一种利用水热法制备MnNb<sub>2</sub>O<sub>6</sub>微波介质陶瓷粉体的方法

文档序号:2010022阅读:933来源:国知局
专利名称:一种利用水热法制备MnNb<sub>2</sub>O<sub>6</sub>微波介质陶瓷粉体的方法
一种利用水热法制备MnNb2O6微波介质陶瓷粉体的方法
技术领域
本发明涉及一种微波介质陶瓷粉体的制备方法,特别是一种利用水热法制备 MnNb2O6微波介质陶瓷粉体的方法。
背景技术
微波介质陶瓷是指应用于微波频段电路中作为介质材料并完成一种或多种功能 的陶瓷,用于微波、卫星通信、移动通信、电子对抗设备等中,为现代通讯中广泛使用的谐振 器、滤波器、介质导波回路等微波元器件的关键材料,在微波电路系统中发挥介质隔离、介 质波导以及介质谐振等一系列电路功能。近年来,阳离子缺失型碱土金属铌酸盐MNb2O6 (M为Mg、Zn、Mn、Cu、Co,Ni,Ca等) 作为微波介质陶瓷新体系,正引起越来越多的兴趣与关注,目前,这类陶瓷粉体的主要合成 方法为固相高温反应法和水热合成法,其中,固相高温反应法虽然简单,但是所制备出来的 陶瓷粉体粒径大、粒度分布宽,且组分不均勻;水热合成法的设备简单,且制备出的粉体晶 粒尺寸小,粒度分布窄,但是制备铌酸盐粉体所需含铌前驱物在反应中很难成核长大,因此 难以制备出高纯度的铌酸盐粉体。然而,高端电子元件的制备往往需要粒径小且组分均勻的单相陶瓷粉体,如此,由 上述方法所制备出来的陶瓷粉体显然不能满足这一要求。

发明内容本发明所要解决的技术问题是提供了一种晶粒尺寸小、粒度分布窄,组分均勻,且 纯度较高的MnNb2O6微波介质陶瓷粉体的制备方法。为实现上述目的,本发明提供了一种用水热工艺制备MnNb2O6微波介质陶瓷粉体 的方法,包括如下步骤步骤一将0. 0005-0. 002mol的五氧化二铌粉体与30_40ml的氟化 氢溶液混合后,移入电热鼓风干燥箱内,在80-100°C水浴加热2-30小时,直至五氧化二铌 粉体完全溶解,接着,调节PH为接近中性,再接着,向上述溶液中滴加氨水,直至溶液中出 现的絮状沉淀物不再增加为止,上述絮状沉淀物即氧化铌凝胶;步骤二 将步骤一得到的 氧化铌凝胶与锰盐溶液混合后,在磁力搅拌机上充分搅拌均勻,之后,移入有聚四氟乙烯内 衬的不锈钢反应釜中,再将该反应釜放入烘箱内保温48-240小时,接着,取出反应釜冷却 至室温,再将反应釜内的物料取出用无离子水冲洗直至PH为7,最后,干燥后即得MnNb2O6微 波介质陶瓷粉体。本发明MnNb2O6微波介质陶瓷及其制备方法至少具有以下优点1.以锰盐溶液(硝酸锰、氯化锰、硫酸锰、醋酸锰、酸式磷酸锰等)和氧化铌凝胶为 前驱物,以Na0H、K0H、氨水中的一种或两种碱为矿化剂在密闭容器中高温高压下反应制得, 相对于固相法合成粉体所需温度较低,有利于进一步商业化的应用。2.本发明制备方法工艺简单、设备要求低,且制备出的粉体晶粒尺寸小、粒度分布 窄、团聚较轻、组分均勻,且纯度较高、具有单相结构。
图1为按照传统固相法所制备的MnNb2O6粉体的SEM图;图2为由本发明方法制备的MnNb2O6粉体的SEM图。
具体实施方式实施例一步骤1 将0. 0005mol分析纯用五氧化二铌与30ml的氟化氢水溶液混合,之后移 入电热鼓风干燥箱内,调节干燥箱的温度在80°C的水浴中加热2小时,待五氧化二铌完全 溶解后,继续加热,直至氟化氢完全挥发;接着,向上述溶液中滴加质量浓度为25-28%的 氨水直至溶液呈中性,再接着,向上述中性溶液中继续滴加氨水,随着氨水的滴加,上述溶 液中逐渐出现絮状沉淀物,当该絮状沉淀物的量不再增加时,停止加入氨水,上述絮状沉淀 物即氧化铌凝胶,备用;步骤2 取占五氧化二铌质量67. 3%且浓度为4mol/L的硝酸锰,并加入至步骤1 得到的氧化铌凝胶中,之后,将该混合物放置于磁力搅拌器上搅拌均勻后,移入具有聚四氟 乙烯内衬的不锈钢反应釜中,反应釜的填充比为75%,随后,将反应釜拧紧,调节反应釜的 温度为170°C,然后,将反应釜放入烘箱中反应48小时后,取出反应釜,待反应釜自然冷却 至室温时,开釜,将其中的物料倒入大烧杯中用去离子水清洗数次直至PH= 7时放入干燥 箱内干燥,即得MnNb2O6微波介质陶瓷粉体。实施例二步骤1 将0. 0006mol分析纯用五氧化二铌与31ml的氟化氢水溶液混合,之后移 入电热鼓风干燥箱内,调节干燥箱的温度在81°c的水浴中加热5小时,待五氧化二铌完全 溶解后,继续加热,直至氟化氢完全挥发;接着,向上述溶液中滴加质量浓度为25-28%的 氨水直至溶液呈中性,接着,继续滴加氨水,随着氨水的滴加,上述溶液中逐渐出现絮状沉 淀物,当该絮状沉淀物的量不再增加时,停止加入氨水,上述絮状沉淀物即氧化铌凝胶,备 用;步骤2 取占五氧化二铌质量67. 3%且浓度为4mol/L的硝酸锰,并加入至步骤1 得到的氧化铌凝胶中后,在磁力搅拌器上搅拌均勻,之后,移入具有聚四氟乙烯内衬的不锈 钢反应釜中,反应釜的填充比为67%,随后,将反应釜拧紧,调节反应釜的温度为178°C,然 后,将反应釜放入烘箱中反应60小时后,取出反应釜,待反应釜自然冷却至室温时,开釜, 将其中的物料倒入大烧杯中用去离子水清洗数次直至PH = 7时放入干燥箱内干燥,即得 MnNb2O6微波介质陶瓷粉体。实施例三步骤1 将0. 0007mol分析纯用五氧化二铌与32ml的氟化氢水溶液混合,之后移 入电热鼓风干燥箱内,调节干燥箱的温度在83°C的水浴中加热8小时,待五氧化二铌完全 溶解后,继续加热,直至氟化氢完全挥发;接着,向上述溶液中滴加质量浓度为25-28%的 氨水直至溶液呈中性,接着,继续滴加氨水,随着氨水的滴加,上述溶液中逐渐出现絮状沉 淀物,当该絮状沉淀物的量不再增加时,停止加入氨水,上述絮状沉淀物即氧化铌凝胶,备 用;
步骤2 取占五氧化二铌质量67. 3%且浓度为4mol/L的硝酸锰,并加入至步骤1 得到的氧化铌凝胶中后,在磁力搅拌器上搅拌均勻,之后,移入具有聚四氟乙烯内衬的不锈 钢反应釜中,反应釜的填充比为68%,随后,将反应釜拧紧,调节反应釜的温度为186°C,然 后,将反应釜放入烘箱中反应80小时后,取出反应釜,待反应釜自然冷却至室温时,开釜, 将其中的物料倒入大烧杯中用去离子水清洗数次直至PH = 7时放入干燥箱内干燥,即得 MnNb2O6微波介质陶瓷粉体。实施例四步骤1 将0. OOOSmol分析纯用五氧化二铌与34ml的氟化氢水溶液混合,之后移 入电热鼓风干燥箱内,调节干燥箱的温度在85°C的水浴中加热10小时,待五氧化二铌完全 溶解后,继续加热,直至氟化氢完全挥发;接着,向上述溶液中滴加质量浓度为25-28%的 氨水直至溶液呈中性,接着,继续滴加氨水,随着氨水的滴加,上述溶液中逐渐出现絮状沉 淀物,当该絮状沉淀物的量不再增加时,停止加入氨水,上述絮状沉淀物即氧化铌凝胶,备 用;步骤2 取占五氧化二铌质量67. 3%且浓度为4mol/L的硝酸锰,并加入至步骤1 得到的氧化铌凝胶中后,在磁力搅拌器上搅拌均勻,之后,移入具有聚四氟乙烯内衬的不锈 钢反应釜中,反应釜的填充比为70%,随后,将反应釜拧紧,调节反应釜的温度为194°C,然 后,将反应釜放入烘箱中反应100小时后,取出反应釜,待反应釜自然冷却至室温时,开釜, 将其中的物料倒入大烧杯中用去离子水清洗数次直至PH = 7时放入干燥箱内干燥,即得 MnNb2O6微波介质陶瓷粉体。实施例五步骤1 将0. 0009mol分析纯用五氧化二铌与35ml的氟化氢水溶液混合,之后移 入电热鼓风干燥箱内,调节干燥箱的温度在87°C的水浴中加热15小时,待五氧化二铌完全 溶解后,继续加热,直至氟化氢完全挥发;接着,向上述溶液中滴加质量浓度为25-28%的 氨水直至溶液呈中性,接着,继续滴加氨水,随着氨水的滴加,上述溶液中逐渐出现絮状沉 淀物,当该絮状沉淀物的量不再增加时,停止加入氨水,上述絮状沉淀物即氧化铌凝胶,备 用;步骤2 取占五氧化二铌质量67. 3%且浓度为4mol/L的硝酸锰,并加入至步骤1 得到的氧化铌凝胶中后,在磁力搅拌器上搅拌均勻,之后,移入具有聚四氟乙烯内衬的不锈 钢反应釜中,反应釜的填充比为73%,随后,将反应釜拧紧,调节反应釜的温度为202°C,然 后,将反应釜放入烘箱中反应130小时后,取出反应釜,待反应釜自然冷却至室温时,开釜, 将其中的物料倒入大烧杯中用去离子水清洗数次直至PH = 7时放入干燥箱内干燥,即得 MnNb2O6微波介质陶瓷粉体。实施例六步骤1 将0. OOlmol分析纯用五氧化二铌与36ml的氟化氢水溶液混合,之后移 入电热鼓风干燥箱内,调节干燥箱的温度在90°C的水浴中加热20小时,待五氧化二铌完全 溶解后,继续加热,直至氟化氢完全挥发;接着,向上述溶液中滴加质量浓度为25-28%的 氨水直至溶液呈中性,接着,继续滴加氨水,随着氨水的滴加,上述溶液中逐渐出现絮状沉 淀物,当该絮状沉淀物的量不再增加时,停止加入氨水,上述絮状沉淀物即氧化铌凝胶,备 用;
5
步骤2 取占五氧化二铌质量67. 3%且浓度为4mol/L的硝酸锰,并加入至步骤1 得到的氧化铌凝胶中后,在磁力搅拌器上搅拌均勻,之后,移入具有聚四氟乙烯内衬的不锈 钢反应釜中,反应釜的填充比为76%,随后,将反应釜拧紧,调节反应釜的温度为210°C,然 后,将反应釜放入烘箱中反应150小时后,取出反应釜,待反应釜自然冷却至室温时,开釜, 将其中的物料倒入大烧杯中用去离子水清洗数次直至PH = 7时放入干燥箱内干燥,即得 MnNb2O6微波介质陶瓷粉体。实施例七步骤1 将0. 0013mol分析纯用五氧化二铌与37ml的氟化氢水溶液混合,之后移 入电热鼓风干燥箱内,调节干燥箱的温度在93°C的水浴中加热23小时,待五氧化二铌完全 溶解后,继续加热,直至氟化氢完全挥发;接着,向上述溶液中滴加质量浓度为25-28%的 氨水直至溶液呈中性,接着,继续滴加氨水,随着氨水的滴加,上述溶液中逐渐出现絮状沉 淀物,当该絮状沉淀物的量不再增加时,停止加入氨水,上述絮状沉淀物即氧化铌凝胶,备 用;步骤2 取占五氧化二铌质量67. 3%且浓度为4mol/L的硝酸锰,并加入至步骤1 得到的氧化铌凝胶中后,在磁力搅拌器上搅拌均勻,之后,移入具有聚四氟乙烯内衬的不锈 钢反应釜中,反应釜的填充比为78%,随后,将反应釜拧紧,调节反应釜的温度为218°C,然 后,将反应釜放入烘箱中反应180小时后,取出反应釜,待反应釜自然冷却至室温时,开釜, 将其中的物料倒入大烧杯中用去离子水清洗数次直至PH = 7时放入干燥箱内干燥,即得 MnNb2O6微波介质陶瓷粉体。实施例八步骤1 将0. 0015mol分析纯用五氧化二铌与38ml的氟化氢水溶液混合,之后移 入电热鼓风干燥箱内,调节干燥箱的温度在96°C的水浴中加热26小时,待五氧化二铌完全 溶解后,继续加热,直至氟化氢完全挥发;接着,向上述溶液中滴加质量浓度为25-28%的 氨水直至溶液呈中性,接着,继续滴加氨水,随着氨水的滴加,上述溶液中逐渐出现絮状沉 淀物,当该絮状沉淀物的量不再增加时,停止加入氨水,上述絮状沉淀物即氧化铌凝胶,备 用;步骤2 取占五氧化二铌质量67. 3%且浓度为4mol/L的硝酸锰,并加入至步骤1 得到的氧化铌凝胶中后,在磁力搅拌器上搅拌均勻,之后,移入具有聚四氟乙烯内衬的不锈 钢反应釜中,反应釜的填充比为80%,随后,将反应釜拧紧,调节反应釜的温度为228°C,然 后,将反应釜放入烘箱中反应200小时后,取出反应釜,待反应釜自然冷却至室温时,开釜, 将其中的物料倒入大烧杯中用去离子水清洗数次直至PH = 7时放入干燥箱内干燥,即得 MnNb2O6微波介质陶瓷粉体。实施例九步骤1 将0. OOlSmol分析纯用五氧化二铌与39ml的氟化氢水溶液混合,之后移 入电热鼓风干燥箱内,调节干燥箱的温度在99°C的水浴中加热29小时,待五氧化二铌完全 溶解后,继续加热,直至氟化氢完全挥发;接着,向上述溶液中滴加质量浓度为25-28%的 氨水直至溶液呈中性,接着,继续滴加氨水,随着氨水的滴加,上述溶液中逐渐出现絮状沉 淀物,当该絮状沉淀物的量不再增加时,停止加入氨水,上述絮状沉淀物即氧化铌凝胶,备 用;
步骤2 取占五氧化二铌质量67. 3%且浓度为4mol/L的硝酸锰,并加入至步骤1 得到的氧化铌凝胶中后,在磁力搅拌器上搅拌均勻,之后,移入具有聚四氟乙烯内衬的不锈 钢反应釜中,反应釜的填充比为83%,随后,将反应釜拧紧,调节反应釜的温度为240°C,然 后,将反应釜放入烘箱中反应220小时后,取出反应釜,待反应釜自然冷却至室温时,开釜, 将其中的物料倒入大烧杯中用去离子水清洗数次直至PH = 7时放入干燥箱内干燥,即得 MnNb2O6微波介质陶瓷粉体。实施例十步骤1 将0. 002mol分析纯用五氧化二铌与40ml的氟化氢水溶液混合,之后移入 电热鼓风干燥箱内,调节干燥箱的温度在100°c的水浴中加热30小时,待五氧化二铌完全 溶解后,继续加热,直至氟化氢完全挥发;接着,向上述溶液中滴加质量浓度为25-28%的 氨水直至溶液呈中性,接着,继续滴加氨水,随着氨水的滴加,上述溶液中逐渐出现絮状沉 淀物,当该絮状沉淀物的量不再增加时,停止加入氨水,上述絮状沉淀物即氧化铌凝胶,备 用;步骤2 取占五氧化二铌质量67. 3%且浓度为4mol/L的硝酸锰,并加入至步骤1 得到的氧化铌凝胶中后,在磁力搅拌器上搅拌均勻,之后,移入具有聚四氟乙烯内衬的不锈 钢反应釜中,反应釜的填充比为85%,随后,将反应釜拧紧,调节反应釜的温度为250°C,然 后,将反应釜放入烘箱中反应240小时后,取出反应釜,待反应釜自然冷却至室温时,开釜, 将其中的物料倒入大烧杯中用去离子水清洗数次直至PH = 7时放入干燥箱内干燥,即得 MnNb2O6微波介质陶瓷粉体。请参阅图2所示,由本发明方法制备出来的MnNb2O6粉体,颗粒表面规则,颗粒发育 完整且规则,组分均勻;而由传统的固相法制备出来的MnNb2O6粉体,颗粒形貌不均勻,团聚 现象严重,组分不均勻。以上所述仅为本发明的一种实施方式,不是全部或唯一的实施方式,本领域普通 技术人员通过阅读本发明说明书而对本发明技术方案采取的任何等效的变换,均为本发明 的权利要求所涵盖。
权利要求
一种利用水热法制备MnNb2O6微波介质陶瓷粉体的方法,其特征在于包括以下步骤步骤一将0.0005 0.002mol的五氧化二铌粉体与30 40ml的氟化氢溶液混合后,移入电热鼓风干燥箱内,在80 100℃水浴加热2 30小时,直至五氧化二铌粉体完全溶解,接着,调节PH为接近中性,再接着,向上述溶液中滴加质量浓度为25 28%的氨水,随着氨水的加入,溶液中逐渐出现絮状沉淀物,当絮状沉淀物不再增加时停止加入氨水,上述絮状沉淀物即氧化铌凝胶;步骤二将步骤一得到的氧化铌凝胶与锰盐溶液混合后,在磁力搅拌机上充分搅拌均匀,隋虎移入有聚四氟乙烯内衬的不锈钢反应釜中,再将该反应釜放入烘箱内保温48 240小时,接着,取出反应釜冷却至室温,再将反应釜内的物料取出用无离子水冲洗直至PH为7,最后,干燥后即得MnNb2O6微波介质陶瓷粉体。
2.如权利要求1所述的方法,其特征在于所述步骤一中,调节PH采用继续加热溶液 直至氟化氢挥发的方式。
3.如权利要求1所述的方法,其特征在于所述步骤一中,调节PH采用滴加氨水的方式。
4.如权利要求1所述的方法,其特征在于所述锰盐选自硝酸锰、氯化锰、硫酸锰、醋酸 锰或酸式磷酸锰。
5.如权利要求1所述的方法,其特征在于所述反应釜的填充度为75-85%,温度为 170-250°C。
6.如权利要求1所述的方法,其特征在于所述锰酸盐的浓度为4mol/L,锰酸盐的添加 量占五氧化二铌的67. 3%。
全文摘要
本发明提供了一种利用水热法制备MnNb2O6微波介质陶瓷粉体的方法,以锰盐溶液和氧化铌凝胶为前驱物,以氨水为矿化剂在密闭容器中于高温高压下反应一定时间制得。本发明的制备方法为A.制备氧化铌凝胶;B.配置锰盐溶液;C.前驱物混合均匀;D.高温高压反应按比例将氧化铌凝胶、锰盐溶液置于磁力搅拌器中搅拌均匀然后,按照一定的填充比(前驱物溶液占反应釜的体积分数为65%~85%)置于高压反应釜中于170~250℃下反应48~240h制得。由本发明方法合成的MnNb2O6粉体,晶粒尺寸小、粒度分布均匀、团聚较轻、降耗节能,且纯度高。
文档编号C04B35/495GK101921111SQ20101022424
公开日2010年12月22日 申请日期2010年7月12日 优先权日2010年7月12日
发明者吴海东, 庄永勇, 王博, 蒲永平, 许宁, 陈凯 申请人:陕西科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1