单晶氧化锌纳米粒子的制造方法

文档序号:10698968阅读:648来源:国知局
单晶氧化锌纳米粒子的制造方法
【专利摘要】本发明的课题在于提供可稳定地大量生产的单晶氧化锌纳米粒子的制造方法。是通过使酸性物质在至少含有醇的溶剂中均质地混合了的氧化锌析出溶剂、与将氧化锌纳米粒子原料在碱性溶剂中混合了的原料溶液或者通过将氧化锌纳米粒子原料在溶剂中混合、溶解而结果成为碱性的原料溶液在对向配设了的、可接近分离的相对地进行旋转的处理用面间混合,将氧化锌纳米粒子析出了的混合流动体从处理用面间排出的氧化锌纳米粒子的制造方法。以混合流动体成为碱性的方式使氧化锌析出溶剂和原料溶液在处理用面间混合,通过由酸性物质与碱性溶剂的混合所引起的酸碱反应,生成单晶氧化锌纳米粒子。
【专利说明】
单晶氧化锌纳米粒子的制造方法
技术领域
[0001 ]本发明涉及单晶氧化锌纳米粒子的制造方法。
【背景技术】
[0002] 氧化锌纳米粒子已在半导体、催化剂、光学设备、传感器、颜料、化妆品、医药品等 的广泛的范围中使用。通过单晶化来使氧化锌自身具有的特性显著地表现,由此有效地利 用这些特性而期待在各种领域中的有效利用。
[0003] 就单晶的氧化锌纳米粒子的制造方法而言,已知使用溅射装置的方法(专利文献 1);将氧化锌前体溶液向混合室喷雾、使其与脉冲燃烧气体接触的同时在高温气氛下对其 进行热处理,由此得到单晶的氧化锌纳米粒子的方法(专利文献2);将包含含有金属的材料 的具有晶面的基板浸渍于氧化锌可析出的反应溶液中而使单晶氧化锌析出,使析出了的单 晶氧化锌从基板分离来制造氧化锌粒子的方法(专利文献3)。
[0004] 在专利文献1、2中,是所谓采用气相法的方法,纳米粒子的单位时间的生成量少, 为了使原料蒸发,需要电子束、等离子体、激光、感应加热等的高能量装置,另外收率也低, 因此在生产成本上不能说适合大量生产。并且通过这些气相法所得到的纳米粒子由于为纯 粹物质的微粒,因此容易凝聚、熔合,另外存在粒子的大小波动的问题。
[0005] 另外,在专利文献3中,为了得到单晶纳米粒子,需要用于将在基板上析出了的氧 化锌结晶使用激光照射、振动、超声波、纳米切割刀从根上切断、或者只将氧化锌结晶析出 了的基板进彳丁溶解除去的后工序,制造效率差。
[0006] 另一方面,也已知在可接近分离的相对地进行旋转的处理用面间使纳米粒子析出 而由此得到单晶的生物体摄取物纳米粒子(专利文献4)。
[0007] 在专利文献4中,对于如下这点进行了公开:在可接近分离的相对地进行旋转的处 理用面间形成2种以上的被处理流动体的强制薄膜、在该强制薄膜中使单晶的生物体摄取 物微粒生成。但是,对于物性完全不同的氧化锌纳米粒子,在制造单晶的粒子时,不能应用 专利文献4中公开的发明。
[0008] 进而,在专利文献5、专利文献6中,公开了在可接近分离的相对地进行旋转的处理 用面间形成2种以上的被处理流动体的强制薄膜、使含有纳米粒子的流动体排出时,调节被 处理流动体的pH。但是,两者都是调节混合前的流动体的pH,而不是调节混合后的流动体的 pH。因此,即使调节了混合前的流动体的pH,如果由于其他反应条件而使混合后的流动体的 pH值偏离碱性,则不会使单晶氧化锌纳米粒子析出。
[0009] 在专利文献7中公开了在对向配设了的、可接近·分离的、至少一方相对于另一方 进行旋转的处理用面间使结晶性得到了控制的陶瓷微粒生成。
[0010] 该情况下,在处理用面间,首先,使含有将陶瓷原料在碱性溶剂中混合和/或溶解 了的陶瓷原料液的流体、与含有陶瓷微粒析出用溶剂的流体混合而使陶瓷微粒析出。而且, 示出了在下一工序中,利用通过将含有析出了的陶瓷微粒的流体与酸性物质混合而产生的 反应热,对在最初的工序中析出了的陶瓷微粒的结晶性进行控制。
[0011] 但是,在专利文献7中,没有示出在微粒的析出时利用反应热,不能稳定地制造单 晶的氧化锌纳米粒子。在专利文献7的实施例中,如图5中所示那样,晶格条纹不清楚,不能 说是单晶。另外,就在专利文献7的实施例2中记载的反应条件而言,并不是在处理用面间越 生成单晶的氧化锌纳米粒子越投入大的能量。
[0012] 现有技术文献 [0013]专利文献
[0014] 专利文献1:日本特开2010-120786号公报 [0015] 专利文献2:日本特开2008-303111号公报 [0016] 专利文献3:日本特开2011-84465号公报 [0017] 专利文献4:国际公开第W02009/008391号小册子 [0018] 专利文献5:日本特开2009-82902号公报 [0019] 专利文献6:国际公开第W02009/008392号小册子 [0020] 专利文献7:国际公开第W02012/127669号小册子

【发明内容】

[0021] 发明要解决的课题
[0022] 从在对向配设了的、可接近?分离的、至少一方相对于另一方相对地进行旋转的 至少2个处理用面之间形成的薄膜流体使单晶氧化锌纳米粒子析出、由此提供稳定地适合 大量生产的单晶氧化锌纳米粒子的制造方法。
[0023]用于解决课题的手段
[0024]本申请发明提供单晶氧化锌纳米粒子的制造方法,其为以下的单晶氧化锌纳米粒 子的制造方法:通过使酸性物质在至少含有醇的溶剂中均质地混合而制备氧化锌析出溶 剂、使上述制备了的氧化锌析出溶剂、和将氧化锌纳米粒子原料在碱性溶剂中混合了的原 料溶液或者通过将氧化锌纳米粒子原料在溶剂中混合、溶解而结果成为碱性的原料溶液在 对向配设了的、可接近分离的相对地进行旋转的处理用面间混合、使氧化锌纳米粒子析出 了的混合流动体从上述处理用面间排出;以上述混合流动体成为碱性的方式将上述氧化锌 析出溶剂与上述原料溶液在上述处理用面间混合、通过由上述酸性物质和上述碱性溶剂的 混合所引起的酸碱反应,生成氧化锌纳米粒子。
[0025]应予说明,在本发明中,所谓纳米粒子是指100nm量级以下的微小的粒子。对其形 状并无特别限定,例如可以是大致球状、大致圆盘状、大致三棱柱状、大致四棱柱状、大致多 面体状、椭圆球状、大致圆柱状等。
[0026]另外,本申请发明可以设为如下来实施:作为上述混合流动体的pH为8.6以上且14 以下、优选地pH为12以上且14以下。
[0027] 另外,本申请发明可以设为如下来实施:上述氧化锌析出溶剂的pH为不到1、且上 述原料溶液的pH超过14。
[0028] 另外,本申请发明可以如下来实施:上述酸性物质使用选自盐酸、硝酸、硫酸中的 任一种;可以设为如下来实施:上述醇使用选自甲醇、乙醇、异丙醇、叔丁醇中的任一种。 [0029]另外,本申请发明可以在50 °C以上制备上述原料溶液。
[0030]另外,本申请发明可以如下来实施:上述碱性溶剂形成为将碱性氢氧化物在溶剂 中混合和/或溶解了的溶剂;可以如下来实施:上述碱性氢氧化物为碱金属氢氧化物,作为 上述碱金属氢氧化物,使用氢氧化钠、氢氧化钾、氢氧化锂的任一种。
[0031]另外,本申请发明可以如下来实施:上述氧化锌纳米粒子原料形成为在上述碱性 溶剂中可溶的锌化合物;可以如下来实施:作为上述锌化合物,使用选自氧化锌、氯化锌、硝 酸锌、氢氧化锌、硫酸锌中的至少任一种。
[0032] 另外,本申请发明可以作为如下来实施:上述原料溶液一边形成薄膜流体一边通 过上述处理用面间,上述氧化锌析出溶剂经过与将上述原料溶液导入上述处理用面间的流 路独立的另外的导入路而从在上述处理用面的至少任一方形成了的开口部被导入上述处 理用面间,将上述氧化锌析出溶剂与上述原料溶液在上述处理用面间混合。另外,也可相反 地作为如下来实施:上述氧化锌析出溶剂一边形成薄膜流体一边通过上述处理用面间,上 述原料溶液经过与将上述氧化锌析出溶剂导入上述处理用面间的流路独立的另外的导入 路而从在上述处理用面的至少任一方形成了的开口部被导入上述处理用面间,将上述氧化 锌析出溶剂与上述原料溶液在上述处理用面间混合。
[0033] 另外,本申请发明可以作为如下来实施:使用旋转式分散机使上述酸性物质在至 少含有上述醇的溶剂中均质地混合,上述旋转式分散机具有:具有多个叶片的转子、和在上 述转子的周围敷设且具有多个狭缝的筛网,上述转子与上述筛网通过相对地进行旋转而在 含有狭缝的筛网的内壁与叶片之间的微小的间隙中进行流体的剪切,且流体通过上述狭缝 而形成断续射流从筛网的内侧被排出到外侧。
[0034] 另外,可以通过上述氧化锌析出溶剂的制备温度来控制上述生成的氧化锌纳米粒 子的单晶比率,可以通过上述氧化锌析出溶剂的制备时所投入的搅拌能量来控制上述生成 的氧化锌纳米粒子的单晶比率。其中,所谓单晶比率,通过用电子显微镜来观察生成了的氧 化锌纳米粒子、由观察到的氧化锌纳米粒子的数A (个)和其中作为单晶所观察到的氧化锌 纳米粒子的数B(个)、根据单晶比率= B/AX100(%)而算出。
[0035]而且,可以使得在40°C以上制备上述氧化锌析出溶剂,可以使上述氧化锌析出溶 剂的制备时间为20分钟以上。
[0036]发明的效果
[0037]本申请发明能够提供不需要用于使原料蒸发的电子束、等离子体、激光、感应加热 等的高能量装置而稳定地适于大量生产的单晶氧化锌纳米粒子的制造方法。
【附图说明】
[0038]图1为表示该流体处理方法的实施中使用的旋转式分散机的使用状态的正视图。
[0039] 图2为该旋转式分散机的主要部分放大纵剖面图。
[0040] 图3为本发明的实施方式涉及的流体处理方法的实施中使用的流体处理装置的简 要剖面图。
[0041] 图4的(A)为图3中所示的流体处理装置的第1处理用面的简要俯视图,(B)为该装 置的处理用面的主要部分放大图。
[0042] 图5的(A)为该装置的第2导入部的剖面图,(B)为用于说明该第2导入部的处理用 面的主要部分放大图。
[0043] 图6的(A)~(C)为实施例1中制作了的氧化锌纳米粒子的TEM像。
[0044]图7为实施例1中制作了的氧化锌纳米粒子的STEM像。
[0045]图8为实施例1中制作了的氧化锌纳米粒子的XRD测定结果。
[0046]图9为实施例2中制作了的氧化锌纳米粒子的STEM像。
[0047]图10为实施例3中制作了的氧化锌纳米粒子的STEM像。
[0048] 图11为表示原料溶液的制备温度与单晶比率的关系的坐标图。
【具体实施方式】
[0049] 以下,基于附图列举本申请发明的实施方式的一例来进行说明。
[0050] (酸性物质)
[0051] 作为酸性物质,可以举出王水、盐酸、硝酸、发烟硝酸、硫酸、发烟硫酸等的无机酸, 或甲酸、醋酸、氯醋酸、二氯醋酸、草酸、三氟醋酸、三氯醋酸等的有机酸。
[0052](至少含有醇的溶剂)
[0053]为了制备氧化锌析出溶剂,使上述酸性物质在至少含有醇的溶剂中均质地混合。 [0054] 作为醇,例如可举出甲醇、乙醇、正丙醇、正丁醇等的直链醇、异丙醇、2-丁醇、叔丁 醇、1-甲氧基-2-丙醇等的分支状醇、乙二醇、二甘醇等的多元醇等。
[0055](氧化锌析出溶剂)
[0056]氧化锌析出溶剂可以在至少含有上述醇的溶剂中均质地混合酸性物质来实施。予 以说明,对于用于通过在至少含有上述醇的溶剂中均质地混合酸性物质来制备氧化锌析出 溶剂的工序(以下,制备工序),后述。此时,优选在40 °C以上制备氧化锌析出溶剂,优选使氧 化锌析出溶剂的制备时间为20分钟以上。另外,氧化锌析出溶剂的pH优选为不到1。
[0057](氧化锌纳米粒子原料)
[0058] 对氧化锌纳米粒子原料并无特别限定,可以使用锌单质、其化合物。作为一例,可 列举锌的氧化物、氮化物、硫化物、盐(硝酸盐、硫酸盐、氯化物、磷酸盐、碳酸盐等)、氢氧化 物、络合物、它们的水合物、有机溶剂合物等,优选在后述的碱性溶剂中可溶的锌化合物,优 选使用氧化锌、氯化锌、硝酸锌、氢氧化锌、硝酸锌、它们的水合物。这些氧化锌纳米粒子原 料可单独使用,也可将2种以上并用。
[0059] (碱性溶剂)
[0060] 作为碱性溶剂,优选使以下的碱性物质溶解于溶剂中来实施本发明。
[0061] 作为碱性物质,可举出氢氧化钠、氢氧化钾等的金属氢氧化物、甲醇钠、异丙醇钠 这样的金属醇盐、进而三乙胺、二乙基氨基乙醇、二乙胺等的胺系化合物等。
[0062] 作为用于使碱性物质混合、溶解的溶剂,可举出例如水、有机溶剂、或者由这些的 多种组成的混合溶剂。作为上述水,可举出自来水、离子交换水、纯水、超纯水、R0水等,作为 有机溶剂,可举出醇化合物溶剂、酰胺化合物溶剂、酮化合物溶剂、醚化合物溶剂、芳香族化 合物溶剂、二硫化碳、脂肪族化合物溶剂、腈化合物溶剂、亚砜化合物溶剂、卤素化合物溶 剂、酯化合物溶剂、离子性液体、羧酸化合物、磺酸化合物等。上述的溶剂可各自单独地使 用,或者也可将多种以上混合使用。
[0063] 作为碱性溶剂,可以是将上述的碱性物质在上述的溶剂中混合、溶解而成为碱性 溶剂,即使通过将氧化锌纳米粒子原料在上述的溶剂中混合、溶解而结果原料溶液成为碱 性的情况下也可以实施,作为碱性溶剂,优选将碱金属的氢氧化物、碱土金属的氢氧化物等 的碱性氢氧化物在上述的溶剂中混合、溶解。而且,作为碱性氢氧化物,优选碱金属氢氧化 物,更优选为氢氧化钠、氢氧化钾或氢氧化锂。
[0064] (原料溶液)
[0065] 优选将氧化锌纳米粒子原料溶解于碱性溶剂而形成原料溶液。予以说明,混合、溶 解时,与氧化锌析出溶剂同样地,通过后述的制备步骤使两者均质地混合。此时,优选在50 °C以上制备原料溶液,进而,更优选在75°C以上制备。另外,原料溶液的pH优选超过14。
[0066] (分散剂等)
[0067] 在本发明中,可以根据目的或需要使用各种的分散剂、表面活性剂。作为表面活性 剂及分散剂,没有特别限定,可以使用一般使用的各种市售品、制品或新合成了的产物等。 作为一个例子,可以举出阴离子性表面活性剂、阳离子性表面活性剂、非离子性表面活性 剂、各种聚合物等的分散剂等。这些可以单独使用,也可以并用两种以上。
[0068] 上述的表面活性剂及分散剂也可以包含于原料流体和氧化锌析出溶剂的任一种、 或两者中。另外,上述的表面活性剂及分散剂也可以包含于与原料流体和氧化锌析出溶剂 均不同的第3流体中。
[0069] (制备步骤)
[0070] 用于制备氧化锌析出溶剂的制备步骤优选使用以下所示的旋转式分散机来使酸 性物质在至少含有醇的溶剂中均质地混合。通过使用旋转式分散机,可容易地进行均质的 混合。
[0071] 旋转式分散机优选使用在槽内使棒状、板状、螺旋桨状等的各种形状的搅拌子旋 转的分散机、具有相对于搅拌子相对地进行旋转的筛网的分散机等对流体施加剪切力等、 实现均质的混合的分散机。作为旋转式分散机的优选的例子,可以应用日本专利第5147091 号中公开了的搅拌机。
[0072] 另外,旋转式分散机可以采用间歇式进行,也可采用连续式进行。在采用连续式进 行的情况下,可以连续地进行对于搅拌槽的流体的供给和排出,也可不使用搅拌槽而使用 连续式的混合机进行。
[0073](图1、图2的说明)
[0074]如图1及图2中所示那样,在该实施方式涉及的旋转式分散机100的流体容器104 中,收容有作为被处理流动体的、酸性物质与至少含有醇的溶剂的混合物。另外,旋转式分 散机100具有在被处理流动体中配置的处理部101、和在处理部101内配置的转子102。
[0075]处理部101为中空的壳体,通过被支承管103支承而配置于收容被处理流动体的流 体容器104。在该例中,示出了将处理部101设置在支承管103的前端、从流体容器104的上部 向内部下方插入的情形,但并不限定于该例,即使以从流体容器104的底面向上方突出的方 式支承处理部101,也可以实施。
[0076] 处理部101具备:具有将被处理流动体从外部吸入到内部的吸入口 105的吸入室 106、和与吸入室106导通的搅拌室107。就搅拌室107而言,通过具有多个作为排出口的狭缝 108的筛网109而限定其外周。
[0077] 所谓该吸入室106和搅拌室107,被作为两室106、107间的划分部的隔壁110划分, 且经由设置于隔壁110的导入用的开口部111而导通。
[0078] 应予说明,在图2的例中,将吸入室106的基端(图的上端)螺纹连接(螺合)至支承 管103的前端(图的下端),将搅拌室107(筛网109)的基端螺纹连接至吸入室106的前端,隔 壁110在吸入室106的下端一体地形成,这些构件的构成、结合状态可以进行各种改变而实 施。
[0079]上述转子102为在周向具备多张搅拌叶片112的旋转体,在搅拌叶片112与筛网109 之间保持微小的间隙,且进行旋转。使转子102旋转的机构中可以采用各种旋转驱动构造, 但在该例中,在旋转轴113的前端设置转子102,可旋转地收容于搅拌室107内。更详细地,将 旋转轴113插通到支承管103的内部。进而,以从吸入室106、通过隔壁110的开口部111到达 搅拌室107的方式配设旋转轴113,在其前端(图中下端)安装有转子102。因此,该旋转轴113 成为将开口部111贯通的贯通部。
[0080]将旋转轴113的基端连接至马达114等的旋转驱动装置。马达114优选使用具有数 值控制等的控制系统的马达或置于计算机的控制下的马达。
[0081 ]就该旋转式分散机100而言,通过转子102进行旋转,在进行旋转的搅拌叶片112通 过筛网109的内壁面时,通过对在两者间存在的被处理流动体施加的剪切力,进行混合。与 此同时,通过转子102的旋转,对被处理流动体给予运动能量,通过该被处理流动体通过狭 缝108,进一步被加速,一边形成断续射流一边流出到搅拌室107的外部。也通过该断续射流 而在速度界面产生液-液的剪切力,由此进行更为均匀的分散或混合的处理。
[0082]详细的机理不清楚,但在制备氧化锌析出溶剂时,如果不使酸性物质在至少含有 醇的溶剂中均质地混合,则使非单晶的氧化锌纳米粒子析出。
[0083](析出步骤)
[0084] 在本申请发明中,通过实行下述工序(以下称为析出步骤)来制造单晶的氧化锌纳 米粒子:通过具有对向配设了的、可接近分离的相对地进行旋转的处理用面的流体处理装 置使制备了的氧化锌析出溶剂和原料溶液混合,使单晶氧化锌纳米粒子析出。以下,对于实 行析出步骤时可以适用的上述的流体处理装置的实施方式进行说明。
[0085] 图3~图5中所示的流体处理装置,为与专利文献4中所记载的装置同样。在图3中, U表示上方,S表示下方,在本发明中上下前后左右仅限于表示相对的位置关系,并不特别指 定绝对的位置。在图4(A)、图5(B)中R表示旋转方向。在图5(B)中C表示离心力方向(半径方 向)。
[0086] 该流体处理装置具备对向的第1及第2的2个处理用部10、20,至少一方的处理用部 进行旋转。两处理用部1〇、20的对向的面分别成为处理用面。第1处理用部10具备第1处理用 面1,第2处理用部20具备第2处理用面2。
[0087]两处理用面1、2与被处理流动体的流路连接,构成被处理流动体的流路的一部分。 该两处理用面1、2间的间隔可以适宜改变而进行实施,通常调整为1mm以下、例如0. Ιμπι至50 μπι左右的微小间隔。由此,通过该两处理用面1、2间的被处理流动体成为由两处理用面1、2 所强制的强制薄膜流体。
[0088]在使用该装置来处理多个被处理流动体的情况下,该装置与第1被处理流动体的 流路连接,形成该第1被处理流动体的流路的一部分。进而该装置形成与第1被处理流动体 不同的第2被处理流动体的流路的一部分。而且,该装置进行如下流体的处理:使两流路合 流,在处理用面1、2间,混合两被处理流动体,使其反应而进行微粒的析出。
[0089]如果具体地进行说明,该装置具备:保持上述第1处理用部10的第1托架11、保持第 2处理用部20的第2托架21、接面压力赋予机构、旋转驱动机构、第1导入部dl、第2导入部d2 和流体压力赋予机构P。
[0090] 如图4(A)中所示,在该实施方式中,第1处理用部10为环状体,更详细而言,为圈状 的圆盘。另外,第2处理用部20也为圈状的圆盘。第1、第2处理用部10、20的材质除金属之外, 可以采用对碳、陶瓷或烧结金属、耐磨耗钢、蓝宝石、其它金属实施了硬化处理的材料、将硬 质材料实施了加衬、涂层、镀敷等的材料。在该实施方式中,两处理用部10、20的相互对向的 第1、第2处理用面1、2被镜面研磨,算术平均粗糙度不受特别限定,但优选为0.01~Ι.Ομπι, 更优选为〇 · 03~0 · 3μηι。
[0091] 第1托架11、第2托架21中,至少一方的托架可以通过电动机等的旋转驱动机构(未 图示)相对于另一方的托架相对地进行旋转。
[0092] 在该实施方式中,将第2托架21固定于装置,在同样地固定于装置的旋转驱动机构 的旋转轴50安装了的第1托架11进行旋转,被该第1托架11所支承的第1处理用部10相对于 第2处理用部20进行旋转。当然,也可使第2处理用部20旋转,还可使双方旋转。
[0093] 在该实施方式中,相对于第1处理用部10,第2处理用部20与旋转轴50的方向接 近?分离,在设置于第2托架21的收容部41可出没地收容第2处理用部20的处理用面2侧的 相反侧的部位。但是也可以与其相反地、第1处理用部10相对于第2处理用部20来接近?分 离,也可以两处理用部10、20相互接近·分离。
[0094]该收容部41为第2处理用部20的、收容处理用面2侧的相反侧的部位的凹部,为形 成为环状的槽。该收容部41具有可以使第2处理用部20的处理用面2侧的相反侧的部位出没 的充分的间隙,收容第2处理用部20。予以说明,第2处理用部20以在轴方向可以仅进行平行 移动的方式配置,但通过增大上述间隙,第2处理用部20也可以以消除与上述收容部41的轴 方向平行的关系的方式使处理用部20的中心线相对于收容部41倾斜而位移,进而,可以以 第2处理用部20的中心线和收容部41的中心线在半径方向偏离的方式进行位移。这样,优选 通过3维且可以位移地保持的浮动机构来保持第2处理用部20。
[0095]就上述的被处理流动体而言,在通过由后述的栗、位置能量等构成的流体压力赋 予机构Ρ赋予压力的状态下,从第1导入部dl和第2导入部d2导入两处理用面1、2间。在该实 施方式中,第1导入部dl为设置在环状的第2托架21的中央的流体的通路,其一端从环状的 两处理用部10、20的内侧被导入两处理用面1、2间。第2导入部d2向处理用面1、2供给与第1 被处理流动体进行反应的第2被处理流动体。在该实施方式中,第2导入部d2为设置于第2处 理用部20的内部的通路,其一端为形成于第2处理用面的开口部d20。
[0096]通过流体压力赋予机构ρ所加压了的第1被处理流动体从第1导入部dl被导入两处 理用部10、20的内侧的空间,通过第1处理用面1和第2处理用面2之间,在两处理用部10、20 的外侧穿过。
[0097]在这些处理用面1、2间,从第2导入部d2供给通过流体压力赋予机构ρ所加压的第2 被处理流动体,与第1被处理流动体合流,通过与两被处理流动体混合了时的碱反应,含有 氧化锌纳米粒子的流动体从两处理用面1、2排出至两处理用部10、20的外侧。予以说明,也 可以通过减压栗使两处理用部10、20的外侧的环境为负压。
[0098]上述的接面压力赋予机构将作用于使第1处理用面1和第2处理用面2接近的方向 的力赋予处理用部。在该实施方式中,接面压力赋予机构设置于第2托架21,将第2处理用部 20向第1处理用部10靠上。
[0099] 上述的接面压力赋予机构,为用于产生第1处理用部10的第1处理用面1和第2处理 用部20的第2处理用面2压在进行接近的方向的力(以下称为接面压力)的机构,通过该接面 压力和由流体压力所引起的使两处理用面1、2间分离的力的均衡,产生将两处理用面1、2间 的间隔保持在规定的微小间隔、具有nm单位至μπι单位的微小的膜厚的薄膜流体。
[0100] 在图3中所示的实施方式中,接面压力赋予机构配位于上述的收容部41和第2处理 用部20之间。
[0101] 具体而言,通过其一端被锁定于第2托架21的孔部、另一端被锁定于第2处理用部 的孔部的弹簧43的弹性力,使第2处理用部20向接近第1处理用部10的方向靠上,且通过向 靠上用流体导入部44导入了的空气、油等的靠上用流体的压力,在使第2处理用部20向接近 第1处理用部10的方向靠上,产生上述的接面压力。所谓弹簧43所引起的弹性力和上述靠上 用流体的流体压力,赋予任一方即可,也可为磁力、重力等的其他的力。
[0102] 抵抗该接面压力赋予机构的靠上力,由于通过流体压力赋予机构Ρ而被加压了的 被处理流动体的压力、粘性等所产生的分离力,由此第2处理用部20远离第1处理用部10,在 两处理用面间打开微小的间隔。这样,通过该接面压力和分离力的平衡,以μπι单位的精度设 定第1处理用面1和第2处理用面2的间隔。
[0103] 予以说明,作为分离力,可以举出除了被处理流动体的流体压、粘性外的处理用部 的旋转所形成的离心力、对靠上用流体导入部44施加负压时的该负压、将弹簧43形成为拉 伸弹簧时的弹性力等。该接面压力赋予机构也可以不是设置于第2处理用部20而设置于第1 处理用部10,也可以设置于两者。
[0104] 进而,在第2处理用部20的内侧,在第2处理用面2具备邻接的分离用调整面23。分 离用调整面23构成为反圆锥面形状,从第1导入部dl导入了的被处理流动体的压力作用于 分离用调整面23而产生向使第2处理用部20从第1处理用部10分离的方向的力。
[0105]另一方面,在第2处理用部20的内侧,在第2处理用面2的相反侧具备接近用调整面 24。接近用调整面24也构成为反圆锥面形状,从第1导入部dl导入了的被处理流动体的压力 作用于接近用调整面24而产上向使第2处理用部20向第1处理用部10接近的方向的力。
[0106] 通过调整接近用调整面24的面积,调整向使第2处理用部20向第1处理用部10接近 的方向的力、由此使处理用面1、2间为希望的微小间隙量,形成由被处理流动体形成的流动 体膜。
[0107] 予以说明,虽然省略图示,也可以将近接用调整面24形成具有比分离用调整面23 还大的面积来实施。
[0108] 被处理流动体成为通过保持上述的微小的间隙的两处理用面1、2而被强制的薄膜 流体,移动至环状的两处理用面1、2的外侧。但是,由于第1处理用部10旋转,因此被混合了 的被处理流动体不会从环状的两处理用面1、2的内侧向外侧直线地移动,向环状的半径方 向的移动向量和向周向的移动向量的合成向量作用于被处理流动体,从内侧向外侧大致漩 涡状地移动。
[0109] 予以说明,旋转轴50并不限定于垂直配置的旋转轴,可以为在水平方向配位的旋 转轴,也可以为倾斜配位的旋转轴。这是因为被处理流动体在两处理用面1、2间的微细的间 隔进行处理,实质上可以排除或者减轻重力的影响。另外,该接面压力赋予机构通过与可位 移地保持上述的第2处理用部20的浮动机构并用,也作为微振动、旋转对准的缓冲机构起作 用。
[0110] 如图4中所示,可以在第1处理用部10的第1处理用面1形成从第1处理用部10的中 心侧向外侧、即在径方向伸长的槽状的凹部13来实施。该凹部13的平面形状,如图4(B)所 示,可以为将第1处理用面1上弯曲或漩涡状地伸长的形状、虽然没有图示、但也可以为笔直 地向外方向伸长的形状、L字状等地屈曲或弯曲而成的形状、连续的形状、断续的形状、分支 的形状。另外,该凹部13也可作为形成于第2处理用面2的凹部来实施,也可作为形成于第1 及第2处理用面1、2的两者的凹部来实施。通过形成这样的凹部13可得到微栗效果,具有可 在第1及第2处理用面1、2间抽吸被处理流动体的效果。
[0111] 优选该凹部13的基端达到第1处理用部10的内周。该凹部13的前端向第1处理用部 面1的外周面侧伸长,形成为其深度(横截面积)伴随从基端向前端而逐渐减少。
[0112] 在该凹部13的前端和第1处理用面1的外周面之间设有没有凹部13的平坦面16。
[0113] 上述的开口部d20优选设于与第1处理用面1的平坦面16对向的位置。
[0114] 特别优选设置于以下位置:即与在通过微栗效果而导入时的流动方向以在处理用 面间形成的螺旋状变换为层流的流动方向的点相比的下游侧(在该例子中外侧)的与平坦 面16对向的位置。具体而言,在图4(B)中,优选将从设于第1处理用面1的凹部13的前端向半 径方向的距离η设为约0.5mm以上。由此,可在层流条件下进行多种被处理流动体的混合和 微粒的析出。
[0115] 就开口部d20的形状而言,如在图4(B)、图5(B)中所示为圆形状,也可以如在图4 (B)中以虚线所示地为将作为环状圆盘的处理用面2的中央的开口进行卷绕的同心圆状的 圆环形状。
[0116] 该第2导入部d2可以具有方向性。例如,如图5(A)所示,来自上述的第2处理用面2 的开口部d20的导入方向相对于第2处理用面2以规定的仰角(Θ1)倾斜。该仰角(Θ1)设为超 过0度且小于90度,进而,在反应速度快的反应的情况下,优选以1度以上且45度以下设置。
[0117] 另外,如图5(B)中所示,来自上述第2处理用面2的开口部d20的导入方向在沿上述 第2处理用面2的平面具有方向性。就该第2流体的导入方向而言,在处理用面的半径方向的 成分的情况下为远离中心的外方向,且在相对于进行旋转的处理用面间中的流体的旋转方 向的成分的情况下为正向。换言之,以通过开口部d20的半径方向即外方向的线段为基准线 g,具有从该基准线g向旋转方向R的规定的角度(Θ2)。关于该角度(Θ2),也优选设为超过0度 且低于90度。
[0118]该角度(Θ2)可以根据流体的种类、反应速度、粘度、处理用面的旋转速度等的各种 的条件进行改变而实施。另外,也可以使第2导入部d2完全不具有方向性。
[0119]上述的被处理流体的种类和其流路的数在图3的例中设为2个,但也可以为3个以 上。在图3的例中,从第2导入部d2在处理用面1、2间导入第2流体,但该导入部可以设置于第 1处理用部10,也可以设置于两者。另外,可以对一种被处理流体准备多个导入部。另外,对 设置于各处理用部的导入用的开口部而言,其形状、大小、数量没有特别限制,可以适宜改 变而实施。另外,可以就在上述第1及第2处理用面间1、2之前或更上游侧设置导入用的开口 部。
[0120] 应予说明,只要能够在处理用面1、2间进行上述处理即可,因此可以与上述相反 地,从第1导入部dl导入第2被处理流动体,从第2导入部d2导入第1被处理流动体。即,各流 体中的第1、第2的表示只不过具有为存在多个的流体的第η号这样的用于识别的含义,也可 存在第3以上的流体。
[0121] 认为:在上述装置中,通过在图3中所示的处理用面1、2之间将氧化锌析出溶剂与 原料溶液强制地进行混合,由于对在处理用面间析出了的氧化锌纳米粒子瞬间投入酸碱反 应所产生的大的能量,因此生成单晶氧化锌纳米粒子。因此,优选氧化锌析出溶剂为强酸 性、且原料溶液为强碱性,进而,更优选氧化锌析出溶剂的pH为不到1,且原料溶液的pH超过 14〇
[0122] 就上述装置而言,两处理用部10、20的对向的第1处理用面1和第2处理用面2都为 环状,由此两处理用面1、2间构成环状的空间。但是,也可只使一方(例如只是第2处理用面 2)为环状、使另一方(例如第1处理用面1)为平板状等。另外,就第1被处理流动体而言,以两 处理用面1、2间的环状的空间的内侧作为第1导入部dl而被导入、被导入了的第1被处理流 动体以第1导入部dl作为上游、以环状的外侧作为下游而流动,但也可与其相反地,以环状 的外侧作为上游、以环状的内侧作为下游而流动。同样地,将第2被处理流动体从第2导入部 d2的开口部d20导入而以环状的外侧作为下游来流动,但也可与其相反地,以环状的内侧作 为下游而流动。
[0123] 使用上述流体处理装置将原料流体与氧化锌析出溶剂混合后的混合流动体为碱 性,优选为PH8 · 6~14,更优选为pHl 2~14。
[0124] 另外,在将原料流体与氧化锌析出溶剂混合后的混合流动体的pH比8.6大的情况 下,与氧化锌不同的锌化合物(硫酸锌、氢氧化锌等)析出的情况变少。
[0125] 特别地,在混合流动体的pH为12以上且14以下的情况下,使得到的氧化锌纳米粒 子的全部单晶化,优选。
[0126]另外,对于混合流动体的pH的调节方法并无特别限定。为了使混合流动体的pH成 为上述范围,可以通过调节氧化锌析出溶剂和/或原料溶液的配方、改变向流体处理装置的 导入流量、导入温度、流体处理装置的运转条件来实施。
[0127] 本发明中,需要通过使酸性物质在至少含有醇的溶剂中均质地混合来制备氧化锌 析出溶剂。就均质的混合而言,通过使用了旋转式分散机的搅拌来进行,一般搅拌能量由式 1定义。
[0128] 搅拌能量=Νρ · ρ · η3 · d5 · t(式 1)
[0129] Np:动力系数(由实验数据算出的无量纲的常数)
[0130] P:氧化锌析出溶剂的密度
[0131] η:转子的转数
[0132] d:转子直径
[0133] t:搅拌时间
[0134] 可以通过改变式1的参数p、n、d、t的至少任一个来控制所生成的氧化锌纳米粒子 的单晶比率。
[0135] 实施例
[0136] 以下列举实施例对本发明进一步具体地说明。但是,本发明并不限定于下述的实 施例。
[0137] 以下的实施例中,所谓A液是指从图3中所示的装置的第1导入部dl导入的第1被处 理流动体,所谓B液是指同样地从装置的第2导入部d2导入的第2被处理流动体。
[0138] (实施例1)
[0139] 作为图1中所示的旋转分散机100,使用夕(工Λ ·テク二ック制造),制 备氧化锌析出溶剂和原料溶液。
[0140] 具体地,基于表1的实施例1中所示的氧化锌析出溶剂的配方,将酸性物质和醇投 入夕只,在氮气氛中,在制备温度50°C、转子的转数lOOOOrpm下搅拌30分钟,由此 均质地混合、制备氧化锌析出溶剂。
[0141] 另外,基于表1的实施例1中所示的原料溶液的配方,将氧化锌纳米粒子原料和碱 性溶剂投入夕只,在氮气氛中,在表1中所示的制备温度下,以转子的转数 20000rpm搅拌30分钟,由此均质地混合、使氧化锌纳米粒子原料在碱性溶剂中溶解而制备 原料溶液。
[0142] 应予说明,就表1的表中的缩写符号而言,ZnO为氧化锌,ZnCl2为氯化锌,MeOH为甲 醇,EtOH为乙醇,IPA为异丙醇,Κ0Η为氢氧化钾,NaOH为氢氧化钠 ,Li (0H)2为氢氧化锂,H2S〇4 为硫酸,HN〇3为硝酸,HC1为盐酸。
[0143]
[0144] 接着,将制备了的氧化锌析出溶剂与制备了的原料溶液使用图3中所示的流体处 理装置进行了混合。具体地,一边在处理用部1 〇的转数1700rpm、背面压0.02MPaG下使流体 处理装置运转一边将作为第1被处理流动体的氧化锌析出溶剂和作为第2被处理流动体的 原料溶液导入处理用面1、2间,在薄膜流体中混合。将含有氧化锌纳米粒子的排出液(以下 称为氧化锌纳米粒子分散液)从流体处理装置的处理用面1、2间排出。
[0145] 应予说明,就第1被处理流动体以及第2被处理流动体的导入温度而言,在处理装 置导入前即刻(更详细地,导入处理用面1、2间前即刻)对各自的温度进行了测定。
[0146] 另外,由于测定原料流体与氧化锌析出溶剂的混合后即刻的混合流动体的pH困 难,因此测定从流体处理装置的处理用面1、2间排出了的氧化锌纳米粒子分散液的pH、以排 出液的pH成为碱性的方式进行了制备。
[0147] 在pH测定中使用了H0RIBA制造的型号D-51的pH计。将各被处理流动体导入流体处 理装置前,在室温下对该被处理流动体的pH进行了测定。另外,在室温下测定了从同装置中 排出了的氧化锌纳米粒子分散液的pH。
[0148] 由从流体处理装置排出了的氧化锌纳米粒子分散液制作干燥粉体和湿饼样品。制 作方法根据这种处理的常规方法进行,将排出了的氧化锌纳米粒子分散液回收、进行利用 铺有硬质滤纸的吸滤器的过滤,然后,通过将清洗和过滤反复进行7次而进行分离,使一者 干燥而形成干燥粉体。另一者在进行了 MeOH置换后用铺有硬质滤纸的吸滤器过滤,形成了 湿饼样品。
[0149] (TEM观察用试样制作和TEM观察结果)
[0150]使实施例中得到了的清洗处理后的氧化锌纳米粒子湿饼在乙二醇中分散、进而用 甲基乙基酮(MEK)稀释为100倍。将得到的稀释液滴到胶棉膜,使其干燥,形成TEM观察用试 样。
[0151] (STEM观察用试样制作和TEM观察结果)
[0152]将使实施例中得到了的清洗处理后的氧化锌纳米粒子湿饼分散于乙二醇中的分 散液滴到微细网眼(7 Y夕口),进行干燥,形成STEM观察用试样。
[0153]在图6(A)~(C)中示出实施例1中所制作的氧化锌纳米粒子的TEM像,在图7中示出 实施例1中所制作的氧化锌纳米粒子的STEM像。TEM、STEM观察的结果为看到了一次粒径为3 ~8nm左右的氧化锌纳米粒子。
[0154](透射电子显微镜)
[0155] 在透射电子显微镜(TEM)观察中使用了透射型电子显微镜、JEM-2100(JE0L制造)。 作为观察条件,使加速电压为80kV。
[0156] 应予说明,表1中记载的粒径表示通过TEM观察对于100个粒子测定粒径的结果的 平均值。
[0157](扫描透射型电子显微观察)
[0158] 在扫描透射型电子显微观察(STEM)观察中使用了扫描透射型电子显微镜JEM-ARM200F(UHR)、日本电子制造。观察条件为在加速电压80kV下进行观察。应予说明,图7(实 施例1)中以TEM模式进行观察,图9(实施例2)、图10(实施例3)中以暗视场测定模式进行观 察。
[0159] (X射线衍射测定)
[0160]在X射线衍射(XRD)测定中使用了粉末X射线衍射测定装置X'Pert PRO MPD(XM^ X々H^PANalyt ical事业部制造)。测定条件为测定范围:1O_1OO[°20]Cu对阴极、管电压 45kV、管电流40mA、扫描速度1.6° /min。
[0161] (XRD测定结果)
[0162] 使用各实施例中得到的氧化锌纳米粒子的干燥粉体进行了 XRD测定。将实施例1的 XRD测定结果示于图8中。由XRD测定的结果发现与氧化锌一致的峰,确认制作了氧化锌。另 外,使用得到的47°附近的峰,由使用了硅多晶板的测定结果的シ二歹一的式子算出了微晶 直径。
[0163] (为单晶的评价)
[0164] 作为对由实施例所得到了的氧化锌纳米粒子为单晶进行评价的方法,可举出利用 透射型电子显微镜(TEM)、扫描型电子显微镜(SEM)的电子显微镜观察、将由TEM观察得到了 的粒径与使用了 XRD的微晶的测定结果进行比较的方法等,在此,通过STEM来观察得到了的 氧化锌纳米粒子,由观察的氧化锌纳米粒子的数A (个)和其中作为单晶而观察的氧化锌纳 米粒子的数B(个)、根据单晶比率= B/AX 100( % )来算出,对其比率进行了评价。
[0165] 予以说明,电子显微镜观察时,各个粒子是否为单晶的判断基准为将在一方向上 观测到晶格条纹(结晶中的原子排列)的粒子认定为单晶,将晶格条纹紊乱、发现了晶粒间 界的粒子认定为不是单晶。
[0166] (实施例2~10、比较例1~2)
[0167] 与实施例1同样地,以表1中记载的氧化锌析出溶剂和原料溶液的各配方、导入流 量、导入温度来实施,从由流体处理装置排出了的氧化锌纳米粒子分散液制作干燥粉体和 湿饼样品,以与实施例1同样的程序作成试样,观察、测定,结果得到了表1中记载那样的结 果。应予说明,对于表1中没有记载的条件,与实施例1同样。
[0168] 如表1中所示那样,在排出液为碱性的实施例2~10中,明确了在排出了的氧化锌 纳米粒子分散液中含有单晶氧化锌纳米粒子。即,实施例2~10中生成了单晶氧化锌纳米粒 子。
[0169] 另一方面,如比较例1、比较例2中所示那样,在排出液不为碱性的情况下,在排出 了的氧化锌纳米粒子分散液中不含单晶氧化锌纳米粒子。
[0170] 在各实施例中,发现排出液的pH越升高、单晶比率越升高的倾向,如在实施例1、实 施例2、实施例3、实施例4、实施例6、实施例8中所看到那样,在排出液的pH为8.6以上的情况 下,单晶化比率变得比较高。
[0171] 特别地,如在实施例1、实施例2、实施例3、实施例6中看到那样,在排出液的pH为12 以上的情况下,观察到的氧化锌纳米粒子全部为单晶。
[0172] 另外,原料溶液的制备温度与单晶比率的关系如图11所示,在原料溶液的制备温 度为50°C以上的情况下,单晶比率提高,在原料溶液的制备温度为75°C的情况下,单晶比率 进一步提高。予以说明,图11中记载的数字表示表1的实施例序号。
[0173](氧化锌析出溶剂的制备)
[0174] 在本发明中,需要通过使酸性物质在至少含有醇的溶剂中均质地混合来制备氧化 锌析出溶剂,关于这点,以下详述。
[0175] 关于氧化锌析出溶剂和原料溶液的各配方、原料溶液的制备、向流体处理装置的 导入流量、导入温度、流体处理装置的运转条件,设为与前述的实施例1相同的条件,在氧化 锌析出溶剂的制备条件中只使制备时间与制备温度变化来使纳米粒子析出,与实施例1~ 10同样地算出单晶比率,结果如表2中所示那样,得到了从Rankl到Rank4的结果。应予说明, 在表2中,在制备时间30分钟且制备温度50°C的条件下得到了的氧化锌纳米粒子为表1中的 实施例1。
[0176] [表 2]
[0177]
[0178] Rank 1:单晶比率100 % (观察的氧化锌纳米粒子全部为单晶)
[0179] 1^吐2:70%彡单晶比率〈100%
[0180] Rank3:0%〈单晶比率〈70%
[0181] Rank4:单晶比率0% (没有观察到单晶氧化锌纳米粒子)
[0182] 由表2的结果得知:通过使氧化锌析出溶剂的制备时间为20分钟以上或者使制备 温度为40°C以上,使酸性物质在至少含有醇的溶剂中均匀地混合,其结果,有助于单晶氧化 锌纳米粒子的生成。另外,在使制备时间为25分钟且使制备温度为70°C的情况下单晶比率 成为70%以上,在使制备时间为30分钟以上且使制备温度为50°C以上的情况下,得到的氧 化锌纳米粒子全部成为了单晶。这样确认了氧化锌析出溶剂的制备有助于单晶氧化锌纳米 粒子的生成。
[0183] 如以上所述那样,在制备氧化锌析出溶剂时,通过使酸性物质在至少含有醇的溶 剂中均质地混合,可以使单晶氧化锌纳米粒子析出。虽然其详细的机理不清楚,但从上述表 2的实施例(Rankl、Rank2、Rank3)及比较例(Rank4)及其考察可知在处理用面间所导入的氧 化锌析出溶剂的状态在单晶氧化锌纳米粒子的析出时产生大的影响。
[0184] 上述表2为通过制备时间t使搅拌能量增减的一例。如由表2可知那样,可以通过在 氧化锌析出溶剂的制备时所投入的搅拌能量的量来控制得到了的单晶氧化锌纳米粒子的 单晶比率。应予说明,其中,使全部为单晶的氧化锌纳米粒子析出、换言之单晶比率为100% 这样的情况也是上述控制的一例。
[0185] 接着,示出控制的另外的例子。在实施例1中,为了形成单晶比率100%,虽然通过 转子的转数l〇〇〇〇rpm、30分钟的搅拌来制备了氧化锌析出溶剂,但是例如在将转子的转数 设定为实施例1的一半即5000rpm而制备的情况下,根据式1,通过将制备时间设定为2 3 = 8 倍的240分钟,或者使转子直径为25/3 = 3.17倍,氧化锌析出溶剂的制备时所投入的搅拌能 量变得相等,获得与实施例1相同的结果。应予说明,只要满足式1,当然可以对制备时间和 转子直径这两者进行设定。
[0186] 应予说明,在式1中,显然不包含制备温度,也由此得知:在控制单晶比率时,制备 温度需要与上述的式1的参数P、n、d、t独立地进行设定。
[0187] (附记)
[0188]以下附记本申请说明书中公开的发明。
[0189 ]权利要求1~16的任一项所述的单晶氧化锌纳米粒子的制造方法,其特征在于,在 40°C以上制备了上述氧化锌析出溶剂。
[0190] 权利要求1~16的任一项所述的单晶氧化锌纳米粒子的制造方法,其特征在于,使 上述氧化锌析出溶剂的制备时间为20分钟以上。
[0191] 1第1处理用面
[0192] 2第2处理用面
[0193] 10第1处理用部
[0194] 11第1托架
[0195] 20第2处理用部
[0196] 21第2托架
[0197] dl第1导入部
[0198] d2第2导入部
[0199] d20 开口部
【主权项】
1. 一种单晶氧化锌纳米粒子的制造方法,是以下的氧化锌纳米粒子的制造方法: 通过使酸性物质在至少含有醇的溶剂中均质地混合而制备氧化锌析出溶剂、将所述制 备的氧化锌析出溶剂、与将氧化锌纳米粒子原料在碱性溶剂中混合了的原料溶液或者通过 将氧化锌纳米粒子原料在溶剂中混合、溶解而结果成为碱性的原料溶液在对向配设了的、 可接近分离的相对地进行旋转的处理用面间混合、将氧化锌纳米粒子析出了的混合流动体 从所述处理用面间排出, 其特征在于, 以所述混合流动体成为碱性的方式使所述氧化锌析出溶剂和所述原料溶液在所述处 理用面间混合、通过由所述酸性物质与所述碱性溶剂的混合引起的酸碱反应而生成氧化锌 纳米粒子。2. 权利要求1所述的单晶氧化锌纳米粒子的制造方法,其特征在于,所述混合流动体的 pH为8.6以上且14以下。3. 权利要求2所述的单晶氧化锌纳米粒子的制造方法,其特征在于,所述混合流动体的 pH为12以上且14以下。4. 权利要求1~3的任一项所述的单晶氧化锌纳米粒子的制造方法,其特征在于,所述 氧化锌析出溶剂的pH为不到1,且所述原料溶液的pH超过14。5. 权利要求1~4的任一项所述的单晶氧化锌纳米粒子的制造方法,其特征在于,所述 酸性物质选自盐酸、硝酸、硫酸中的任一种。6. 权利要求1~5的任一项所述的单晶氧化锌纳米粒子的制造方法,其特征在于,所述 醇选自甲醇、乙醇、异丙醇、叔丁醇中的任一种。7. 权利要求1~6的任一项所述的单晶氧化锌纳米粒子的制造方法,其特征在于,所述 原料溶液在50°C以上制备。8. 权利要求1~7的任一项所述的单晶氧化锌纳米粒子的制造方法,其特征在于,所述 碱性溶剂为将碱性氢氧化物在溶剂中混合和/或溶解的物质。9. 权利要求8所述的单晶氧化锌纳米粒子的制造方法,其特征在于,所述碱性氢氧化物 为碱金属氢氧化物。10. 权利要求9所述的单晶氧化锌纳米粒子的制造方法,其特征在于,所述碱金属氢氧 化物为氢氧化钠、氢氧化钾、氢氧化锂的任一种。11. 权利要求1~10的任一项所述的单晶氧化锌纳米粒子的制造方法,其特征在于,所 述氧化锌纳米粒子原料为在所述碱性溶剂中可溶的锌化合物。12. 权利要求11所述的单晶氧化锌纳米粒子的制造方法,其特征在于,所述锌化合物选 自氧化锌、氯化锌、硝酸锌、氢氧化锌、硫酸锌中的至少任一种。13. 权利要求1~12的任一项所述的单晶氧化锌纳米粒子的制造方法,其特征在于, 所述氧化锌析出溶剂与所述原料溶液的任一方一边形成薄膜流体一边通过所述处理 用面间, 所述氧化锌析出溶剂与所述原料溶液的任一另一方经过与所述氧化锌析出溶剂和所 述原料溶液的任一方被导入所述处理用面间的流路独立的另外的导入路,从在所述处理用 面的至少任一方形成了的开口部被导入所述处理用面间, 将所述氧化锌析出溶剂和所述原料溶液在所述处理用面间混合。14. 权利要求1~13的任一项所述的单晶氧化锌纳米粒子的制造方法,其特征在于, 使用旋转式分散机使所述酸性物质在至少含有所述醇的溶剂中均质地混合, 所述旋转式分散机具有:具备多个叶片的转子、和在所述转子的周围敷设且具有多个 狭缝的筛网,所述转子与所述筛网通过相对地进行旋转而在含有狭缝的筛网的内壁与叶片 之间的微小的间隙中进行流体的剪切,且通过所述狭缝而形成断续射流,从筛网的内侧向 外侧将流体排出。15. 权利要求1~14的任一项所述的单晶氧化锌纳米粒子的制造方法,其特征在于,通 过所述氧化锌析出溶剂的制备温度来控制所述生成的氧化锌纳米粒子的单晶比率。16. 权利要求1~15的任一项所述的单晶氧化锌纳米粒子的制造方法,其特征在于,通 过在所述氧化锌析出溶剂的制备时所投入的搅拌能量来控制所述生成的氧化锌纳米粒子 的单晶比率。
【文档编号】C30B29/16GK106068341SQ201580012139
【公开日】2016年11月2日
【申请日】2015年7月14日 公开号201580012139.0, CN 106068341 A, CN 106068341A, CN 201580012139, CN-A-106068341, CN106068341 A, CN106068341A, CN201580012139, CN201580012139.0, PCT/2015/70105, PCT/JP/15/070105, PCT/JP/15/70105, PCT/JP/2015/070105, PCT/JP/2015/70105, PCT/JP15/070105, PCT/JP15/70105, PCT/JP15070105, PCT/JP1570105, PCT/JP2015/070105, PCT/JP2015/70105, PCT/JP2015070105, PCT/JP201570105
【发明人】榎村真一
【申请人】M技术株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1