中空微球体的制作方法

文档序号:1846476阅读:560来源:国知局
专利名称:中空微球体的制作方法
中空微球体本发明涉及中空微球体。本发明还涉及可用于制备中空微球体的真空设备。

发明内容
在一个方面,本发明提供中空微球体,其包含硅酸盐玻璃,其中所述中空微球体基本上不含发泡剂,并且另外其中硅酸盐玻璃不包含珍珠岩。在另一方面,本发明提供中空微球体,其包含娃酸盐玻璃具有基于衍生出中空微球体的进料组合物的总重量计小于O. 12重量%的硫基发泡剂,其中硅酸盐玻璃不包含珍珠
山^ ο在另一方面,本发明提供中空微球体,其包含硅酸盐玻璃,其中所述中空微球体 基本上不含发泡剂,并且另外其中硅酸盐玻璃不包含珍珠岩,并且另外其中所述硅酸盐玻璃选自以下中的至少一个包含硅酸盐、硼和钠的玻璃组合物;陶瓷;和回收的玻璃。在另一方面,本发明提供中空微球体,其包含硅酸盐玻璃,其中所述中空微球体基本上不含发泡剂,并且另外其中硅酸盐玻璃不包含珍珠岩,并且另外其中所述硅酸盐玻璃包含(a)介于50重量%和90重量%之间Si02 ; (b)介于2重量%和20重量%之间的碱金属氧化物;(c)介于I重量%和30重量%之间的B203 ; (d)介于O重量%至O. 12重量%之间的硫;(e)介于O重量%和25重量%之间的二价金属氧化物;(f)介于O重量%和10重量%之间的除Si02以外的四价金属氧化物;(g)介于O重量%和20重量%之间的三价金属氧化物;(h)介于O重量%和10重量%之间的五价原子的氧化物;和⑴介于O重量%和5重量%之间的氟。在另一方面,本发明提供中空微球体,其包含娃酸盐玻璃,其中所述中空微球体基本上不含发泡剂,并且另外其中所述中空微球体的密度小于约I. 3g/mL。在另一方面,本发明提供中空微球体,其包含硅酸盐玻璃,其中所述中空微球体基本上不含发泡剂,并且另外其中所述中空微球体的密度小于约O. 8g/mL。在另一方面,本发明提供中空微球体,其包含硅酸盐玻璃,其中所述中空微球体基本上不含发泡剂,并且另外其中所述中空微球体的密度小于约O. 5g/mL。在另一方面,本发明提供中空微球体,其包含硅酸盐玻璃,其中所述中空微球体基本上不含发泡剂,并且另外其中所述中空微球体的密度小于约O. 4g/mL。在另一方面,本发明提供中空微球体,其包含硅酸盐玻璃,其中所述中空微球体基本上不含发泡剂,并且另外其中所述中空微球体的密度小于约O. 3g/mL。在另一方面,本发明提供中空微球体,其包含娃酸盐玻璃,其中所述中空微球体基本上不含发泡剂,并且另外其中所述中空微球体的密度小于约O. 2g/mL。在另一方面,本发明提供中空微球体,其包含硅酸盐玻璃,其中所述中空微球体基本上不含发泡剂,并且另外其中所述中空微球体的强度大于约350psi。在另一方面,本发明提供中空微球体,其包含硅酸盐玻璃,其中所述中空微球体基本上不含发泡剂,并且另外其中所述中空微球体的强度大于约1500psi。在另一方面,本发明提供中空微球体,其包含娃酸盐玻璃,其中所述中空微球体基本上不含发泡剂,并且另外其中所述中空微球体的强度大于约2500psi。在另一方面,本发明提供中空微球体,其包含娃酸盐玻璃,其中所述中空微球体基本上不含发泡剂,并且另外其中所述中空微球体的强度大于约5000psi。在另一方面,本发明提供中空微球体,其包含娃酸盐玻璃,其中所述中空微球体基本上不含发泡剂,并且另外其中所述中空微球体的强度大于约10,000psi。在另一方面,本发明提供中空微球体,其包含娃酸盐玻璃,其中所述中空微球体基本上不含发泡剂,并且另外其中所述中空微球体的强度大于约15,000psi。在另一方面,本发明提供包含珍珠岩的中空微球体,其中所述中空微球体具有基本上单一的胞状结构。在又一方面,本发明提供包含珍珠岩的中空微球体,其中所述中空微球体具有基本上单一的胞状结构,其中所述中空微球体的密度小于约I. 3g/mL。 本发明的上述发明内容并不旨在描述本发明的每一个实施例。本发明的一个或多个实施例的细节还在以下描述中给出。本发明的其他特征、目标和优点从描述和权利要求中将显而易见。附图
简要说明图I为本发明公开的用于制备中空微球体的设备的一个实施例的前剖视图。图2为本发明公开的用于制备中空微球体的设备的一个实施例的前剖视图。图3为根据实例I制备的回收的玻璃中空微球体的光学图像。图4为根据实例5制备的玻璃中空微球体的光学图像。图5为按实例8所述制备的珍珠岩中空微球体的光学图像。
具体实施例方式如本文所用的术语“玻璃”包括所有无定形固体或可以用于形成无定形固体的熔体,其中用于形成这种玻璃的原材料包括各种氧化物和矿物。这些氧化物包括金属氧化物。如本文所用的术语“回收的玻璃”是指使用玻璃作为原材料形成的任何材料。如本文所用的术语“真空”是指低于101,592Pa(30inHg)的绝对压力。平均直径小于约500微米的中空微球体对许多用途具有宽泛的实用性,其中多个用途需要具体尺寸、形状、密度和强度特性。例如,中空微球体在工业中作为聚合物型化合物的添加剂广泛使用,其中它们可以用作调节剂、增强剂、硬化剂(rigidifier)和/或填料。通常,希望中空微球体强度较高从而不在聚合物型配混物的进一步加工期间例如被高压喷射、捏合、挤出或注模压碎或破裂。希望提供一种用于制备中空微球体的方法,其允许控制所得中空微球体的尺寸、形状、密度和强度。中空微球体和用于制备它们的方法已在各种参考文献中公开。例如,这些参考文献中的一些公开一种使用玻璃形成组分的同时熔融和熔融物质的伸展来制备中空微球体的方法。其他参考文献公开加热含有无机气体形成剂、或发泡剂的玻璃组合物,和加热该玻璃至足以释放发泡剂的温度。其他参考文献公开一种方法,包括通过湿粉碎来粉碎材料以获得粉末状粉末材料的浆液,喷射所述浆液以形成液滴,并加热所述液滴以熔合或烧结粉末材料以便获得无机微球体。其他参考文献公开一种用于通过在夹带流反应器中于部分氧化条件下采用谨慎控制的时间-温度过程处理精确配制的进料混合物来制备低密度微球体的方法。然而,这些参考文献没有提供这样一种用于制备中空微球体的方法,其提供对由其制备的中空微球体的尺寸、形状、密度和强度的控制。除了尺寸、密度和强度以外,中空微球体的实用性可能取决于水敏感性和成本,其意味着优选的是,用于制备中空微球体玻璃组合物包括相对高的二氧化娃含量。然而,玻璃组合物中较高的二氧化硅含量并不总是可取的,因为在初始玻璃制备中,较高二氧化硅玻璃所需的较高温度和较长熔化时间降低可保留的发泡剂的量,其阻止低密度玻璃气泡的形成。为获得低密度(例如小于O. 2g/cc )的中空微球体,很难在初始玻璃熔化操作期间保留足够的发泡剂。希望使用具有相对高的二氧化硅含量并同时产生低密度气泡的玻璃组合物。中空微球体通常通过加热研磨的熔块(常常称为“进料”,其含有发泡剂)制备。用于制备中空微球体的已知方法包括玻璃熔化、玻璃进料研磨和使用火焰处理的中空微球体形成。该方法的关键在于,在用火焰处理形成中空微球体使之前用于形成中空微球体的玻璃组合物必须包含具体量的发泡剂。发泡剂通常为在高温下分解的组合物。示例性发泡剂包括硫或硫和氧的化合物,其基于玻璃组合物的总重量计在玻璃组合物中以大于约O. 12重量%的发泡剂的量存在。 在这些方法中,必要的是熔化玻璃两次,一次是在批料熔化以溶解玻璃中的发泡剂期间,另一次是指形成中空微球体期间。因为玻璃组合物中发泡剂的挥发性,批料熔化步骤限于相对较低温度,在此期间批料组合物变得对用于批料熔化步骤的熔化槽的耐火材料十分具有腐蚀性。批料熔化步骤还需要相对长的时间且必须保持用于批料熔化步骤的玻璃粒子尺寸很小。这些问题导致所得中空微球体的成本增加和潜在杂质增加。希望提供一种不需要使用发泡剂来制备中空微球体的方法。可用于本发明的进料可以例如通过压碎和/或研磨任何合适玻璃来制备。本发明中的进料可以具有能够形成玻璃的任何组合物,例如回收的玻璃、珍珠岩、硅酸盐玻璃等等。在一些实施例中,基于总重量计,该进料包含50至90%的SiO2, 2至20%的碱金属氧化物,I至30%的B2O3, O至O. 12%的硫(例如,作为元素性硫),O至25%的二价金属氧化物(例如,Ca0、Mg0、Ba0、Sr0、Zn0、或PbO),除SiO2以外的O至10%的四价金属氧化物(例如,Ti02、MnO2、或ZrO2), O至20%的三价金属氧化物(例如,Al203、Fe203、或Sb2O3,0至10%的五价原子的氧化物(例如,P2O5或V2O5),和O至5%的氟(如氟化物),所述氟可充当助熔剂以促进玻璃组合物熔化。在一个实施例中,进料包含485g SiO2 (可购自US Silica, West Virginia,美国),IHgNa2O. 2B203 (90% 小于 590 μ m),161g CaCO3 (90% 小于 44 μ m),29gNa2C03,3. 49gNa2SO4 (60%小于74 μ m)和IOg Na4P2O7 (90%小于840 μ m)。在另一个实施例中,进料包含68. 02% 的 SiO2, 7. 44% 的 Na20,11. 09% 的 B2O3,12. 7% 的 CaCO3 和 O. 76% 的 P205。附加成分可用于进料组合物中并且可不被包括在进料中(例如)以向所得中空微球体贡献特定性质或特性(例如,硬度或颜色)。上述进料组合物基本上不含发泡剂。如本文所用的短语“基本上不含发泡剂”是指基于进料组合物的总重量计小于O. 12重量%的硫基发泡剂。该进料通常被研磨,并任选地被分类,以产生用于形成所需尺寸的中空微球体的合适粒度的进料。适用于研磨进料的方法包括(例如)使用珠磨机或球磨机、磨碎机、辊式开炼机、盘磨机、喷磨机、或它们的组合来研磨。例如,为制备用于形成中空微球体的合适粒度的进料,进料可以使用盘磨机来粗研磨(例如压碎),并随后使用喷磨机来细研磨。喷磨机通常为三种类型螺旋式喷磨机、流化床喷磨机和对冲式喷磨机,但也可使用其他的类型。螺旋式喷磨机包括,例如,可以商品名“MICRONIZER JET MILL”得自Sturtevant, Inc. , Hanover, Mas sachusetts ;商品名 “MICRON-MASTER JET PULVERIZER,,得自 The Jet Pulverizer Co. , Moorestown, New Jersey ;和商品名 “MICRO-JET” 得自 FluidEnergy Processing and Equipment Co.,Plumsteadville, Pennsylvania 的那些。在螺方定式喷磨机中,平面的圆柱研磨腔(flat cylindrical grinding chamber)被喷嘴环围绕。将待研磨的材料作为粒子被喷射器引入到喷嘴环内部。被压缩流体的射流膨胀通过喷嘴并加速所述粒子,其通过互相撞击导致尺寸下降。流化床喷磨机例如可以商品名“CGS FLUIDIZED BED JET MILL”得自NetzschInc., Exton, Pennsylvania ;商品名 “R0T0-JET” 得自 Fluid Energy Processing andEquipment Co.;和商品名 “ALPINE MODEL IOOAPG,,得自 Hosokawa Micron Powder 系统,Summit, New Jersey。这种类型的机器的下面部分为磨削区域。在所述磨削区域中的磨削喷嘴的环聚焦于中心点,并且所述磨削流体使被研磨的材料粒子加速。在材料的流化床内发生尺寸降低,并且这项技术可显著改进能量效率。 对冲式喷磨机类似于流化床喷磨机,不同之处在于至少两个对冲的喷嘴加速粒子,这导致它们在中心点碰撞。对冲式喷磨机可例如商购于CCE Technologies, CottageGrove, Minnesota。一旦所述进料已研磨,则将其给料至本发明公开的设备中,所述设备包括分配系统、加热系统、真空系统和收集器。现参见图I和图2,示出所公开设备10的两个示例性实施例。图I和图2中所不设备10包括具有细长外壳20的分配系统12。细长外壳20具有比水平壁24更长的竖直壁22。取决于其中将被分配的进料的类型和体积,选择细长外壳20的粒度和形状。例如,细长外壳20可以是球形的。图I中所示的示例性细长外壳20为球形并且具有约3. 81cm的直径。图2中所示的示例性细长外壳20为球形并且具有约
5.08cm的直径。细长外壳20可以由适用于分配进料32的任何材料制成,例如金属、玻璃、树脂等等和它们的组合的材料。例如,图I中所示细长外壳20完全由玻璃构造,并且图2中所示细长外壳20包括玻璃竖直壁22和金属水平壁24。细长外壳20还包括在细长外壳20内竖直地保持居中的中空内管26。取决于其中将被分配的进料32的类型和体积,选择中空内管26的粒度和形状。例如,中空内管26可以为球形。图I中所示的示例性中空内管26为球形并具有约I. 27cm的直径。图2中所示的示例性中空内管26为球形并具有约2. 54cm的直径。中空内管26在顶端28和底端30处开口,使得粒子或进料32可以从中通过。如图2所示,细长外壳20还可以包括竖直延伸的凸起29,其从细长外壳20的顶部恰好延伸至中空内管26的顶端28上方,以便在竖直延伸凸起29和中空内管26的顶端28之间提供间隙31。中空内管26可以由适用于分配进料32的任何材料制成,例如,金属、玻璃、树脂等等和它们的组合的材料。例如,图I中所示中空内管26完全由玻璃构造并且图2中所示中空内管26完全由金属构造。细长外壳20还包括颈状物34。颈状物34定义图I中的接纳进料32和用于将进料32流化和移动至设备10中的中空内管内的载气的入口。颈状物34可以设置在分配系统12的竖直壁22或分配系统12的水平壁24的底部附近。例如,图I中所示颈状物34沿着最靠近加热系统14的竖直壁22的一部分设置并且包括开口 36和水平延伸壁38。图2中所示的示例性颈状物34沿着水平壁24的一部分设置并且包括开口 36和竖直延伸壁40。图2中所示的分配系统12具有两个颈状物34或可以沿着底部水平壁24的一部分具有更多颈状物。图2中所示的示例性颈状物34很小,类似小孔。用于接纳图2所示进料32的入口 35位于顶部水平壁24。中空内管26的底端30操作性地连接到加热系统14的入口 44。设备10可以包括介于中空内管26的底端30和加热系统14的入口 44之间的过渡部42。希望介于中空内管26的底端30和加热系统14的入口 44之间的过渡部42被密封以避免环境空气引入至设备10中。例如,介于中空内管26的底端30和加热系统14的入口 44之间的过渡部42可以用O形环或任何其他类型的常规垫圈材料密封以避免环境空气在操作期间进入设备。设备10包括加热系统14。可以使用任何市售的加热系统,例如可商购自ThermalTechnology Inc. (California,美国)的 “Astro 1100-4080MI” 型炉。本领域技术人员可了解,加热系统14内的温度取决于各种因素,例如进料32中所用材料的类型。在本发明公 开的方法中,加热系统14内的温度应维持在大于或等于玻璃软化温度的温度下。在实施例中,加热系统14内的温度在大于约1300°C下。示例性温度包括大于约1300°C、大于约1410°C、大于约1550°C、大于约1560°C、大于约1575°C、大于约1600°C和大于约1650°C的温度。设备10也包括在加热系统14内提供真空的真空系统16。可以使用任何市售的真空系统。真空系统16 (未示出)可以为经由管件线例如空气线、液体线等等连接至加热系统16的独立系统。真空系统16还可以整合到加热系统16、收集器18或这两者中。例如,以商品名“Master Heat Gun”商购自 Master Appliances Corp. (Wisconsin,美国)的冷空气鼓风机可以直接结合到加热系统1:4中。这些冷空气鼓风机可以在加热系统14的入口处、加热系统14的出口处、收集器18的入口处、或多个这些位置处提供冷却空气。希望将本发明公开的加热系统14的绝对内部压力保持在约小于6,773Pa(2inHg)。在其他有益效果中,当使用基本上不含发泡剂的进料32时,在本发明公开的制备中空微球体方法中将加热系统14的绝对内部压力维持在约小于6,773Pa(2inHg)是有用的。设备10可以也包括其中收集形成的中空微球体的收集器18。收集器18的入口48操作性地连接到加热系统14的出口 46。希望介于收集器18和加热系统14之间的连接被密封以避免环境空气引入到设备10中。例如,介于收集器18和加热系统14之间的连接可以用O形环或任何其他类型的常规垫圈材料密封以避免环境空气在操作期间进入设备。本领域技术人员可了解,收集器18可以许多方式设计,取决于各种因素,例如尺寸、其中正在收集的中空微球体的形状和体积、真空系统16的整合、设备10的操作温度等等。仍参见图I和图2,在本发明公开的用于制备中空微球体方法期间,使用载气将粒子或进料32给料至设备10中,其中所述载气可以是任何惰性气体。本领域技术人员可以了解,载气的流速根据各种因素来选择,例如正被给料至设备10中的进料32的尺寸、形状和体积,设备10内的所需压力等等。载气的流速应足以将进料32引入在中空内管26的顶端28处的开口中。然后,因为真空系统16在加热系统14内产生的真空,进料32被牵引至加热系统14。一旦处于加热系统14内,贝U进料32变成中空微球体。在一个实施例中,使得所述中空微球体可以经由重力穿过加热系统14自由下落并且离开加热系统14中的出口46。在另一个实施例中,中空微球体可以被比加热系统14中所维持的真空更高的收集器18中的真空牵引穿过加热系统14中的出口 46并进入收集器18。收集器18所收集的中空微球体可以从设备10穿过收集器18中的出口 50分配。或者,收集器18可以可从设备10拆除以便从设备10排放形成的中空微球体。使用本发明公开的方法制备的中空微球体具有相对低的密度。在一些实施例中,本发明公开的中空微球体的密度小于约I. 3g/mL。在一些实施例中,本发明公开的中空微球体的密度小于约O. 8g/mL。在其它实施例中,本发明公开的中空微球体的密度小于约O. 5g/mL,小于约O. 4g/mL,小于约O. 3g/mL,或小于约O. 2g/mL。使用本发明公开的方法制备的中空微球体具有相对高的强度。在一些实施例中,本发明公开的中空微球体的强度大于约350psi。在一些实施例中,本发明公开的中空微球体的强度大于约1500psi。在其它实施例中,本发明公开的中空微球体的强度大于约2500psi,大于约 5000psi,大于约 10,OOOpsi,或大于约 15,OOOpsi0 使用本发明公开的方法制备的中空微球体具有基本上单一的胞状结构。如本文所用的术语“基本上”是指使用本发明公开的方法制备的绝大多数中空微球体具有单一胞状结构。如本文所用的术语“单一胞状结构”是指各中空微球体仅由一个外壁定义,并在各单独中空微球体中不存在其他外部壁、部分球面、同心球面、等等。示例性单一胞状结构示于图3和图4中所示的光学图像中。如下为本发明的示例性实施例I.中空微球体,其包含硅酸盐玻璃,其中所述中空微球体基本上不含发泡剂,并且另外其中硅酸盐玻璃不包含珍珠岩。2.根据权利要求I所述的中空微球体,其中基本上不含发泡剂包括基于衍生出中空微球体的进料组合物的总重量计小于O. 12重量%的硫基发泡剂。3.根据前述任一项权利要求所述的中空微球体,其中所述硅酸盐玻璃选自以下中的至少一个包含硅酸盐、硼和钠的玻璃组合物;陶瓷;和回收的玻璃。4.根据前述任一项权利要求所述的中空微球体,其中所述硅酸盐玻璃包含(a)介于50重量%和90重量%之间的SiO2 ;(b)介于2重量%和20重量%之间的碱金属氧化物;(c)介于I重量%和30重量%之间的B2O3 ; (d)介于O重量%至O. 12重量%之间的硫;(e)介于O重量%和25重量%之间的二价金属氧化物;(f)介于O重量%和10重量%之间的除SiO2以外的四价金属氧化物;(g)介于O重量%和20重量%之间的三价金属氧化物;(h)介于O重量%和10重量%之间的五价原子的氧化物;和(i)介于O重量%和5重量%之间的氟。5.根据前述任一项权利要求所述的中空微球体,其中所述中空微球体的密度小于约 I. 3g/mL。6.根据权利要求1、2、3、或4中任一项所述的中空微球体,其中所述中空微球体的密度小于约O. 8g/mL。7.根据权利要求1、2、3、或4中任一项权利要求所述的中空微球体,其中所述中空微球体的密度小于约O. 5g/mL。8.根据权利要求1、2、3、或4中任一项所述的中空微球体,其中所述中空微球体的密度小于约O. 4g/mL。9.根据权利要求1、2、3、或4中任一项所述的中空微球体,其中所述中空微球体的密度小于约O. 3g/mL。10.根据权利要求1、2、3、或4中任一项所述的中空微球体,其中所述中空微球体的密度小于约O. 2g/mL。11.根据前述任一项权利要求所述的中空微球体,其中所述中空微球体的强度大于约 350psi。
12.根据权利要求1、2、3、4、5、6、7、8、9、或10中任一项所述的中空微球体,其中所述中空微球体的强度大于约1500psi。13.根据权利要求1、2、3、4、5、6、7、8、9、或10中任一项所述的中空微球体,其中所述中空微球体的强度大于约2500psi。14.根据权利要求1、2、3、4、5、6、7、8、9、或10中任一项所述的中空微球体,其中所述中空微球体的强度大于约5000psi。15.根据权利要求1、2、3、4、5、6、7、8、9、或10中任一项所述的中空微球体,其中所述中空微球体的强度大于约10,OOOpsi。16.根据权利要求1、2、3、4、5、6、7、8、9、或10中任一项所述的中空微球体,其中所述中空微球体的强度大于约15,OOOpsi。17.包含珍珠岩的中空微球体,其中所述中空微球体具有基本上单一的胞状结构。18.根据权利要求17所述的中空微球体,其中所述中空微球体的密度小于约
I.3g/mL。以下特定(但非限制性)实例将用于说明本发明。除非另外明确指出,否则在这些实例中,所有量均以重量份表示。设备在以下实例中使用型号“Astro 1100-4080MI”(通过 Thermal Technology Inc.(California,美国)商购)作为外加热系统,不同的是通过移除上部和下部(lower heaths)来改进内室(inplate)以使粒子或进料自由下落穿过加热系统。使用机械夹具将三个冷却空气鼓风机(通过 Master Appliances Corp. (Wisconsin,美国)以商品名 “Master HeatGun”商购)固定至加热系统的结构一个冷却空气鼓风机靠近给料开口位于加热系统的顶部,并且两个冷却空气鼓风机位于加热系统的底部,在收集开口处吹出空气。位于加热系统的顶部的给料开口通过添加O形环密封而被改进以将分配系统保持在适当的位置。测试方法平均粒子密度测定使用以商品名 “ Accupyc 1330Pycnometer” 得自Micromeritics (Norcross, Georgia)的完全自动化的气体置换比重瓶,根据ASTMD2840-69, “ 中空微球的平均真颗粒密度”(Average True Particle Density of HollowMicrospheres),测定微球体的密度。由经过水漂浮步骤的以移除任何较重微球体、或“沉降物(sinker) ”的样品测量漂浮密度。粒度测丨定使用以商品名“Coulter Counter LS-130” 得自 BeckmanCoulter (Fullerton, California)的粒度分析器测定粒度分布。强度测试中空微球体的强度使用ASTM D3102_72,“中空玻璃微球体的流体静力学破裂强度”(Hydrostatic Collapse Strength of Hollow Glass Microspheres)进行测定,不同的是中空微球体的样本尺寸是10mL,中空微球体分散于甘油(20. 6g)中,并且使用计算机软件自动进行数据整理。记录的数值是按原始产品体积计10%破裂时的静水压力。SM
实施例1-4将回收的玻璃粒子(得自Strategic Materials Inc. , Texas,美国)在流化床喷磨机(可以商品名 “Alpine Model 100APG^ 得自 Hosokawa Micron PowderSystems, Summit, New Jersey)中研磨,提供平均粒度约20 μ m的进料。使用在图2中所示并于对应文本中描述的设备将该进料分配到加热系统中。在进料置于细长外壳和中空内管之间的情况下,以4立方英尺每小时(CFH)的流速和6,773Pa(2inHg)的绝对压力将载气喷射穿过颈状物。使进料朝中空内管的顶端处的缩窄开口悬浮并且由于施加于此处的真空压力而被朝加热系统牵引穿过中空管。原材料和处理条件列于表I中。图3为按实例I中所述制备的回收的玻璃中空微球体的光学图像,其由连接至HRD-060HMT 型数字照相机(得自 Leica Mycrosystems of Illinois,美国)的“DM LM”型显微镜获取。图3中所示中空微球体具有基本上单一的胞状结构。在成形中空微球体之后,测量密度和强度。结果同样示于表I中。对于实例1,测量漂浮密度。激权利要求
1.中空微球体,其包含硅酸盐玻璃,其中所述中空微球体基本上不含发泡剂,并且另外其中硅酸盐玻璃不包含珍珠岩。
2.根据权利要求I所述的中空微球体,其中基本上不含发泡剂包括基于衍生出所述中空微球体的进料组合物的总重量计小于O. 12重量%的硫基发泡剂。
3.根据权利要求I所述的中空微球体,其中所述硅酸盐玻璃选自以下中的至少一个包含硅酸盐、硼和钠的玻璃组合物;陶瓷;和回收的玻璃。
4.根据权利要求I所述的中空微球体,其中所述硅酸盐玻璃包含 (a)介于50重量%和90重量%之间的SiO2; (b)介于2重量%和20重量%之间的碱金属氧化物; (c)介于I重量%和30重量%之间的B2O3; (d)介于O重量%至O.12重量%之间的硫; (e)介于O重量%和25重量%之间的二价金属氧化物; (f)介于O重量%和10重量%之间的除SiO2以外的四价金属氧化物; (g)介于O重量%和20重量%之间的三价金属氧化物; (h)介于O重量%和10重量%之间的五价原子的氧化物;和 (i)介于O重量%和5重量%之间的氟。
5.根据权利要求I所述的中空微球体,其中所述中空微球体的密度小于约I.3g/mL。
6.根据权利要求I所述的中空微球体,其中所述中空微球体的密度小于约O.8g/mL。
7.根据权利要求I所述的中空微球体,其中所述中空微球体的密度小于约O.5g/mL。
8.根据权利要求I所述的中空微球体,其中所述中空微球体的密度小于约O.4g/mL。
9.根据权利要求I所述的中空微球体,其中所述中空微球体的密度小于约O.3g/mL。
10.根据权利要求I所述的中空微球体,其中所述中空微球体的密度小于约O.2g/mL。
11.根据权利要求I所述的中空微球体,其中所述中空微球体的强度大于约350psi。
12.根据权利要求I所述的中空微球体,其中所述中空微球体的强度大于约1500psi。
13.根据权利要求I所述的中空微球体,其中所述中空微球体的强度大于约2500psi。
14.根据权利要求I所述的中空微球体,其中所述中空微球体的强度大于约5000psi。
15.根据权利要求I所述的中空微球体,其中所述中空微球体的强度大于约·10,OOOpsi0
16.根据权利要求I所述的中空微球体,其中所述中空微球体的强度大于约·15,OOOpsi0
17.包含珍珠岩的中空微球体,其中所述中空微球体具有基本上单一的胞状结构。
18.根据权利要求17所述的中空微球体,其中所述中空微球体的密度小于约I.3g/mL。
全文摘要
本发明提供基本上不含发泡剂的中空微球体。还提供包含珍珠岩并具有单一胞状结构的中空微球体。
文档编号C03C3/076GK102811965SQ201080058741
公开日2012年12月5日 申请日期2010年12月16日 优先权日2009年12月21日
发明者戚钢 申请人:3M创新有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1