10,11,12,12a,12b-十二氢-4,11一二羟基-4a,8,13,13-四甲基-5-氧代-7,11-亚甲基-1H-芳癸并[3,4]苯并-[1,2-b]乙氧-9-基酯。已知紫杉醇和紫杉酯分别较其它某些类型抗肿瘤药更有效,并且在本发明的实施中,那些对特殊的taxoid更敏感的肿瘤将用水溶性的taxoid共轭物进行治疗。在这些实施方式中,紫杉醇是与水溶性金属螯合剂进行共轭作用的,该组合物可进一步包含螯合的金属离子。本发明的螯合金属离子可以是下面任一金属的离子形式铝、硼、钙、铬、钴、铜、镝、铒、铕、钆、镓、锗、钬、铟、铱、铁、镁、锰、镍、铂、铼、铷、钌、钐、钠、锝、铊、锡、钇或锌。在某些优选的实施方式中,螯合金属离子为放射性核素,如下面所例金属之一的放射性同位素。优选的放射性核素包括,但不局限于,67Ga(镓),68Ga,111In(铟),99mTc(锝),90Y(钇),114mIn和193mpt(铂)。优选的用于本发明实施例中的水溶性螯合剂包括,但不局限于,二亚乙基三胺五乙酸(DTPA)、乙二胺四乙酸(EDTA)、1,4,7,10-四氮杂环十二烷-N,N',N”,N”’-四乙酸(DOTA)、四氮杂环十四烷-N,N’,N”,N”’-四乙酸(TETA)、羟基亚乙基二膦酸(HEDP)、二巯基琥珀酸(DMSA)、二亚乙基三胺四亚甲基膦酸(DTTP)和1-(对-氨基苄基)-DTPA、1,6-二氨基己烷-N,N,N’_,N’-四乙酸、DPDP和亚乙基双(氧亚乙基次氮基)四乙酸(EGTA),DTPA为最佳优选。本发明的优选实施方式也可以是含111In-DTPA-紫杉醇的组合物。在本发明的某些实施方式中,紫杉醇或紫杉酯可以与水溶性聚合物共轭,优选将聚合物与紫杉醇或紫杉酯两者的2′-或7-羟基共轭。因此,当将功能基团(如用上述的紫杉醇的2’-羟基)用于药物的共轭作用时,应使用一种酯以确保活性药物从聚合物载体释放。优选的聚合物包括,但不局限于聚乙二醇、聚(l-谷氨酸)、聚(d-谷氨酸)、聚(dl-谷氨酸)、聚(l-天冬氨酸)、聚(d-天冬氨酸)、聚(dl-天冬氨酸)、(聚乙二醇)、上述氨基酸与聚乙二醇的共聚物、聚己内酯、聚乙醇酸和聚乳酸,以及聚丙烯酸、聚(2-羟乙基l-谷氨酰胺)、羧甲基葡聚糖、透明质酸、人血清白蛋白和藻酸,特别优选为聚乙二醇、聚天冬氨酸和聚谷氨酸。本发明的聚谷氨酸或聚天冬氨酸的分子量优选约5,000-约100,000,更好的优选约为20,000-80,000,或甚至约为30,000-60,000。本发明组合物可以分散在下面所述的药用载体溶液中。这种溶液为灭菌或无菌的,可包括水、缓冲液、等渗剂或其它本领域技术人员熟知的成分,当给动物或人体使用时,它们不会引起过敏或其它有害反应。因此,本发明也描述了一种包含化疗或抗癌药物的药物组合物,化疗或抗癌药如与高分子量水溶性聚合物或螯合剂共轭的紫杉醇或紫杉酯。此药物组合物可包括聚乙二醇、聚谷氨酸、聚天冬氨酸或螯合剂,优选DTPA。还已知放射性核素也可用作抗肿瘤剂或药物,且本发明药物组合物可包括一种治疗量的螯合放射性同位素。在某些实施方式中,本发明记载了测定肿瘤组织摄取紫杉醇或紫杉酯之类的化疗药物的方法。此方法包括,用螯合金属离子获得药物和金属螯合剂的共轭物,使该组合物与肿瘤组织相接触,并检测肿瘤组织中的螯合金属离子。肿瘤组织中的这种螯合金属离子的存在是通过肿瘤组织的摄取表现的。这种螯合金属离子可以是放射性核素,可用闪烁照相法检测。动物或人体中也可以出现这种肿瘤组织,然后将此组合物给患者使用。在某些实施方式中本发明也记载了治疗宿主癌症的方法。此方法包括获得含化疗药的组合物,化疗药例如与水溶性聚合物或螯合剂共轭并分散在药用溶液中的紫杉醇或紫杉酯,以及将有效量这种溶液给药于要治疗肿瘤的患者。优选的组合物包括与聚谷氨酸或聚天冬氨酸共轭的紫杉醇或紫杉酯,更好的优选为聚(l-谷氨酸)或聚(l-天冬氨酸)。本发明组合物对于治疗用未共轭的taxoid治疗有效的任何类型的癌症都是有效的,这些癌症包括,但不局限于乳腺癌、卵巢癌、恶性黑素瘤、肺癌、胃癌、结肠癌、头颈部癌或白血病。治疗肿瘤的方法可包括某些在给予治疗量的药物或前体药物之前预测肿瘤摄取紫杉醇或紫杉酯的方法。此方法包括上述任何成像技术,其中将紫杉醇-螯合剂-螯合金属给宿主使用,并在肿瘤中进行检测。此步骤提供了一种有效的检测途径,即特殊的肿瘤对DTPA-紫杉醇疗法无反应,在这些情况下药物就无法进入肿瘤中。如果能将成像技术用于预测对紫杉醇的反应和确定不会产生反应的病人,那么则可为病人节省昂贵的开支和起关键作用的时间。这一假设也即是说如果在肿瘤中没有累积适量的化疗药物,则肿瘤对这种药物产生反应的可能性相对要小。在一些实施方式中,本发明描述了获得患者的身体图像的方法。这种身体图像是通过以下得到的,即给患者使用有效量的与紫杉醇-螯合剂共轭物螯合的放射性金属离子,然后检测放射性金属的闪烁照相信号得到一种图像。本发明还概括性描述了一种减少系统性自身免疫疾病的至少一种症状的方法,此方法包括给患有系统性自身免疫疾病的患者使用有效量的含与聚(l-谷氨酸)或聚(l-天冬氨酸)共轭的紫杉醇或紫杉酯的组合物。在本公开说明书中特别引人注目的是类风湿性关节炎的治疗,当在标准的乳浮制剂中给药时,这种疾病有时对紫杉醇会产生反应(美国专利5,583,153)。当治疗肿瘤时,本发明的水溶性taxoid的有效性应该不会被与水溶性部分的共轭作用降低,并且水溶性前体药物可用作一段时间后释放活性药物的控释剂。因此,预计本发明组合物与抗类风湿性关节炎的紫杉酚同样有效,例如,还具备控释的优点。还已知本发明的taxoid组合物可与其它药物如血管生成抑制剂(AGM-1470)(Oliveretal.,1994)或氨甲喋呤结合使用。紫杉醇还能防止气囊血管成形术后的再狭窄这一发现表明,本发明的水溶性紫杉醇和紫杉酯还有除直接非肠道给药外的各种用法(WO9625176)。例如,水溶性紫杉醇可用作植入医疗装置的涂覆剂,这些装置如管道、旁路、导管、人工移植物、针、电移植物如起搏器,尤其是动脉或静脉斯坦特固定模,包括可膨胀的气囊斯坦特固定模。在这些实施方式中,水溶性紫杉醇可与可植入的医疗装置结合,或者,水溶性紫杉醇可被动吸附到可植入装置的表面。例如,通过将斯坦特固定模浸泡在聚合物-药物溶液中或将这种溶液喷在斯坦特固定模上,使聚合物-药物共轭物覆盖在斯坦特固定模上。适用于可植入装置的材料应是具有生物相容性且无毒性的,可选自金属,如镍-钛合金、钢,或生物相容性聚合物,水凝胶、聚胺酯、聚乙烯、乙烯乙酸乙烯酯共聚物等。在优选的实施方式中,将水溶性紫杉醇,尤其是PG-紫杉醇共轭物,涂覆在斯坦特固定模上,以植入到气囊血管成形术后的动脉或静脉中。因此,本发明还涉及一种防止血管损伤后的动脉再狭窄或动脉闭塞的方法,此方法包括给患者使用含与聚(l-谷氨酸)或聚(l-天冬氨酸)共轭的紫杉醇或紫杉酯的组合物。在应用此方法的过程中,患者可以是冠脉分流术、血管外科、器官移植或者冠脉或动脉血管成形术的病人,可以将本组合物直接、静脉注射、甚至或涂覆在斯坦特固定模上给药,将此斯坦特固定模植入在血管损伤部位。因此本发明的一个实施方式是一种可植入的医疗装置,其中该装置涂覆有抑制平滑肌细胞增殖的组合物,此组合物包含有效量的与聚谷氨酸或聚天冬氨酸共轭的紫杉醇或紫杉酯。优选的装置是涂覆有本文所述的本发明组合物的斯坦特固定模,优选将斯坦特固定模用于气囊血管成形术后,此涂覆层能防止再狭窄。本发明还优选含与紫杉醇2’或7羟基或两者的共轭的聚谷氨酸的组合物,或含与紫杉醇2′或7羟基或两者共轭的聚天冬氨酸的组合物。本文所述的“聚谷氨酸”或“聚谷氨酸类”包括聚(l-谷氨酸)、聚(d-谷氨酸)和聚(dl-谷氨酸),“聚天冬氨酸”或“聚天冬氨酸类”包括聚(l-天冬氨酸)、聚(d-天冬氨酸)和聚(dl-天冬氨酸)。除非另有说明,本文所用的所有技术词汇的意思与本发明所属
技术领域
的普通技术人员所知道的相同。虽然与本文所述的方法和物质类似或相同的任何方法和物质都可用于本发明的实践或实验中,但优选的方法和物质现都已说明了。图1A为紫杉醇、PEG-紫杉醇和DTPA-紫杉醇的化学结构。图1B为制备PG紫杉醇的化学结构和反应式。图2为紫杉醇、PEG紫杉醇和DAPA-紫杉醇对B16黑素瘤细胞增殖的影响。图3为DTPA-紫杉醇对MCa-4乳房肿瘤的抗肿瘤作用。图4为用紫杉醇、DTPA-紫杉醇和PEG-紫杉醇治疗后,肿瘤直径达到12mm的平均时间(天)。图5为静脉注射111In-DTP-紫杉醇和111In-DTPA后,患MCa-4肿瘤小鼠的γ-闪烁扫描图。箭头表示肿瘤。图6为在37℃、PH7.4的PBS中测得的PG-紫杉醇的水解降解作用。-□-代表保持与水溶性PG结合的紫杉醇的百分比,-△-表示释放的紫杉醇的百分比,-○-表示产生的代谢产物1的百分比。图7A为PG-紫杉醇对患鼠乳腺肿瘤的大鼠的抗肿瘤作用。-□-表示对单独静脉注射一定剂量PG(0.3g/kg)的反应;-△-表示对紫杉醇(40mg/kg)的反应,-○-表示对PG-紫杉醇(相当于60mg紫杉醇/kg)的反应。图7B为PG-紫杉醇和紫杉醇对患0Ca-1肿瘤的小鼠的抗肿瘤作用。-□-表示对单独静脉注射一定剂量PG(0.8g/kg)的反应;-△-表示对紫杉醇(80mg/kg)的反应,-●-表示对PG-紫杉醇(相当于80mg紫杉醇/kg)的反应,-○-表示对PG-紫杉醇(相当于160mg紫杉醇/kg)的反应。图7C为PG-紫杉醇对患Mca-4乳房癌瘤的小鼠的抗肿瘤作用。-□-表示对单独静脉注射一定剂量生理盐水的反应,-△-表示对单独静脉注射一定剂量PG(0.6g/kg)的反应,-◆-表示对PG-紫杉醇(40mg/kg)的反应,-◇-表示对PG-紫杉醇(相当于60mg/kg)的反应,-○-表示对PG-紫杉醇(120mg/kg)的反应。图7D为PG-紫杉醇对小鼠的软组织肉瘤(FSa-Ⅱ)的抗肿瘤作用。-□-表示对单独静脉注射一定剂量生理盐水的反应,-◇-表示对单独静脉注射一定剂量PG(0.8g/kg)的反应,-○-表示对紫杉醇(80mg/kg)的反应,-△-表示对PG-紫杉醇(相当于160mg/kg)的反应。图7E为PG-紫杉醇对小鼠的同源肝癌(Hca-Ⅰ)的抗肿瘤作用。-□-表示对单独静脉注射一定剂量生理盐水的反应,-△-表示对单独静脉注射一定剂量PG(0.8g/kg)的反应,-○-表示对PG-紫杉醇(80mg/kg)的反应,-△-表示对PG-紫杉醇(相当于160mg/kg)的反应。图8为紫杉醇从磷酸缓冲液(PH7.4)中的PEG-紫杉醇中释放的总图。紫杉醇为-X-,PEG-紫杉醇为-O-。图9为PG-紫杉醇对MCa-4乳房瘤的抗肿瘤作用。-□-表示对单独静脉注射PEG的盐水溶液的反应(60mg/kg),-■-表示对乳浮/醇载体的反应,-○-表示单独使用40mg紫杉醇/kg体重,-·-表示按相当于40mg紫杉醇/kg体重的量使用PEG-紫杉醇。本发明来源于一个新的发现,即紫杉醇和紫杉酯的水溶性制剂,以及这些制剂对体内肿瘤细胞的出人意料作用。将聚(l-谷氨酸)与紫杉醇的共轭物(PG-紫杉醇)给患卵巢癌(0Ca-1)的小鼠使用,与同样剂量不合PG的紫杉醇相比,前者可显著延迟肿瘤生长。仅用紫杉醇治疗的小鼠或用游离紫杉醇和PG的结合物治疗的小鼠,起初都出现延迟的肿瘤生长,但十天后,肿瘤又再生到与未治疗的对照组同样的水平。而且,当使用PG-紫杉醇共轭物的最大耐受量(MTD)(160mg当量紫杉醇/kg)时,肿瘤生长完全被抑制,肿块缩小,治疗后对小鼠进行了两个月的观察,残留的肿块不见了(MTD是指在单独静脉内注射后的两周内体重减轻15%或更少的最大剂量)。在类似的研究中,检测了PG-紫杉醇对乳腺癌(13762F)大鼠的抗肿瘤作用。另外,发现使用剂量(相当40-60mg紫杉醇)/kg的PG-紫杉醇可使肿瘤完全消除。这些异外的结果表明,单独静脉注射聚合物-药物共轭物、PG-紫杉醇后可成功地消除小鼠和大鼠已有的固体肿块。而且,PH为7.4、半衰期为40天的PG-紫杉醇是已知的最稳定的水溶性紫杉醇衍生物之一(Deutsch,etal.,1989;Mathewetal.,1992;Zhaoandkingston,1991)。本文还发现在用B16黑素瘤细胞系进行的体内抗肿瘤能力测定中,DAPA-紫杉醇与紫杉醇的效果相同。用剂量为40mg/kg体重单独注射治疗MCa-4乳房肿瘤时,DTPA紫杉醇与紫杉醇相比在抗肿瘤作用方面没有任何显著不同。而且,用γ-闪烁扫描器显示了在MCa-4中有111In标记的DTPA-紫杉醇聚集,这表明本发明的螯合剂与抗肿瘤药共轭可有效地用于肿瘤成像。本发明的新化合物和方法较现有的方法和组合物有明显的优势,即通过提供含水溶性的控释紫杉醇的组合物,使水溶性紫杉醇具有提高基于紫杉醇的抗癌疗效的作用。这种组合物不需要带有在现有紫杉醇组合物中表现出副作用的溶剂。另外,保持有抗肿瘤活性的放射性标记的紫杉醇,也可用于肿瘤成像。而且,本发明闪烁照相、单光子发射计算机化断层显像(SPECT)或正电子发射断层显象(PET)可测定紫杉醇是否被特殊的肿块摄取。然后可将这种测定法用于确定抗癌治疗的效果。这些信息对于指导医务人员选择施行紫杉醇疗法的病人是有益的。有两种方式可使紫杉醇变成水溶性的将紫杉醇与用作药物载体的水溶性聚合物共轭,和用水溶性螯合剂衍生抗肿瘤药物。后者也为用放射性核素(如111In,90Y,116Ho,68Ga,99mTc)标记进行核成橡和/或进行放射性治疗研究提供了一个机会。紫杉醇、聚乙二醇-紫杉醇(PEG-紫杉醇)、聚谷氨酸-紫杉醇共轭物(PG-紫杉醇)和二亚乙基三胺五乙酸-紫杉醇(DTPA-紫杉醇)的结构如图1所示。在本发明的一些实施方式中,可以以水溶性盐形式(钠盐、钾盐、四丁基铵盐、钙盐、正铁盐等)制备DTPA-紫杉醇或其它紫杉醇-螯合剂共轭物,如EDTA-紫杉醇、DTTP-紫杉醇或DOTA-紫杉醇。这些盐可用作肿瘤治疗剂。其次,DTPA-紫杉醇或其它紫杉醇-螯合剂可用作诊断试剂,当用放射性核素如111In或99mTc进行标记时,可作为放射性示踪剂,与核成像术一同用于检测某些肿瘤。已知除紫杉醇(紫杉酚)和紫杉酯(taxotere)外,其它紫杉醇衍生物也可用于本发明的组合物和方法中,所有这些组合物和方法都包含在附加的权利要求书中。DTPA-紫杉醇的毒性研究、药物动力学和组织分布表明用单剂量静脉(ⅳ)注射观察到的小鼠中的DPTA-紫杉醇的LD50(50%致死量)约为110mg/kg体重。由于紫杉醇的有限的溶解性和因静脉内给药而致的载体毒性而产生的剂量-体积抑制,难以用紫杉醇进行直接对比。但是,根据本说明书,本化疗
技术领域
的普通技术人员可确定临床研究用于病人的有效的最大耐受量。在本发明的某些实施方式中,用聚合物-紫杉醇共轭物涂覆的斯坦特固定模可用于预防气囊血管成形术后的再狭窄、动脉闭塞。与标准的气囊血管成形术相比,在冠状血管成形术中使用可膨胀的气囊斯坦特固定模的临床试验的新近结果在再狭窄的开放和减少方面表现出明显优势(Serruysetal.,1994)。根据损伤应答假说,新内膜形成伴随有细胞增殖的增加。目前,普遍认为导致自发和加速的动脉粥样硬化的关键是平滑肌细胞(SMC)增殖(Phillips-Hughes和kandarpa,1996)。由于动脉损伤后的表型增殖与肿瘤细胞的相似,因此可以将抗肿瘤药用于预防新内膜的SMC聚集。使用连接有聚合物的抗增殖剂涂覆的斯坦特固定模,能在较长的一段时间内释放足够浓度的这些药剂,这样就可防止增生的内膜和血管中层向腔内生长,因而减轻了再狭窄。由于紫杉醇能抑制小鼠模型中胶原蛋白诱导的关节炎(Oliveretal.,1994),本发明制剂还可用于治疗自身免疫性和/或炎性疾病如类风湿性关节炎。与微管蛋白结合的紫杉醇可改变平衡以稳定微管聚合物,并且通过阻断后期G2有丝分裂期的细胞,使此药物抑制真核细胞复制。紫杉醇抑制关节炎有几种作用机制。例如,紫杉醇的时相特异的细胞毒作用可迅速作用增殖的炎性细胞,而且紫杉醇可抑制细胞有丝分裂、迁移、趋化性、细胞内转运和嗜中性白细胞的H2O2产生。另外,紫杉醇通过阻断配位的内皮细胞迁移而表现出抗血管原活性(Oliveretal.,1994)。因此,本发明的聚合物与前体药物的共轭物与游离紫杉醇一样可用作治疗类风湿性关节炎。本文所公开的聚合物共轭制剂也具有使药物释放延迟或持久、以及更好的稳定性的优点。治疗关节炎还有一个方法是可将本制剂注射到或直接植入受影响的关节部位。适于注射的紫杉醇或紫杉酯的药物制剂包括灭菌水溶液或分散体,以及用于制备灭菌注射溶液或分散体的灭菌粉末。所有情况中的剂型必须是无菌的注射用液体。在生产和贮存条件下必须稳定,且保存时必须防止细菌和真菌之类的微生物的污染。载体可以是溶剂或分散介质,包括水、乙醇、多羟基化合物(如甘油、丙二醇和液体聚乙二醇等)、它们的适当混合物,和植物油。各种抗细菌和抗真菌剂,如对羟基苯甲酸、氯代丁醇、苯酚、山梨酸、乙基汞硫代水杨酸钠,都具有抗微生物作用。在许多情况下,优选包括等渗剂,如糖或氯化钠。制备无菌注射溶液是在适当溶剂中将所需量的活性化合物与各种上述的其它成分(按需要)混合,然后过滤灭菌。一般来说,通过将各种已灭菌的活性成分混合在灭菌载体中来制备分散体,这种载体包含基本的分散介质和上述的其它所需成分。在用灭菌粉末制备灭菌注射液的情况中,优选的制备方法是真空干燥和冷冻干燥,这样就可从前述的灭菌过滤溶液得到活性成分和其它所需的附加成分的粉剂。本文所述的“药用载体”包括任何或所有溶剂、分散介质、包衣、抗细菌和抗真菌剂以及等渗剂等。这些介质和试剂用于药物活性物质的用途是本领域技术人员周知的。任何常用介质或试剂除了与活性成分不相容外,应该可用于治疗组合物中。组合物中也可加入补充的活性成分。“药用的”一词也是指当将分子本身和组合物给动物或人使用时,不会产生变态反应或类似的不良反应。对于水溶液的非肠道给药,如需要应将溶液适当缓冲,首先用足量盐水或葡萄糖将液体稀释剂变成等渗。这种特殊的水溶液尤其适用于静脉内或腹膜内给药。在这一点上,根据本说明书本领域普通技术人员可知道哪些灭菌含水介质可以使用。下面的实施例是用以证明本发明的优选实施方式。本领域普通技术人员应该清楚下面实施例所公开的技术是本发明人发现的、在本发明实施中能很好发挥作用的技术,因此可将它视为优选的实施方式的一部分。但是,根据本发明,本领域普通技术人员还应知道,在不脱离本发明的内容和范围的前提下,可以对所公开的特殊实施方式进行多种修改,但仍可得到相同或相似的结果。实施例1DTPA-紫杉醇DTPA-紫杉醇的合成于0℃往紫杉醇(100mg,0.117mmol)无水DMF(2.2ml)溶液中加入二亚乙基三胺五乙酸酐(DTPAA)(210mg,0.585mmol)。在4℃将反应混合物搅拌一夜。将悬浮液过滤(0.2umMillipore过滤器)以去除未反应的DTPA。将滤液注入蒸馏水中,在4℃搅拌20分钟,收集沉淀物。通过制备型薄层层析(TLC)的C18硅胶板将粗制品纯化,并在乙腈/水(1∶1)中展开。紫杉醇的Rf值为0.34。刮除紫杉醇上面的、Rf值为0.65-0.75的条带,再用乙腈/水(1∶1)混合物洗脱,去除溶剂得到15mgDTPA-紫杉醇(产率10.4%):mp:>226℃分解。紫外光谱(钠盐溶液)在228nm出现最大吸收,这也是紫杉醇的特征。质谱(FAB)m/e1229(M+H)+,1251(M+Na)、1267(M+K)。在’HNMR光谱(DMSO-d6)中,DTPA的NCH2CH2N和CH2OOH的共振分别在2.71-2.96ppm处显示复合系列信号,在3.42ppm处为多种信号。紫杉醇中4.10ppm处C7H的共振转变为5.51ppm,这提示在7位点有酯化作用。剩下的光谱是与紫杉醇结构的一致。在0.05M当量数NaHCO3中加入DTPA-紫杉醇的乙醇溶液,也可得到DTPA-紫杉醇的钠盐,然后冷冻干燥得到水溶性固体粉末(溶解度>20mg当量紫杉醇/mL)。DTPA-紫杉醇的水解稳定性在加速条件下研究DTPA-紫杉醇的水解稳定性。简而言之,即将1mgDTPA-紫杉醇溶解在1ml0.5MNaHCO3水溶液(PH9.3)中,再用HPLC分析。HPLC系统由以下部分组成一个填充C184um硅胶的水150×3.9(i.d.)mmNova-Pak柱、一个Perkin-Elmer无梯度液相层析(LC)泵、一个PENelson900系列界面、一个光谱-物理学UV/Vis检测器以及一个数据站。在228nm用UV检测,洗脱液(乙腈/甲醇/0.02M乙酸铵=4∶1∶5)以1.0ml/分流动。DTPA-紫杉醇和紫杉醇的保留时间分别为1.38和8.83分钟。将峰值量化并与标准曲线对比以确定DTPA-紫杉醇和紫杉醇浓度。室温下所测得的0.5MNaHCO3溶液中的DTPA-紫杉醇的半衰期为16天。DTPA-紫杉醇对B16小鼠体内黑素瘤细胞生长的作用将细胞按2.5×104细胞/ml的浓度种在24孔平板中,并于37℃在含5.5%CO2的97%湿度下在50∶55Delbecco改进的最小必需培养基(DEM)和含10%小牛血清的F12培养基中生长24小时。然后用含5×10-9M-75×10-9M浓度的紫杉醇或DTPA-紫杉醇的培养基代替此培养基。40小时后,经胰蛋白酶消化使细胞释放,并用Coulter计数器进行计数。细胞培养基中的DMSO(二甲基亚砜,用于溶解紫杉醇)和0.05MNaHCO3溶液(用于溶解DTPA-紫杉醇)的最终浓度小于0.01%。对照研究表明这一数量的溶剂对细胞生长不产生任何作用。DTPA-紫杉醇对B16黑素瘤细胞生长的作用如图2所示。培养40小时后,比较各种浓度DTPA-紫杉醇的细胞毒性。紫杉醇和DTPA-紫杉醇的IC50分别为15nM和7.5nM。对乳腺癌(MCa-4)肿瘤模型的抗肿瘤作用在雌性(C3Hf/kam)小鼠的右腿肌肉上接种乳腺癌(MCa-4)(5×105细胞/肌肉)。当肿瘤长至8mm(约2周)时,给予10,20和40mg当量紫杉醇/kg体重的单剂量紫杉醇或DTPA-紫杉醇。对照研究中,使用盐水和用盐水稀释(1∶4)的无水乙醇/乳浮50/50。每天测量肿瘤生长,即测定三个正交肿瘤直径。当肿瘤直径达12mm时,计算肿瘤生长延迟。当肿瘤直径约为15mm时,小鼠就会死亡。肿瘤生长曲线如图3所示。与对照组相比,紫杉醇和DTPA-紫杉醇的剂量为40mg/kg时具有抗肿瘤作用。分析数据以确定肿块直径达12mm的平均天数。统计学分析表明,剂量为40mg/kg时,与盐水治疗对照相比,DTPA-紫杉醇延迟的肿瘤生长有显著性意义(P<0.01)。对DTPA-紫杉醇而言,肿块直径达12mm的平均时间为12.1天,紫杉醇为9.4天(图4)。用111In对DTPA-紫杉醇进行放射性标记在2ml的V形瓶中连续加入40ul0.6M乙酸钠(pH5.3)缓冲液、40ul0.06M柠檬酸钠(pH5.5)、20ulDTPA-紫杉醇的乙醇溶液(2%W/V)和20ul乙酸钠缓冲液(pH5.5)中的111InU3溶液(1.0mCi)。在室温培养30分钟后,用盐水和随后的乙醇作为流动相,使混合物通过一个C18Sep-Pac柱,从而使标记的紫杉醇纯化。用盐水去除游离的111In-DTPA(<3%),同时在乙醇洗涤中收集111In紫杉醇。在氮气中蒸发乙醇,盐水中则再次形成标记性产物。放射性化学试剂产率84%。分析111In-DTPA-紫杉醇用HPLC分析反应混合物和111In紫杉醇的纯度。此系统由LDC二分泵、填充ODS5um硅胶的100×8.0mm(i.d.)水柱组成。用水和甲醇的梯度混合物(15分钟后梯度为0%-85%甲醇)以1ml/分的流速洗脱此水柱。用NaI晶体检测器和光谱-物理学UV/Vis检测器监测此梯度系统。正如HPLC分析证实的,用Sep-Pak柱纯化去除大多数111In(保留时间为2.7分钟)。111In-DTPA可能是来自DTPA-紫杉醇中的痕量DTPA杂质。111In-DTPA紫杉醇的放射性层析谱与其UV层析相一致,这表明12.3分钟时的峰值实际上是靶化合物。在同样的层析条件下,紫杉醇的保留时间为17.1分钟。用HPLC分析测定的最终制剂的放射性化学试剂纯度为90%。全身闪烁照相在雌性C3Hf/kam小鼠的右腿肌肉中接种乳腺癌(MCa-4)(5×105细胞)。当肿块直径长至12mm时,将小鼠分成两组。腹膜内注射苯巴比妥钠使组Ⅰ小鼠麻醉,然后经尾静脉注射111In-DTPA-紫杉醇(100-200mCi)。将装有中等能量准直仪的γ-照相机正对小鼠安放(3个/组)。在注射后5,30,60,120,240分钟和24小时收集连续5分钟所得的图像。组Ⅱ中,除用111In-DTPA注射作对照外,过程与组Ⅰ相同。图5表示用111In-DTPA和111In-DTPA紫杉醇注射的动物的γ闪烁照相图。111In-DTPA具有以下特点,即从血浆中快速清除,在尿中快速而高效排泄,这样在肾中仅极少保留,在肿块、肝脏、肠道和其它器官或躯干部位几乎没有保留。对比之下,111In-DTPA-紫杉醇与紫杉醇具有相似的药理学特性(Eisemanetal.,1994)。大脑中的放射性几乎不存在。肝和肾具有最大的组织与血浆比例。药物从血液清除的一个主要途径是放射性标记的DTPA-紫杉醇或其代谢产物的肝胆排泄。与紫杉醇不同,相当数量的111In-DTPA-紫杉醇还通过肾脏排泄,这在紫杉醇清除中仅占一小部分。肿瘤对111In-DTPA-紫杉醇有明显的摄取作用。这些结果表明111In-DTPA-紫杉醇可检测一些肿瘤,并能定量肿瘤摄取的111In-DTPA-紫杉醇,这样反过来可帮助选择用紫杉醇治疗的病人。实施例2聚谷氨酸紫杉醇本实施例证实了紫杉醇与水溶性聚合物,聚(L-谷氨酸)(PG),的共轭作用。用作药物载体的水溶性聚合物是众所周知的(kopecek,1990;Maeda和Matsumura,1989)。除了具有使其它不溶性药物加溶的能力外,药物一聚合物共轭物还可用作控制药物释放的慢释点。PG-紫杉醇的合成选择PG作为紫杉醇的载体,这是因为它易被溶酶体酶类降解、在血浆中稳定且包含足够的供药物吸附的功能基团。有几种抗肿瘤药物已与PG共轭,包括阿霉素(VanHeeswijketal.,1985;Hoesetal.,1985)、环磷酰胺(Hiranoetal.,1979)和阿糖胞苷。将PG钠盐(MW34k,Sigma,0.35g)溶解在水中。用0.2MHCl将水溶液的pH调至2。收集沉淀物,用双蒸水渗析,冰冻干燥得到0.29gPG。往PG在干DMF(二甲基甲酰胺)(1.5mL)中的溶液(75mg,重复单位FW170,0.44mmol)中加入20mg紫杉醇(0.023mmoL,PG/紫杉醇的摩尔比=19)、15mg二环己基碳二亚胺(DCC)(0.073mmoL)和少量二甲氨基吡啶(DMAP)。在室温下进行4小时反应。薄层层析(TLC,硅胶)显示紫杉醇(Rf=0.55)完全转变成聚合物共轭物(Rf=0,流动相,CHCl3/MeOH=10∶1)将氯仿加入反应混合物中。收集所得的沉淀物,并在真空中干燥得到65mg聚合物-药物共轭物。通过改变起始物质中紫杉醇与PG的重量比,可合成含不同浓度紫杉醇的聚合物共轭物。将上述产物溶解在0.5MNaHCO3中得到PG-紫杉醇的钠盐。用蒸馏水(MWCO1,000)对PG-紫杉醇的水溶液进行渗析,以去除分子量小的杂质和剩余的NaHCO3盐。将渗析物冰冻干燥得到88.6mg白色粉末。用UV(下述)测得这种聚合物的共轭物中的紫杉醇的含量为21%(w/w)。产率(转化为结合聚合物的紫杉醇,UV):93%。用这种方法仅增加所用的紫杉醇与PG的比例,就可合成高紫杉醇含量(达35%)的PG-紫杉醇。1H-NMR(GE型GN500谱仪,500MHz,在D2O中)δ=7.75-7.36ppm(紫杉醇的芳香族成分);紫杉醇的脂肪族成分的1H-NMR分布为δ=6.38ppm(C10-H),5.97ppm(C13-H),5.63和4.78ppm(C2’-H),5.55-5.36ppm(C3’-H和C2-H,m),5.10ppm(C5-H),4.39ppm(C7-H),4.10ppm(C20-H),1.97ppm(OCOCH3),和1.18-1.20pm(C-CH3)。紫杉醇的其它共振被PG的共振掩盖了。4.27ppm(H-α)、2.21ppm(H-γ)和2.04ppm(H-β)处的PG共振可按纯PG光谱。很难准确分辨和测定与聚合物共轭的紫杉醇的偶联。在水中的溶解度>20mg紫杉醇/ml。PG-紫杉醇的特征在BeckmanDU-640光谱仪(Fullerton,CA)中得到紫外光谱(UV)。假设水中的聚合物共轭物和甲醇中的游离药物具有同样的摩尔消光系数,且两者都遵守朗伯比尔定律(LambertBeer’slaw),根据甲醇中已知浓度的紫杉醇(λ=228nm)产生的标准曲线用UV可测定与PG共轭的紫杉醇含量。如其UV光谱所示,λ位移从228至230nmPG-紫杉醇有特征性的紫杉醇吸收。假设230nm时水中的聚合物共轭物和228nm时甲醇中的游离药物具有同样的摩尔消光系数,且两者都遵守朗伯比尔定律(LambertBeer’slaw),根据甲醇中已知浓度的紫杉醇(在228nm吸收)产生的标准曲线可测定在PG-紫杉醇中的紫杉醇含量。PG-紫杉醇的凝胶渗透色谱研究用凝胶渗透色谱(GPC)来表征PG-紫杉醇的相对分子量。该GPC系统由以下组成与LDC梯度主导装置连接的两个LDCⅢ型泵、一个PL凝胶GPC柱和一个水990光电二极管矩阵检测器。洗脱液(DMF)以1.0ml/分流动,在270nm进行UV测定。紫杉醇与PG的共轭作用导致PG-紫杉醇的分子量增加,这是通过将PG的保留时间6.4分转换为PG-紫杉醇共轭物的保留时间5.0分,用GPC分析得到的结果。含15-25%紫杉醇(w/w)的PG-紫杉醇的分子量为45-55kDa。将PG-紫杉醇转化为其钠盐可有效去除此粗制品中所含的小分子量杂质(保留时间8.0-10-0分,和11.3分),然后对粗制品进行渗析。PG-紫杉醇共轭物的水解降解将相当于浓度0.4mM紫杉醇的PG-紫杉醇溶解在PH6.0、PH7.4和PH9.6的磷酸盐缓冲溶液(PBS,0.01M)中。将溶液在37℃培养,并轻轻摇动。在选定的时间间隔,去除等分试样(100μl),与等体积甲醇混合,高效液相层析(HPLC)进行分析。HPLC系统包括反相硅柱(Nova-Pac,水,CA)、以1.0ml/分流速流动的甲醇-水(2∶1,v/v)流动相和光电二极管检测器。假设228nm处的每一峰值的摩尔消光系数与紫杉醇的相同,则通过比较单独得到的紫杉醇的标准曲线的峰值面积可计算出每一样本中与PG结合的紫杉醇、游离紫杉醇和其它降解产物的浓度。用线性最小平方回归分析法测得共轭物的半衰期在pH6-0、7.4和9.6时分别为132、40和4天。HPLC分析表明PG-紫杉醇在PBS溶液中培养可生成紫杉醇和包括一种较紫杉醇更有疏水性的物质(代谢产物1)在内的其它几种物质。实际上,培养100小时后,回收在pH7.4的PBS中的代谢产物1(大多数可能是7-表紫杉醇)的数量超过了紫杉醇的(图6)。体外研究将从pH7.4的PBS溶液得到的等分试样用微管蛋白聚合测定法进行分析。于32℃下在PEM缓冲液(pH6.9)和1.0mMGTP中进行微管蛋白合成反应,其中试验样品中(相当1.0μM紫杉醇)微管蛋白(牛脑,CytoskeletonInc.,Boulder,CO)的浓度为1mg/ml。一段时间后在340nm处测定溶液的吸收,接着进行微管蛋白聚合。15分钟后,加入CaCl2(125mM)以测定CaCl2诱导的微管解聚。在产生微管的过程中刚溶解在PBS中的PG-紫杉醇是无活性的,将PG-紫杉醇的等分试样培养3天不会出现微管蛋白聚合。所形成的微管是稳定的,不会出现CaCl2诱导的解聚作用。用四唑鎓盐(MTT)测定法(Mosmann,1983)也可检测PG-紫杉醇对细胞生长的作用。将MCF-7细胞或13762F细胞种在2×104细胞/ml的96孔微滴定盘中,24小时后加入不同浓度的PG-紫杉醇、紫杉醇或PG,然后再培养72小时。又在每一孔中加入MTT溶液(20μl,5mg/ml),培养4小时。吸取上清液,在波长为590nm处用微盘荧光读数器测定由代谢可见细胞产生的MTT甲谮。过了3天,PG-紫杉醇对肿瘤细胞增殖的抑制作用与游离紫杉醇的作用极其相似。对于人类乳腺瘤细胞系MCF-7,所得到的紫杉醇的IC50值为0.59μM,PG-紫杉醇为0.82μM(按紫杉醇当量单位测定)。相对于13762F细胞系,PG-紫杉醇(IC50=1.86μM)的灵敏度可与紫杉醇(IC50=6.79μM)进行比较。对于这两种细胞系,单独PG的IC50大于100μM。体内抗肿瘤活性所有的动物研究是根据制定的原则在M.D.Anderson癌症中心提供的动物设施中进行的。在实验放射肿瘤学系的无致病菌设施中饲养C3H/Kam小鼠。通过在雌性C3H/Kam小鼠(25-30g)的右腿肌肉中注射5×105鼠卵巢癌细胞(OCa-Ⅰ)、乳腺癌(MCa-4)、肝癌(HCa-Ⅰ)或纤维肉瘤(FSa-Ⅱ)而产生单个肿瘤。在类似的研究中,对雌性Fischer344大鼠(125-150g)注射了1.0×1050可见的于0.1mlPBS中的13762F肿瘤细胞。当小鼠中的肿瘤长至500mm3(直径10mm),或大鼠中的肿瘤长至2400mm3(平均直径17mm)时开始治疗。给予相当40-160mg紫杉醇/kg体重的单剂量于盐水中的PG-紫杉醇或于乳浮EL载体中的紫杉醇。对比实验中,使用盐水、乳浮载体[用盐水(1∶4)稀释的50/50乳浮/乙醇],盐水中的PG(MW38K)溶液和紫杉醇/PG混合物。测量三个正交肿瘤直径以确定每天肿瘤的生长(图7A、7B、7C、7D和7E)。根据式(A×B×C)/2计算肿瘤体积。小鼠中的绝对生长延迟(AGD)是指小鼠中用不同药物治疗的肿瘤从500长至2000mm3的天数减去用对照治疗的肿瘤从500长至2000mm3的天数。表1总结了大鼠中PG-紫杉醇与紫杉醇/乳浮相比的急性毒性。表2总结了有关PG-紫杉醇对小鼠中的MCa-4、FSa-Ⅱ和HCa-Ⅰ肿瘤的作用的数据。此数据还可见于图7A-7F中。表1PG-紫杉醇在Fischer大鼠中的急性毒性*<>*将药物单独静脉注射到患有13762F肿瘤的Fischer大鼠(雌性,130g)中。a将共轭物溶解在盐水中制备PG-紫杉醇(相当8mg紫杉醇/ml)。在60mg/kg时注射的体积为0.975ml/只大鼠。b将紫杉醇溶解在1∶1的乙醇和克罗莫佛(30mg/ml)的混合物中制备紫杉醇克罗莫佛溶液。注射前用盐水(1∶4)进一步稀释此储备溶液。此溶液中紫杉醇的最终浓度为6mg/ml。在60mg/kg时注射的体积为1.3ml/只大鼠。c将聚合物溶解在盐水中制备PG溶液(22mg/ml)。注射剂量为0.3g/kg(1.8ml/只大鼠),相当于60mg紫杉醇/kg。d用盐水(1∶4)稀释乙醇和克罗莫佛(Cremophor)(1∶1)的混合物制备克罗莫佛载体。表2PG-紫杉醇对鼠体内不同类型肿瘤的抗肿瘤作用</tables>a用不同剂量的盐水中的PG-紫杉醇(相当40-120mg紫杉醇/kg)或克罗莫佛载体中的紫杉醇单独静脉注射治疗右腿有500mm3肿瘤的小鼠。对照组动物用盐水(0.6ml),克罗莫佛载体(0.5ml),盐水中的PG溶液,或PG(g/kg)+紫杉醇(80mg/kg)治疗。b通过用卡尺每天测量三个正交直径来确定肿瘤的生长,体积计作(a×b×c)/2。空格中所示的是每一组所用的动物数。从500mm3长至2000mm3的天数表示为平均数±标准误。c绝对生长延迟(AGD)是指用各种药物治疗的肿瘤从500长至2000mm3的天数减去用盐水作为对照治疗的肿瘤从500长至2000mm3的天数。d用Student’st检验比较治疗组和盐水组肿瘤从500长至2000mm3的天数。P值为双侧,当P值小于等于0.05时,有显著性差异。实施例3聚乙二醇-紫杉醇聚乙二醇-紫杉醇(PEG-紫杉醇)的合成此合成分两步完成。首先根据已知方法制备2’-琥珀酰-紫杉醇(Deutschetal.,1989)。将紫杉醇(200mg,0.23mmol)和琥珀酸酐(228mg,2.22mmol)在无水吡啶(6ml)中在室温反应3小时。然后蒸发吡啶,用水处理残余物,搅拌20分钟并过滤。将沉淀物溶解在丙酮中,慢慢加入水,收集最后的结晶得到180mg2’-琥珀酰-紫杉醇。通过N-乙氧羰基-2-乙氧基-1,2-二氢喹啉(EEDQ)介导的偶联反应合成PEG-紫杉醇。在2’-琥珀酰-紫杉醇溶液(160mg,0.18mmol)和二氯甲烷中的甲氧聚氧乙烯胺(PEG-NH2,MW5000,900mg,0.18mmol)中加入EEDQ(180mg,0.18mmol)。在室温将反应混合物搅拌4小时。用乙酸乙酯再用氯仿-甲醇(10∶1)在硅胶上对粗制品进行色谱分析。这样得到350mg产品。1HNMR(CDCl3)δ2.76(m,琥珀酸,COCH2CH2CO2),δ3.63(PEG,OCH2CH2O),δ4.42(C7-H)和δ5.51(C2’-H)。最大的UV吸收在288nm,这也是紫杉醇的特点。与PEG结合逐渐增加了紫杉醇的水中溶解性(>相当20mg紫杉醇/ml水)。PEG-紫杉醇的水解稳定性将浓度为0.4mM的PEG-紫杉醇溶解在不同pH的磷酸盐缓冲液(0.01M)中,将溶液在37℃培养,并轻轻摇动。在选择的时间间隔,去除等份试样(200μl)并冰冻干燥。将所得到的干燥粉末溶解在二氯甲烷中,进行凝胶渗析色谱分析(GPC分析)。GPC系统由以下部分组成Perkin-ElmerPL凝胶混合床柱、Perkin-Elmer无梯度液相层析(LC)泵、PENelson900系列界面、光谱一物理学UV/Vis检测器以及数据站。在228nm用UV检测,洗脱液(二氯甲烷)以1.0ml/分流动。PEG-紫杉醇和紫杉醇的保留时间分别为6.1和8.2分钟。将峰值量化,并计算剩余的PEG-紫杉醇的百分数和释放的紫杉醇的百分数。在pH7.4用线性最小平方测得PEG-紫杉醇的半衰期为54分钟。pH9.0的半衰期为7.6分钟。PH7.4时PEG-紫杉醇中的紫杉醇释放图如图8所示。使用B16小鼠黑素瘤细胞进行体外PEG-紫杉醇的细胞毒性研究根据在DTPA-紫杉醇的细胞毒性研究中所述的方法,将黑素瘤细胞按2.5×104细胞/ml的浓度种在24孔平板中,并于37℃在含5.5%CO2的97%湿度下在50∶55Delbecco改进的极限最小培养基(DEM)和含10%小牛血清的F12培养基中生长24小时。然后用含5×10-9M-75×10-9M浓度的紫杉醇或DTPA-紫杉醇的培养基代替化培养基。40小时后,经胰蛋白酶消化使细胞,并用Coulter计数器进行计数。细胞培养基中的DMSO(二甲基亚砜,用于溶解紫杉醇)和0.05MNaHCO3溶液(用于溶解DTPA-紫杉醇)的最终浓度小于0.01%。对照研究表明这一数量的溶剂对细胞生长不产生任何作用。而且,用于产生5×10-9M至75×10-9M当量紫杉醇浓度的PG浓度范围对细胞增殖不产生作用。PEG-紫杉醇对小鼠的MCa-4肿瘤的抗肿瘤作用为了确定PEG-紫杉醇对固体乳腺肿瘤的抗肿瘤能力,将MCa-4细胞(5×105细胞)注射在雌性C3Hf/Kam小鼠的右腿肌肉中。如实施例1有关DTPA-紫杉醇所述,当肿瘤长至8mm(约2周)时,给予相当10,20和40mg紫杉醇/kg体重的单剂量紫杉醇或DTPA-紫杉醇。首先将紫杉醇溶解在与乳浮等体积的无水乙醇中。在15分钟注射时间内,进一步用灭菌生理盐水稀释(1∶4体积)这种储备溶液。将PEG-紫杉醇溶解在盐水(6mg当量紫杉醇/ml)中,通过无菌过滤器(Millipore,4.5μm)过滤。对照实验中使用盐水、紫杉醇载体、用盐水稀释(1∶4)的无水乙醇/乳浮(1∶1)和盐水中的PEG溶液(600mg/kg体重)。每天测量肿瘤生长,即测定三个正交肿瘤直径。当肿瘤直径达12mm时,计算肿瘤生长延迟。肿瘤生长曲线如图9所示。剂量为40mg/kg时,PEG-紫杉醇和紫杉醇都能有效延迟肿瘤生长。虽然两者没有统计学上差异,但紫杉醇较PEG-紫杉醇更有效。紫杉醇治疗肿瘤需要9.4天使肿瘤直径达到12mm,而PEG-紫杉醇需要8.5天。从统计学上来讲,这些数值与相应的对照组比较没有显著性差异(p>0.05),对照组中紫杉醇载体为6.7天,PEG的盐水溶液为6.5天(图4)。由于本发明的组合物和方法已在优选的实施方式中进行了说明,因此对于本领域普通技术人员来说,在不超出本发明的实质和范围的情况下,本文所述的组合物,方法和步骤或该方法的步骤顺序可以不同。尤其是,很显然,可以用某些化学上和生理上相关的试剂代替本文所述的试剂,而仍可得到同样或类似的结果。对于本领域技术人员来说,所有这些替代和修改都应在本发明权利要求所限定的内容和范围内。参考文献下面的参考文献在一定程度是对前面所述文献进行示范性或更详细的补充说明,在此作为参考。BartoniandBoitart,“游离和胶囊紫杉酚的体内外抗肿瘤活性”7微胶囊杂志,191-197,1990。Cortes,J.E.andPazdur,R.,“Docetaxel”,临床肿瘤学杂志13:2643-2655,1995。Deutschetal.,“协同剂和前体药物的合成”3.“具有潜在抗肿瘤活性的紫杉酚的水溶性前体药物”药物化学杂志,32:788-792,1989。Eisemanetal.,“PlasmapharmacokineticsandtissuedistributionofpaclitaxelinCD2F1mice,”癌症化疗,药理学,34:465-471,1994。Fidler,etal,“癌症发病和转移的生物学,癌症研究进展,28:149-250,1987。Goldspiel,“Taxolpharmaceuticalissues:preparation,administration,stability,andcompatibilitywithothermedications”,药物疗法年刊,28:S23-26,1994。Greenwaldetal.,“HighlywatersolubleTaxolderivatives,7-polyethyleneglycolestersaspotentialproducts”,有机化学杂志,60:331-336,1995。Greenwaldetal.,“Highlywatersolubletaxolderivative:2′-polyethyleneglycolestersaspotentialproducts”,生物有机和药物化学通讯,4:2465-2470,1994。Hiranoetal.,“Polymericderivativesofactivatedcyclophosphamideasdrugdeliverysystemsinantitumortherapy,”,大分子化学,180:1125-1130,1979。Hoesetal.,“Optimizationofmacromolecularprodrugsoftheantitumorantibioticadriamycin,”控制释放杂志,2:205-213,1985。Hofleetal.,DE38942。Horwitzetal,“紫杉醇,作用和耐药机制“J.Natl.CancerInst.MonographsNo.15,PP.55-61,1993。Katoetal.,“antitumoractivityofl-b-arabinofuranosylcytosineconjugatedwithpolyglutamicacidanditsderivative”,癌症研究,44:25,1984。Kopecek,“thepotentialofwater-solublepolymericcarriersintargetedandsite-specificdrugdelivery”,控制释放杂志,11:279-290,1990。KopecekandKopeckova,“靶向水溶性聚合物抗癌药achievementsandunsolvedproblems”,Proceed,InternSymp.Control.Rel.Bioact.Mater.,20:190-191,1993。MaedaandMatsumura,“Tumoritropicandlymphotropicprinciplesofmacromoleculardrugs”,治疗药物载体系统的主要综述,6:193-210,1989。MagriandKingston,“改进的紫杉酚,2,紫杉酚的氧化物”有机化学杂志,51:797-702,1986。Mathewetal.,“Synthesisandevaluationofsomewater-solubleprodrugsandderivativesoftaxolwithantitumoractivity”,药物化学杂志,35:145-151,1992。Mosmann,T.,“Rapidcolormetricassayforeellulargrowthandsurvival:aplicationtoproliferationandcytotoxicassay”,免疫学方法杂志,65:55-63,1983。Oliver,S.J.etal.,Suppressionofcollagen-inducedarthritisusinganangiogenesisinhibitor,AGM-1470,andamicrotubulestabilizer,Taxol,”细胞免疫学,157:291-299,1994。Phillips-HughesandKandarpa,“再狭窄病理学生理学和预防策略”,JVIR,7:321-333,1996。Reynolds,T.,“聚合物协助抗癌药靶向肿瘤并保留它们在那里”J.Natl,CancerInstitute,87:1582-1584,1995。Scudieroetal.,“evaluationofaSolubleTetrazolium/FormazanAssayforCellGrowthandDrugSensitivityinCultureUsingHumanandOtherTumorCellLines”癌症研究,48:4827-4833,1988。Serruysetal.,“Acomparisonofballoon-expandable-stentimplantationwithballoonangioplastyinpatientswithcoronaryarterydisease”,新英格兰医学杂志,331:489-495,1994。SharmaandStraubinger,“新紫杉酚制剂含紫杉酚脂质体的制备和特征”,药理学研究,11:889-896,1994。美国专利5,583,153vanHeeswijketal.,“Thesynthesisandcharacterizationofpolypeptide-adriamycinconjugateanditscomplexeswithadriamycin,Part1”,控制释放杂志,1:301-315,1985。Weissetal.,“紫杉酚的过敏反应”临床肿瘤学杂志,8:1263-1268,1990。WO96/25176Zhao,Z.andKingston,D.G.I.,“改进的紫杉酚,6.水溶性紫杉酸磷酸盐的制备”,天然产物杂志,54:1607-1611,1991。权利要求1.含有与水溶性聚合物或金属螯合剂共轭的抗肿瘤药的组合物,其中上述抗肿瘤药为紫杉醇、紫杉酯、依托泊甙、替尼泊甙、喜树碱、或epothilones。2.权利要求1所述的组合物,其中抗肿瘤药为紫杉醇。3.权利要求1所述的组合物,其中抗肿瘤药为紫杉酯。4.权利要求1所述的组合物,其中抗肿瘤药与水溶性金属螯合剂共轭。5.权利要求4所述的组合物,还包括螯合金属离子。6.权利要求5所述的组合物,其中所述的螯合金属离子选自铝、硼、钙、铬、钴、铜、镝、铒、铕、钆、镓、锗、钬、铟、铱、铁、镁、镍、铂、铼、铷、钌、钐、钠、锝、铊、锡、钇或锌。7.权利要求5所述的组合物,其中所述的螯合金属离子为放射性核素。8.权利要求7所述的组合物,其中所述的放射性核素选自67Ga(镓),68Ga,111In(铟),99mTc(锝),90Y(钇),114mIn和193mpt(铂)。9.含111In-DTPA-紫杉醇的组合物。10.权利要求4所述的组合物,其中所述的水溶性螯合剂选自二亚乙基三胺五乙酸(DTPA)、乙二胺四酸(EDTA),1,4,7,10-四氮杂环十二酸(TETA)、羟基亚乙基二膦酸(HEDP)、二巯基琥珀酸(DMSA)、二亚乙基三胺四亚甲基膦酸(DTTP)和1-(对-氨基苄基)-DTPA。11.权利要求4所述的组合物,其中所述的螯合剂为二亚乙基三胺五乙酸(DTPA)。12.权利要求1所述的组合物,其中所述的水溶性聚合物选自聚(l-谷氨酸)、聚(d-谷氨酸)、聚(dl-谷氨酸)、聚(l-天冬氨酸)、聚(d-天冬氨酸)、聚(dl-天冬氨酸)、聚乙二醇、聚丙烯酸、聚(2-羟乙基l-谷氨酰胺)、羧甲基葡聚糖、透明质酸、人血清白蛋白、藻酸和其混合物。13.权利要求12所述的组合物,其中所述的聚合物还指与聚己内酯、聚乙醇酸、聚乳酸、聚丙烯酸、聚(2-羟乙基l-谷氨酰胺)、羧甲基葡聚糖、透明质酸、人血清白蛋白、藻酸或其混合物的共聚物。14.权利要求12所述的组合物,其中所述的聚合物的分子量约为5,000-100,000。15.权利要求12所述的组合物,其中所述的聚合物的分子量约为20,000-80,000。16.权利要求12所述的组合物,其中所述的聚合物的分子量约为30,000-60,000。17.权利要求12所述的组合物,其中所述的水溶性聚合物与紫杉醇或紫杉酯的2`-和/或7-羟基共轭。18.权利要求12所述的组合物,其中所述的水溶性聚合物为聚乙二醇。19.权利要求12所述的组合物,其中所述的水溶性聚合物为聚(l-谷氨酸)。20.权利要求12所述的组合物,其中所述的水溶性聚合物为聚(l-天冬氨酸)。21.权利要求1所述的组合物,其特征是分散在药用载体溶液中。22.确定肿瘤组织摄取抗肿瘤药物的方法,包括以下步骤a)获得包含紫杉醇或紫杉酯与金属螯合剂和螯合金属离子的共轭物的组合物;b)将上述组合物用于上述肿瘤组织;c)检测上述肿瘤组织中的螯合金属离子;其中上述肿瘤组织中有螯合金属离子表明紫杉醇被上述肿瘤组织摄取。23.权利要求22所述的方法,其中抗肿瘤药物为紫杉醇。24.权利要求22所述的方法,其中上述螯合金属离子为放射性核素,检测方法为闪烁照相法。25.权利要求22所述的方法,其中上述肿瘤组织存在于患者体内,且上述组合物是给上述患者使用。26.一种治疗患者的癌症的方法,包括以下步骤a)获得一种组合物,它含有与水溶性聚合物或螯合剂共轭且分散在药用溶液中的紫杉醇或紫杉酯;和b)将有效量的上述溶液给上述患者使用以治疗上述肿瘤。27.权利要求26所述的方法,其中所述组合物包括紫杉醇。28.权利要求26所述的方法,还包括在给药前检测上述肿瘤对紫杉醇或紫杉酯的摄取,其中所述的检测方法是将螯合剂-金属离子-紫杉醇或紫杉酯共轭物给患者使用,再检测上述肿瘤中的金属离子。29.权利要求26所述的方法,其中所述的癌症为乳腺癌、卵巢癌、恶性黑素瘤、肺癌、胃癌、肠癌、头颈部癌或白血病。30.权利要求26所述的方法,其中所述的癌症为乳腺癌。31.权利要求26所述的方法,其中所述的癌症为卵巢癌。32.一种减少系统性自身免疫疾病的至少一种症状的方法,此方法包括给患有系统性自身免疫疾病的患者使用有效量的含与聚(l-谷氨酸)或聚(l-天冬氨酸)共轭的紫杉醇或紫杉酯的组合物。33.权利要求32所述的方法,其中所述的组合物包括紫杉醇。34.权利要求32所述的方法,其中所述的组合物包括聚(l-谷氨酸)。35.权利要求32所述的方法,其中所述的系统性自身免疫疾病为类风湿性关节炎。36.一种抑制血管损伤后的动脉再狭窄或动脉闭塞的方法,包括给患者使用一种含与聚(l-谷氨酸)或聚(l-天冬氨酸)共轭的紫杉醇或紫杉酯的组合物。37.权利要求36所述的方法,其中所述的组合物包括紫杉醇。38.权利要求36所述的方法,其中所述的组合物包括聚(l-谷氨酸)。39.权利要求36所述的方法,其中所述的患者是冠状动脉分流术、血管外科、器官移植或冠状动脉或动脉血管成形术的患者。40.权利要求36所述的方法,其中所述的组合物涂覆在斯坦特印固定模上,且上述斯坦特印固定模植在血管损伤部位。41.药物组合物,它包含与水溶性聚合物或螯合剂共轭的紫杉醇或紫杉酯。42.权利要求41所述的组合物,其中所述的水溶性聚合物为聚(l-谷氨酸)或聚(l-天冬氨酸)。43.权利要求41所述的组合物,其中所述的螯合剂为DTPA。44.权利要求43所述的组合物,还包括治疗量的螯合放射性核素。45.获得患者的身体图象的方法,包括a)给患者使用有效量的权利要求6所述的药剂;和b)测定闪烁照相信号得到图象。46.一种可植入的医疗装置,其中所述装置涂覆有有效量的组合物以抑制平滑肌细胞增殖,此组合物包含与聚谷氨酸或聚天冬氨酸共轭的紫杉醇或紫杉酯。47.权利要求46所述的可植入的医疗装置,还可指涂覆有上述组合物的斯坦特印固定模。48.权利要求47所述的可植入的医疗装置,其中所述的斯坦特印固定模适用于气囊血管成形术后,上述组合物能有效抑制再狭窄。49.组合物,它包含与紫杉醇的2`或7羟基共轭的聚谷氨酸。50.组合物,它包含与紫杉醇的2`或7羟基共轭的聚天冬氨酸。51.权利要求49所述的组合物,其中所述的聚谷氨酸与紫杉醇的2`或7羟基共轭。52.权利要求50所述的组合物,其中所述的聚天冬氨酸与紫杉醇的2`或7羟基共轭。全文摘要本发明公开了紫杉醇和紫杉酯的水溶性组合物,它是将紫杉醇或dcetaxel与水溶性螯合剂、聚乙二醇或者聚(1-谷氨酸)或聚(1-天冬氨酸)之类的聚合物共轭而制成的。还公开了用这种组合物治疗肿瘤、类风湿性关节炎之类自身免疫疾病,和预测肿瘤摄入的紫杉醇,以及用于放射性标记的二亚乙基三胺五乙酸(DTPA)一紫杉醇肿瘤成像。其它实施方式包括涂覆可植入的斯坦特印固定模以预防再狭窄。文档编号A61K31/7048GK1217662SQ97194360公开日1999年5月26日申请日期1997年3月11日优先权日1996年3月12日发明者C·李,S·华莱士,D-F·于,D·J·杨申请人:Pg-Txl有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1