在表面上制备氧化还原活性聚合物的方法

文档序号:2430312阅读:174来源:国知局
专利名称:在表面上制备氧化还原活性聚合物的方法
技术领域
本发明涉及分子电子学领域。特别地,本发明涉及在表面上连接并聚合氧化还原活性分子的改进方法。
背景技术
对使用一种或多种有机分子以在分子的不连续氧化态下存储或处理信息的混合电子仪器和芯片的开发产生了浓厚的兴趣(参见,例如美国专利6,208,553、6,212,093、6,272,038、6,324,091、6,381,169和6,451,942,以及PCT公布的WO01/03126等)。
在某些实施方式中,电活性(氧化还原活性)分子如卟啉和/或茂金属被(直接或通过连接体)共价连接至导电表面如金或硅。电活性分子在施加外加电势时可以被氧化,例如被氧化至阳离子状态。当除去电势时,分子持续存储电荷。这形成了记乙存储设备的基础。
在制造包含用于信息存储的分子材料的混合集成电路芯片中的通常问题包括但不限于电荷存储分子与电活性表面的有效和有用连接(电偶合),控制电荷存储分子和/或辅助电解质的定位,和反电极的受控沉积/位置。特别迫切的问题是分子连接至表面的方法通常需要非常高的浓度、高温和/或使用活性中间产物(参见,例如Cleland et al.(1995)J.Chem.Soc.Faraday Trans.914001-4003;Buriak(1999)Chem.Commun.1051-1060;Linford et al.(1995)J.Am.Chem.Soc.1173145-3155;Hamers et al.(2000)Acc.Chem.Res.33617-624;Haber et al.(2000)J.Phys.Chem.B,1049947-9950)。这样的条件容易用于小而强的分子,但是在分子变得更大和/或变得更复杂时则变得不令人满意并且经常完全失效。
另一个问题与电活性存储器元件提高的小型化有关。当存储器单元的特征尺寸(feature size)缩小到纳米级尺寸时,越来越少的分子占据了单元特征。因此,检测已存储的电荷变得格外难。
发明概述本发明涉及分子存储器中小特征尺寸和相关应用问题的解决方法的发现,即在Z维(与基质表面垂直的方向)中堆积信息存储分子(例如,氧化还原活性分子)。已经发现可以使卟啉大环和其它氧化还原活性分子在通常用于在硅和其它表面上形成单分子层的条件下聚合。此外,还令人惊奇的发现,氧化还原活性聚合物在电化学方面很强(可以进行多次读/写循环)并显示出了相当于(或长于)相同分子单分子层的电荷保留时间。
这样,在一个实施方式中,本发明提供了一种使氧化还原活性聚合物在表面上形成图样以形成与表面结合的氧化还原活性聚合物的方法。此方法通常包括提供具有至少第一反应部位或基团和第二反应部位或基团的氧化还原活性分子;使表面与氧化还原活性分子接触,其中接触在使氧化还原活性分子与表面通过第一反应部位或基团互相连接以及使氧化还原活性分子通过第二反应部位或基团互相连接的条件下进行,由此形成连接至表面的聚合物,其中聚合物含有至少两个,优选至少三个或四个,更优选至少五个或六个,并且最优选至少八个、十个或十二个氧化还原活性分子。第一反应部位或基团和第二反应部位或基团可以是相同种类或不同种类。在某些实施方式中,第一反应部位或基团和/或第二反应部位或基团是乙炔基(例如,乙炔基、4-乙炔基苯基、3-乙炔基苯基、4-乙炔基联苯基、3-乙炔基苯基、4-乙炔基三联苯基和3-乙炔基三联苯基等)。合适的氧化还原活性分子包括但不限于卟啉大环、卟啉、卟啉大环的夹心配合物和茂金属。在某些实施方式中,氧化还原活性分子选自线性多烯、环状多烯、杂原子取代的直链多烯、杂原子取代的环状多烯、四硫富瓦烯、四硒富瓦烯、金属配位络合物、巴奇球(buckyball)、三芳基胺、1,4-苯二胺、氧杂蒽、黄素、吩嗪、吩噻嗪、吖啶、喹啉、2,2’-联吡啶、4,4’-联吡啶、四硫并四苯和迫位桥萘二硫属化物(peri-bridged naphthalenedichalcogenide)。在某些实施方式中,氧化还原活性分子是含有取代基的卟啉,所述取代基选自芳基、苯基、环烷基、烷基、卤素、烷氧基、烷硫基、全氟烃基、全氟芳基、吡啶基、氰基、氰硫基、硝基、氨基、烷基氨基、酰基、硫氧基、磺酰基、酰氨基和氨基甲酰基,更优选的取代基选自4-甲基苯基、4-叔丁基苯基、4-三氟甲基苯基、戊基和氢(无取代基)。在某些实施方式中,氧化还原活性分子是含有取代基的酞菁,所述取代基选自芳基、苯基、环烷基、烷基、卤素、烷氧基、烷硫基、全氟烃基、全氟芳基、吡啶基、氰基、氰硫基、硝基、氨基、烷基氨基、酰基、硫氧基、磺酰基、酰氨基和氨基甲酰基,更优选的取代基选自甲基、叔丁基、丁氧基、氟和氢(无取代基)。在某些实施方式中,氧化还原活性分子是表1或图4中所示的分子。
在某些实施方式中,接触包括使表面与具有通式Y1-L1-Z1的连接体接触,其中Z1是表面连接基团;L1是共阶键或连接体;Y1是被保护或未被保护的反应部位或基团;其中连接体连接至表面,并使已连接的连接体与氧化还原活性分子接触,其中氧化还原活性分子通过第一和/或第二反应部位或基团互相偶合并且氧化还原活性分子通过Y和第一和/或第二反应部位或基团与连接体偶合,从而形成连接至连接体的聚合物,其中聚合物包含至少两个氧化还原活性分子。在各种实施方式中,Z1是被保护或未被保护的反应部位或基团,其选自羧酸、醇、硫醇、硒醇、碲醇、膦酸、硫代膦酸酯(phosphonothioate)、胺、腈、4-甲酰基苯基、4-(溴甲基)苯基、4-乙烯基苯基、4-乙炔基苯基、4-烯丙基苯基、4-[2-(三甲基甲硅烷基)乙炔基]苯基、4-[2-(三异丙基甲硅烷基)乙炔基]苯基、4-溴苯基、4-碘苯基、4-(4,4,5,5-四甲基-1,3,2-二噁硼-2-基)苯基、溴基、碘基、甲酰基、溴甲基、氯甲基、乙炔基、乙烯基、烯丙基、4-(乙炔基)二苯-4’-基、4-[2-(三异丙基甲硅烷基)乙炔基]二苯4’-基、3,5-二乙炔基苯基和2-溴乙基。在各种实施方式中,-L1-Z1-选自4-羧基苯基、羧甲基、2-羧乙基、3-羧丙基、2-(4-羧基苯基)乙炔基、4-(2-(4-羧基苯基)乙炔基)苯基、4-羧甲基苯基、4-(3-羧丙基)苯基、4-(2-(4-羧甲基苯基)乙炔基)苯基;4-羟苯基、羟甲基、2-羟乙基、3-羟丙基、2-(4-羟苯基)乙炔基、4-(2-(4-羟苯基)乙炔基)苯基、4-羟甲基苯基、4-(2-羟乙基)苯基、4-(3-羟丙基)苯基、4-(2-(4-羟甲基苯基)乙炔基)苯基;4-巯苯基、巯甲基、2-巯乙基、3-巯丙基、2-(4-巯苯基)乙炔基、4-(2-(4-巯苯基)乙炔基)苯基、4-巯甲基苯基、4-(2-巯乙基)苯基、4-(3-巯丙基)苯基、4-(2-(4-巯甲基苯基)乙炔基)苯基;4-氢硒基苯基、氢硒基甲基、2-氢硒基乙基、3-氢硒基丙基、2-(4-氢硒基苯基)乙炔基、4-氢硒基甲基苯基、4-(2-氢硒基乙基)苯基、4-(3-氢硒基丙基)苯基、4-氢硒基甲基苯基、4-(2-(4-氢硒基苯基)乙炔基)苯基;4-氢碲基苯基、氢碲基甲基、2-氢碲基乙基、3-氢碲基丙基、2-(4-氢碲基苯基)乙炔基、4-(2-(4-氢碲基苯基)乙炔基)苯基、4-氢碲基甲基苯基、4-(2-氢碲基乙基)苯基、4-(3-氢碲基丙基)苯基、4-(2-(4-氢碲基甲基苯基)乙炔基)苯基;4-(二羟基磷酰基)苯基、(二羟基磷酰基)甲基、2-(二羟基磷酰基)乙基、3-(二羟基磷酰基)丙基、2-[4-(二羟基磷酰基)苯基]乙炔基、4-[2-[4-(二羟基磷酰基)苯基]乙炔基]苯基、4-[(二羟基磷酰基)甲基]苯基、4-[2-(二羟基磷酰基)乙基]苯基、4-[2-[4-(二羟基磷酰基)甲基苯基]乙炔基]苯基;4-(羟基(巯基)磷酰基)苯基、(羟基(巯基)磷酰基)甲基、2-(羟基(巯基)磷酰基)乙基、3-(羟基(巯基)磷酰基)丙基、2-[4-(羟基(巯基)磷酰基)苯基]乙炔基、4-[2-[4-(羟基(巯基)磷酰基)苯基]乙炔基]苯基、4-[(羟基(巯基)磷酰基)甲基]苯基、4-[2-(羟基(巯基)磷酰基)乙基]苯基、4-[2-[4-(羟基(巯基)磷酰基)甲基苯基]乙炔基]苯基;4-氰基苯基、氰基甲基、2-氰基乙基、3-氰基丙基、2-(4-氰基苯基)乙炔基、4-[2-(4-氰基苯基)乙炔基]苯基、4-(氰基甲基)苯基、4-(2-氰基乙基)苯基、4-[2-[4-(氰基甲基)苯基]乙炔基]苯基;4-氰基联苯基、4-氨基苯基、氨基甲基、2-氨基乙基、3-氨基丙基、2-(4-氨基苯基)乙炔基、4-[2-(4-氨基苯基)乙炔基]苯基和4-氨基联苯基。在各种实施方式中,L1选自共价键、1,4-亚联苯、4,4’-联苯基乙炔、4,4’-联苯基丁二炔、4,4’-联苯基、4,4’-均二苯代乙烯、1,4-二环辛烷、4,4’-偶氮苯、4,4’-亚苄基苯胺和4,4”-三联苯。在某些实施方式中,该方法还包括将反电极连接至聚合物(例如,直接或通过连接体)。在某些实施方式中,氧化还原活性分子还可以包含仅具有一个可用的反应基团或部位的氧化还原活性分子,该氧化还原活性分子因此可以作为封端剂。仅具有一个可用的反应基团或部位的氧化还原活性分子可以具有刚好一个可用的反应基团或部位,和/或它们可以具有封端的第二反应基团或部位。在某些实施方式中,表面包括一种材料,其选自III族元素、IV族元素、V族元素、掺杂的III族元素、掺杂的IV族元素、掺杂的V族元素、过渡金属、过渡金属氧化物和/或过渡金属氮化物。表面可以包括氢钝化的表面。
在另一个实施方式中,本发明提供了一种使氧化还原活性聚合物在表面上形成图样以形成与表面结合的氧化还原活性聚合物的方法。该方法通常包括提供连接有具有反应部位或基团的连接体和/或具有反应部位或基团的氧化还原活性分子的表面;提供具有至少第一反应部位或基团和第二反应部位或基团的氧化还原活性分子;和使表面与氧化还原活性分子接触,其中接触在使所述氧化还原活性分子与连接体和/或已连接至表面的氧化还原活性分子连接以及使氧化还原活性分子聚合的条件下进行,由此形成连接至表面的聚合物,其中聚合物含有至少两个,优选至少三个或四个,更优选至少五个或六个,并且最优选至少八个、十个或十二个氧化还原活性分子。第一反应部位或基团和第二反应部位或基团可以是相同种类或不同种类。在某些实施方式中,第一反应部位或基团和/或第二反应部位或基团是乙炔基(例如,乙炔基、4-乙炔基苯基、3-乙炔基苯基、4-乙炔基联苯基、3-乙炔基苯基、4-乙炔基三联苯基和3-乙炔基三联苯基等)。合适的氧化还原活性分子包括但不限于上文所述以及列于表1和/或图4中的氧化还原活性分子。在某些实施方式中,所述提供包括提供连接有连接体的表面,其中表面和连接体具有通式S-Z1-L1-Y1,其中S是表面;Z1是表面连接基团;L1是共价键或接体;Y1是被保护或未被保护的反应部位或基团。在某些实施方式中,Y1是被保护的反应部位或基团,并且该方法还包括解除对Y1的保护。在各种实施方式中,Z1在偶合至所述表面之前和/或Z1-L1和/或L1包括但不限于上述的Z1和/或Z1-L1和/或L1。在某些实施方式中,该方法还包括将反电极连接至聚合物(例如,直接或通过连接体)。在某些实施方式中,氧化还原活性分子可以进一步包括仅具有一个可用的反应基团或部位的氧化还原活性分子,该氧化还原活性分子因此可以作为封端剂。仅具有一个可用的反应基团或部位的氧化还原活性分子可以具有刚好一个可用的反应基团或部位和/或它们可以具有封端的第二反应基团或部位。在某些实施方式中,表面包括一种材料,其选自上文所定义的表面材料。表面可以包括氢钝化的表面。
在另一个实施方式中,本发明提供了电活性基质,其包括第一区域,其中第一区域包括根据通式Mn-L-Z-S的具有已连接的氧化还原活性部分的表面,其中S是基质;Z是表面连接基团;L是连接体或共价键;M是氧化还原活性分子;并且n至少为3,优选至少为4、5或6,更优选为7、8或9,并且最优选至少为10、12、15、20或30。在某些实施方式中,氧化还原活性分子通过乙炔基(例如,乙炔基、4-乙炔基苯基、3-乙炔基苯基、4-乙炔基联苯基、3-乙炔基苯基、4-乙炔基三联苯基和3-乙炔基三联苯基等)互相连接。合适的氧化还原活性分子包括但不限于上文所述以及列于表1和/或图4中的氧化还原活性分子。在某些实施方式中,基质包括根据通式S-Z-L-Mn-Y-E的具有已连接的氧化还原活性部分的表面,其中Y是连接体或反应部位或基团;E是反电极。在各种实施方式中,Z、Z-L和L包括但不限于上文对Z1、Z1-L1和/或L1所定义的部分。在某些实施方式中,电活性基质还包括第二区域,其中第二区域包括具有已连接的氧化还原活性部分的表面,该氧化还原活性部分不同于M。在某些实施方式中,第一区域是氧化还原活性存储单元。
本发明还提供了氧化还原活性存储单元,其包括根据通式E-Y-Mn-L-Z-S的具有已连接的氧化还原活性部分的表面,其中S是基质;Z是表面连接基团;L是连接体或共价键;M是氧化还原活性分子;Y是反应部位或基团或连接体;E是反电极;n至少为3或4,更优选至少为5或6,并最优选至少为8、10或12。在某些实施方式中,氧化还原活性分子通过乙炔基(例如,乙炔基、4-乙炔基苯基、3-乙炔基苯基、4-乙炔基联苯基、3-乙炔联苯基、4-乙炔基三联苯基和3-乙炔基三联苯基等)互相连接。合适的氧化还原活性分子包括但不限于上文所述以及列于表1和/或图4中的氧化还原活性分子。在各种实施方式中,Z、Z-L和L包括但不限于上文对Z1、Z1-L1和/或L1所定义的部分。在某些实施方式中,导体材料和/或半导材料。存储单元可以任选被密封。
还提供了存储数据的方法。该方法通常包括提供包含一个或多个例如如上所述的存储单元的装置,并且在足以设置Mn的氧化态的电流下施加电压至反电极。在各种实施方式中,电压范围至多为约2伏。电压任选为集成电路(例如,逻辑门)的输出。在某些实施方式中,该方法还可以包括检测Mn的氧化态并由此读取存储在其中的数据。所述检测可以任选包括刷新Mn的氧化态。在某些实施方式中,所述检测包括在时域和/或频域内分析读出信号(例如,通过对读出信号进行傅里叶变换)。在某些实施方式中,所述检测使用伏安法(例如,阻抗光谱法、循环伏安法等)。在某些实施方式中,检测包括将存储介质暴露于电场中以产生具有特征频率的电场振动并检测该特征频率。在某些实施方式中,Mn具有至少8个不同并且可区别的氧化态。
还提供了包含存储设备的计算机系统,其中存储设备包括本文所述的存储单元。
在某些实施方式中,本发明提供了计算机系统,其包含中央处理器、显示器、选择设备和存储设备,其中存储设备包括本文所述的存储单元。
在某些实施方式中,通过本发明方法所形成的氧化还原活性聚合物不是“夹心配合物”。
定义术语“氧化”是指在元素、化合物或化学取代基/亚单位中失去一个或多个电子。在氧化反应中,参加反应的元素的原子失去电子。因而,这些原子上的电荷必定变得更为正性。被氧化的物质失去电子,因此电子成为氧化反应的产物。尽管在氧化反应中明显产生了作为“自由”实体的电子,但是由于电子从被氧化的物种Fe2+(aq)中失去,因而氧化作用也在反应Fe2+(aq)→Fe3+(aq)+e-中发生。相反,术语“还原”是指一个或多个电子被元素、化合物或化学取代基/亚单位得到。
“氧化态”是指电中性状态或是元素、化合物或化学取代基/亚单位得到或失去电子而产生的状态。在优选的实施方式中,术语“氧化态”是指中性状态和由电子得失而引起的除中性状态之外的任何状态(还原或氧化)。
术语“多氧化态”意味着多于一个氧化态。在优选的实施方式中,氧化态可以反映出电子的得到(还原)或电子的失去(氧化)。
术语“不同并且可区别的”当其是指两个或更多个氧化态时意味着实体(原子、分子、聚集体、亚单位等)上的净电荷能够以两种不同的状态存在。当状态之间的差异大于室温(例如,0℃-约40℃)下的热能时,则称这些状态是“可区别的”。
术语“紧偶合”当其根据本发明多亚单位(例如,聚合的)存储分子而使用时,是指亚单位相对于彼此之间定位以使一个亚单位的氧化改变其它亚单位的氧化电势。在一个优选的实施方式中,变化足以使第二亚单位的(非中性)氧化态不同并且可区别于第一亚单位的非中性氧化态。在一个优选的实施方式中,紧偶合通过共价键(例如,单、双、三键等)而获得。然而,在某些实施方式中,紧偶合可以通过连接体、通过离子相互作用、通过疏水作用、通过金属配位或通过简单的机械并置而进行。应理解的是亚单位可以被紧偶合以使氧化还原过程是单独的超分子的氧化还原过程。
术语“电极”是指可以传递电荷(例如,电子)至存储分子和/或可以从存储分子传递来电荷的任何介质。优选的电极是金属或导电性有机分子。电极实际上可以制造成任何2维或3维形状(例如,离散的线、板、平板、球、圆柱等)。
术语“固定电极”意图反映出电极相对于存储介质基本上是稳定并且不可移动的事实。也就是说,电极和存储介质相互以基序上固定的几何关系布置。可以意识到的是由于介质随温度变化而产生的膨胀和收缩或由于包含电极和/或存储介质的分子构象的变化,所述几何关系会发生某些改变。尽管如此,整个空间排列基本上保持不变。在一个优选的实施方式中,该术语意图排除其中电极是可活动“探针”(例如,写入或记录“头”、原子力显微镜(AFM)尖端、扫描式隧道显微镜(STM)尖端等)的体系。
术语“工作电极”用于指一个或多个用于设置或读取存储介质和/或存储分子状态的电极。
术语“参比电极”用于指一个或多个对从工作电极记录的测量值提供参照(例如,特殊参比电压)的电极。在优选的实施方式中,本发明存储设备中的参比电极处于相同的电势,尽管在一些实施方式中并不需要是这种情况。
术语“电偶合” 当其涉及存储分子和/或存储介质和电极而使用时,是指存诸介质或分子和电极之间的结合使得电子从存储介质/分子移动至电极或从电极移动至存储介质/分子,并由此改变存储介质/分子的氧化态。电偶合可以包括存储介质/分子和电极之间的直接共价键,间接共价偶合(例如,通过连接体),存储介质/分子和电极之间的直接或间接的离子键合,或其它键合(例如,疏水键合)。另外,可以不需要真实的键合并且存储介质/分子可以仅与电极表面接触。当电极足够接近于存储介质/分子以使存储介质/分子和电极之间产生电子隧道效应时,也无需在电极和存储介质/子之间有任何接触。
术语“氧化还原活性单位”或“氧化还原活性亚单位”是指可以通过施加合适的电压而氧化或还原的分子或分子成分。
术语“氧化还原活性分子”是指可以通过施加合适的电压而氧化或还原的分子或分子成分。
此处所用的术语“亚单位”是指分子的氧化还原活性成分。
术语“电化学单元”通常是指参比电极、工作电极、氧化还原活性分子(例如,存储介质)以及如果需要的话在电极之间和/或在电极和介质之间提供导电性的一些工具(例如,电介质)。在一些实施方式中,电介质是存储介质的成分。
术语“存储器元件”、“存储器单元”或“存储单元”是指可以用作信息存储的电化学单元。优选的“存储单元”是通过至少一个并优选两个电极(例如,工作电极和参比电极)寻址的存储介质的离散区域。存储单元可以被单独寻址(例如,唯一的电极与各个存储器元件相连),或者,特别是在不同存储器元件的氧化态是可区别的时,多个存储器元件可以通过单电极寻址。存储器元件可以任选包括电介质(例如,浸透了抗衡离子的电介质)。
术语“存储位置”是指其中配置了存储介质的不连续范围或区域。当用一个或多个电极寻址时,存储位置可以形成存储单元。然而,如果两个存储位置包含相同的存储介质以使它们具有基本上相同的氧化态,并且两个存储位置都被常规寻址时,则它们可以形成一个功能性存储单元。
“寻址”特定的元件是指使该存储器元件与电极缔合(例如,电偶合)以便电极可以用于清楚地确定该存储器元件的氧化态。
术语“读出”或“询问”是指一个或多个分子(例如,包含存储介质的分子)氧化态的测定。
短语“集成电路的输出”是指由一个或多个集成电路和/或一个或多个集成电路的组件产生的电压或信号。
“伏安计”是一种能够测量在电化学单元中由于施加电压或电压变化而产生的电流的设备。
“电流计”是一种能够测量在电化学单元中由于施加特殊势场(“电压”)而产生的电流的设备。
“电势计”是一种能够测量由电化学单元中氧化还原分子平衡浓度的差异而产生的连接电路之间的电势的设备。
“电量计”是一种能够测量在向电化学单元施加势场(“电压”)期间产生的净电荷的设备。
“阻抗光谱仪”是一种能够测定电化学单元总阻抗的设备。
“正弦伏安计”是一种能够测定电化学单元频域性能的设备。
术语“卟啉大环”是指卟啉或卟啉衍生物。这样的衍生物包括具有与卟啉核单边稠合或周边稠合(ortho-perifused)的额外环的卟啉,卟啉环的一个或多个碳原子被另一种元素的原子替换(骨架替换)的卟啉,卟啉环的氮原子被另一种元素的原子替换(氮的骨架替换)的衍生物,具有除了氢之外的位于卟啉周围(间-,β-)或核心原子的取代基的衍生物,卟啉中一个或多个键是饱和的衍生物(氢化卟啉,例如,二氢卟酚、菌绿素、异菌绿素、十氢卟啉、corphins、pyrrocorphins等),通过一种或多种金属配位到一个或多个卟啉原子上而得到的衍生物(金属卟啉),将一个或多个原子,包括吡咯和吡咯次甲基单元,插入到卟啉环中的衍生物(扩展卟啉),从卟啉环中除去一个或多个基团的衍生物(收缩卟啉,例如咕啉、corrole)以及前述衍生物的组合(例如酞菁、亚酞菁和卟啉异构体)。优选卟啉大环包含至少一个五元环。
术语“卟啉”是指一种通常由四个吡咯环和四个氮原子,以及两个可以容易地被各种金属原子取代的可取代氢原子一起组成的环状结构。一种典型的卟啉是氯化血红素。
术语“多卟啉阵列”是指离散数目的两个或多个共价连接的卟啉大环。多卟啉阵列可以是直链的、环状的、或带支链的。
术语“夹心配合物”或“夹心配位络合物”是指一种通式为LnMn-1的化合物,其中每个L是一种杂环配体(如下所述),每个M是金属,n是2或更大,最优选为2或3,并且每个金属位于一对配体之间并连接到每个配体中的一个或多个杂原子上(并且通常是多个杂原子,例如2、3、4、5,这取决于金属的氧化态)。因此夹心配合物并非有机金属化合物如二茂铁,其中金属连接在碳原子上。夹心配合物中的配体通常排列成堆叠取向(即通常是共平面取向并且彼此之间轴向排列,尽管它们可以或可以不围绕该轴相对于彼此之间旋转)(参见,例如,Ng和Jiang(1997),Chemical Society Reviews 26433-442)。夹心配位络合物包括但不限于“双层结构夹心配合物”和“三层结构夹心配合物”。夹心配合物的合成和用途详细描述于美国专利US 6,212,093B1中。
术语“双层结构夹心配合物”是指如上所述的一种夹心配位化合物,其中n为2,因此具有通式L1-M1-L2,其中每个L1和L2可以相同或不同(参见,例如,Jianget al.(1999)J.Porphyrins Phthalocyanines 3322-328)。
术语“三层结构夹心配合物”是指如上所述的一种夹心配位化合物,其中n为3,因此具有通式L1-M1-L2-M2-L3,其中每个L1、L2和L3可以相同或不同,并且M1和M2可以相同或不同(参见,例如,Arnoldet al.(1999)ChemistryLetters 483-484)。
“连接体”是用于连接两个不同分子、分子的两个亚单位、或将分子连接到基质上的分子。
“基质”是适用于连接一种或多种分子的材料,优选为固体材料。基质可以由下述材料形成,包括但不限于玻璃、塑料、硅、锗、矿物质(例如石英)、半导体材料(例如,掺杂硅、掺杂锗等)、陶瓷、金属等。
在优选的实施方式中,当金属标记为“M”或“Mn”,其中n是整数时,应认识到该金属可能与反离子有关。
“II、III、IV、V或VI族元素或材料”包括纯元素、II、III、IV、V或VI族的掺杂变体和/或II、III、IV、V或VI族的氧化变体。
术语“耐热性有机分子”或“热稳定有机分子”是指一种有机分子(例如,卟啉),其在200℃-400℃的温度下,优选在400℃下,在至少30秒内,优选在至少1分钟内,并更优选在至少2-5分钟内是稳定的(例如,不分解或基本不分解)。
“III、IV或V族基质”是包含III、IV或V族元素的材料。
此处所用的术语“过渡金属”通常是指周期表3至12族中的38种元素。过渡金属的特征通常在于它们的价电子,或它们用于与其它元素化合的电子存在于多于一个的电子壳层中,并因此经常显示出几种常见的氧化态。在某些实施方式中,本发明的过渡金属包括但不限于钪、钛、钒、铬、锰、铁、钴、镍、铜、锌、钇、锆、铌、钼、锝、钌、铑、钯、银、镉、铪、钽、钨、铼、锇、铱、铂、金、汞、鈩(104号元素)、和/或它们的氧化物、和/或氮化物、和/或合金、和/或混合物中的一种或多种。
“包含耐热性有机分子的溶液”或“包含氧化还原活性分子的溶液”不限于真溶液,还包括它们的悬浮液、分散液和乳液。另外,溶液期望为浆、凝胶、气凝胶和基本上为适于“包含”耐热性有机分子的任何介质。
“具有连接基团的分子”包括其中连接基团是分子固有成分的分子,进行衍生以加入连接基团的分子,和进行衍生以使它们具有包含连接基团的连接体的分子。
附图简述

图1示意地说明了氧化还原活性分子的连接和聚合以形成连接至基质的氧化还原活性聚合物。
图2说明了氧化还原活性分子聚合以及连接至基质的“多步”法。
图3说明了氧化还原活性分子聚合以及利用封端剂连接至基质的“多步”法。
图4显示了一些说明性的包含乙炔基的氧化还原活性分子。
图5说明了用于气相分子连接的双区域炉。
图6说明了使用K-单元将有机分子连接至基质的外延体系。
图7A和7B说明了配备有本文所述的存储设备的计算机系统。存储设备通常被制造为密封的“芯片”。芯片上和/或计算机中的辅助电路允许将比特写入存储器中并根据需要检索写入的信息。图7B说明了集成至标准计算机体系结构或计算机系统200的本发明的存储设备。
详细说明因为包括例如集成电路、存储单元等的特征尺寸缩小至纳米级尺寸,所以越来越少的分子可用于形成具有那些特征的元件。因此,由于分子电子设备的小型化,更少的分子可用于存储电荷(例如,比特状态)并且检测已存储的电荷变得愈加困难。
本发明发现了该问题的解决方法是在Z维(与基质表面垂直的方向)中堆叠信息存储分子(例如,氧化还原活性分子)。已发现可以使卟啉大环和其它氧化还原活性分子在通常用于在硅和其它表面上形成单分子层的条件下聚合(参见,例如提交于2003年12月19日的共同未决申请USSN 10/742,596)。并且,惊奇地发现氧化还原活性聚合物在电化学方面很强(可以进行许多次读/写循环)并显示出了相当于(或长于)相同分子单分子层的电荷保留时间。
I.氧化还原活性聚合物在表面上的形成A)“一步”聚合和连接在某些实施方式中,氧化还原活性分子形成聚合物的聚合反应和它们与表面的连接是在“一步”聚合反应中完成的。在该方法中,提供了具有两个有效反应部位或基团(相同或不同)的氧化还原活性分子。在高温下(例如,至少约200℃,优选至少约300℃,最优选至少约400℃)使这些分子(以干燥形式或在溶剂中的形式提供)互相接触并与基质表面接触,由此反应部位或基团互相反应和/或与基质反应或与基质上的部位或反应基团反应,并导致分子互相连接(由此形成聚合物)并与基质连接(参见,例如图1)。
在各种实施方式中,氧化还原活性分子优选是耐热性分子并且其可以以单一的分子种类或以不同种类分子的混合物提供。
在各种实施方式中,该分子可以被加热并与表面连接,和/或表面可以被加热,和/或分子和表面都可以被加热。另外,表面和/或分子可以在互相接触之前和。或在它们接触时被加热。
在某些实施方式中,将氧化还原活性分子溶于有机溶剂中(例如,THF、1,3,5-三甲基苯、1,2,4,5-四甲基苯、邻二氯苯、1,2,4-三氯苯、1-氯萘、2-氯萘、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N,N-二甲基丙酰胺、苯腈、苯甲醚等)。然后可以将含有该分子的溶剂涂覆于表面。加热可以通过任何种类的常规方法完成。例如,溶剂可以在涂覆至表面之前加热。在某些实施方式中,溶剂和表面都可以在溶剂涂覆至表面之前加热。在某些优选的实施方式中,表面在溶剂涂覆后加热。这可以方便地通过烘焙表面(例如,在烘箱中)而完成。在某些优选地实施方式中,表面在惰性气氛(例如,氩气或其它惰性气体)下加热(例如,烘焙)。
在某些实施方式中,特别是在使用大尺寸薄片(例如,直径超过12英寸)进行制造时,可以使用本发明无溶剂的方法。在无溶剂的方法中,在不使用任何溶剂的情况下在需要的表面(例如,硅、二氧化硅、金属、金属氧化物、金属氮化物等)上形成氧化还原活性聚合物(例如,卟啉聚合物、酞菁聚合物等)层。换言之,连接可以在完全干燥的环境中进行。在各种实施方式中,该方法通过在适当温度下加热而将固相分子转化为气相,然后将气相分子传送至需要的表面。该方法还能够单独控制分子和基质温度,这有助于获得最大的连接密度。该方法可以容易地应用于生产,因为类似技术(例如,CVD和MBE)已经被用于在半导体工业中沉积材料。
在一种方法中,氧化还原活性分子被沉积在含有基质(例如,III、IV或V族元素、过渡金属、过渡金属氧化物或氮化物等)的腔室中。蒸去溶剂仅留下氧化还原活性分子。然后加热该腔室,使随后会接触并连接至基质表面并互相连接由此形成连接的聚合物的分子挥发。
在另一种方法中,氧化还原活性分子作为干燥粉末被放置在腔室中。仍旧加热腔室,使随后会接触并连接至基质表面并互相连接的分子挥发。
在某些实施方式中,要连接至表面的分子直接被沉积在表面上(例如,以干燥形式,或在随后会被蒸去的溶剂中)。然后加热分子和/或表面(例如,至200℃或更高),分子连接至表面(例如,通过离子键,更优选通过共价键),并且分子互相之间也形成共价键,由此形成聚合物。
各种参数可以被优化以用于任何特定有机分子的聚合和连接。这些参数包括(1)分子浓度、(2)烘焙时间、(3)烘焙温度和(4)反应部位或基团。当有益的分子聚合并连接至表面后,可以进行循环伏安法以评价所得已连接的聚合物。伏安图的特征可以指示出连接的效力和聚合物的电化学性能(参见,例如,Li et al.(2002)Appl.Phys.Lett.811494-1496;Roth et al.(2003)J.Am.Chem.Soc.125505-517)。
另外,惊奇地发现短至几分钟的烘焙时间(例如,通常从约1秒钟-约1小时,优选从约10秒钟-约30分钟,更优选从约1分钟-约5、10或15分钟,最优选从约30秒钟-约1或2分钟)提供了高表面覆盖密度。另外,短时间使在工艺步骤中所用的能量额最小化。
还惊奇地发现可以使用高至400℃的烘焙温度而不会使分子降解。该结果对于许多制造CMOS设备的工艺步骤需要高温处理的情况是很重要的。在某些实施方式中,优选的烘焙温度范围在约125℃-约400℃,优选在约200℃-约400℃,更优选在约250℃-约400℃,并最优选在约300℃-约400℃。
许多种反应部位或基团可以用于使氧化还原活性分子聚合并达到表面连接。这样的基团包括但不限于乙炔基、乙基、碘加乙炔基、溴加乙炔基、胺加醛、胺加异氰酸酯、胺加异硫氰酸酯、醛加乙酰基等。在某些优选的实施方式中,反应部位或基团是乙炔基(例如,乙炔基、4-乙炔基苯基、3-乙炔基苯基、4-乙炔基联苯基、3-乙炔基苯基、4-乙炔基三联苯基和3-乙炔基三联苯基等)。
要注意的是,在某些实施方式中,可以提供用反应部位或基团衍生的基质,或用具有不同于氧化还原活性分子上所存在的反应部位或基团的反应部位或基团的连接体衍生的基质。在这样的例子中,基质连接化学将不同于聚合化学。
在本申请中,要注意的是各种官能团适合用于连接至硅或其它基质(例如,III、IV或V族元素、过渡金属、过渡金属氧化物或氮化物、过渡金属合金等)。这样的组包括但不限于醇、硫醇、S-乙酰基硫醇、溴甲基、烯丙基、碘代芳基、羧醛基、乙炔、乙烯基、羟甲基。还要注意的是这样的组如乙基、甲基或芳烃基本不能提供连接,这是由于它们表现出无法与八乙基卟啉、meso-四苯基卟啉、meso-四-对甲苯基卟啉和meso-四-2,4,6-三甲苯基卟啉的锌螯合物实现本质上的连接。
通过S-乙酰基硫醇、溴甲基、碘代芳基和乙炔得到的成功连接是前所未有的。通过碘代芳基得到的成功连接对于提供直接芳基-Si连接是非常有价值的。所得信息存储分子可以相对表面竖直放置,这有助于随后的形成图样。通过这样的各种官能团进行连接的能力提供了很强的通用性。
虽然在某些实施方式中,通过将基质放置在烘箱中而完成加热,但基本上可以使用任何方便的加热方法,并且可以优化适当的加热和接触方法以用于特殊的(例如,工业的)生产情况。因而,例如,在某些实施方式中,可以通过将表面浸渍在含有待连接并聚合的氧化还原活性分子的热溶液中而完成加热。局部加热/形成图样可以使用例如热接触式印刷机或激光来完成。加热还可以使用强迫通风、对流烘箱、辐射加热等来完成。上述实施方式意欲进行说明而非限定。
B)“多步”聚合和连接在某些实施方式中,本发明期望使用“多步”连接和聚合方法,由此与表面的连接和/或氧化还原活性分子的聚合以“逐步”方式实现。一种这样的方法如图1中所概括的那样进行。一种这样的方法如图2中所概括的那样进行。首先,在适当的条件下使具有表面连接基团Z1和反应性官能部位或基团Y1的连接体L1暴露于表面(例如,电极),其中在上面产生结合。连接体可以是具有一个结合部位的线性结构或具有多个用于连接至表面的结合部位的多支线连接体。在某些实施方式中,连接体可以自身构成电荷存储分子。然后,加入具有与Y1(不是与Y2)互补的官能团X1的氧化还原活性分子(例如,电荷存储分子)(M)并进行聚合,使X1和Y1结合并产生电荷存储分子的聚合物阵列。然后可以任选将反电极连接至聚合物阵列。该方法的一个优点是连接体可以连接至表面上,而用于聚合的反应基团可能不连接至该表面上。
该方法的另一个变体示于图3中。该方法中,聚合在仅具有一个可用的反应部位或基团的氧化还原活性分子存在下完成。这可以通过提供一种单衍生的氧化还原活性分子,和/或通过提供一种具有多个反应部位或基团但除了其中之一其它都被封端的氧化还原活性分子,和/或通过提供一种具有多个反应部位或基团但全部被封端并选择性地解封端一个反应部位或基团地氧化还原活性分子而完成。具有一个可用的反应部位或基团的氧化还原活性分子起封端剂的作用,其导致聚合过程的终结。该方法的补充实施例包括使用也具有在其上可以进行电极沉积的官能团的封端剂。
在某些实施方式中,这样的逐步式方法也可以通过提供一种已经用反应部位或基团衍生和/或已经用具有一个反应部位或基团的连接体衍生的基质(例如,包含一个或多个电极的芯片),然后简单进行例如上述的聚合反应而完成。
这些实施方式意欲进行说明而非限定。使用此处所提供的教导,可以设计出其它连接/聚合方案。
C)改变聚合物形成和结构已连接的聚合物的分子结构变化可以通过许多方法完成。这样的方法包括,例如改变卟啉大环周围取代基的形式。可以以顺式构型(例如分子No.192)、反式构型(例如分子No.197)、在一个内消旋芳环的间位(例如分子No.207)或其它构型如在卟啉大环的β-位设置两个乙炔。上述取代的结合是可以的。也可以使用乙炔基卟啉的混合物。
此外,交联薄膜的多孔性可以用至少两种方式控制(1)通过改变附加至卟啉的基团的表面障碍物,如系列分子No.197、200和201以及组192和217所示;(2)通过延伸卟啉和乙炔基之间连接体的长度,如分子No.217和219所示。因而,例如在某些实施方式中,可以使用较长的接体。
II.基质在本发明方法中,氧化还原活性(信息存储)分子通常最终偶合至表面。该表面可以是惰性和/或非导电性表面。然而,更为通常的是,表面是电极和/或反电极的表面。
电极和/或反电极通常由能够传导电子的材料制造。电极和/或反电极可以包括导体、半导体、超导体等。在某些实施方式中,电极和/或反电极具有低于约10-2欧姆米的电阻率,优选低于约10-3欧姆米,更优选低于约10-4欧姆米,并且最优选低于约10-5或10-6欧姆米。
本发明方法适合用于形成氧化还原活性分子的聚合物,所述氧化还原活性分子的聚合物基本上共价连接至任一或所有II、III、IV、V或VI族材料(例如,II、III、IV、V或VI族元素、半导体和/或它们的氧化物)和/或过渡金属、过渡金属氧化物、过渡金属氮化物、包含过渡金属的合金或复合物等。在某些优选的实施方式中,基质包含所有III、IV或V族材料(例如,碳、硅、锗、锡、铅)、掺杂的II、III、IV、V和VI族元素、纯的或掺杂的II、III、IV、V或VI族元素的氧化物、或过渡金属、过渡金属氧化物或过渡金属氮化物。在某些优选的实施方式中,该表面是III、IV或V族材料,更优选IV族材料(氧化物和/或掺杂变体)、更加优选硅或锗表面或掺杂的和/或氧化的硅或锗表面。
应从此处教导中理解的是在某些实施方式中,可用于基质的材料包括但不限于Si、Ge、SiC、Au、Ag、Cu、Al、Ta、Ti、Ru、Ir、Pt、Pd、Os、Mn、Hf、Zr、V、Nb、La、Y、Gd、Sr、Ba、Cs、Cr、Co、Ni、Zn、Ga、In、Cd、Rh、Re、W和它们的氧化物和氮化物。
II、III、IV、V或VI族元素、过渡金属、过渡金属氧化物或氮化物可以基本上是纯的,或可以是掺杂的(例如,p-或n-掺杂)和/或合金的。和II-VI族元素一起使用,特别是和III、IV和V族元素一起使用、更特别是和IV族元素(例如,硅、锗等)一起使用的p-或n-掺杂剂对于本领域技术人员来说是公知的。这样的掺杂剂包括但不限于磷化合物、硼化合物、砷化合物、铝化合物等。许多掺杂的II、III、IV、V或VI族元素是半导体,其包括但不限于ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、MgS、MgSe、MgTe、CaS、CaSe、CaTe、SrS、SrSe、SrTe、BaS、BaSe、BaTe、GaN、GaP、GaAs、GaSb、InP、InAs、InSb、AlS、AlP、AlSb、PbS、PbSe、Ge和Si以及它们的三元或四元混合物。
该表面基本上可以采用任何形式。例如,其可以作为平面基质、蚀刻的基质、另一基质上的沉积区域、沉积或蚀刻的井等提供。特别优选的形式包括通常用于固体电子学制造过程的那些形式。
虽然不一定需要,但是在某些实施方式中,表面在使用前被洗净,例如,使用本领域技术人员公知的标准方法。因而,例如在一个优选的实施方式中,表面可以通过在一系列溶剂中进行超声处理而洗净(例如,丙酮、甲苯、乙醇和水),然后在高温下(例如,100℃)暴露于标准薄片清洗溶液(例如,Piranha(硫酸30%过氧化氢,2∶1))中。
在某些实施方式中,氧化物可以从基质表面除去,并且表面可以被氢钝化。许多氢钝化方法对于本领域技术人员来说是公知的。例如,在一种方法中,使分子氢流通过跨越磁场的致密微波等离子体。磁场用于保护样品表面以防止被带电粒子轰击。因此交叉束(CB)法可以避免对于许多半导体设备来说是非常有害的等离子腐蚀和重离子轰击(参见,例如,Balmashnov,et al.(1990)Semiconductor Science andTechnology,5242)。在一个特别优选的实施方式中,钝化通过使要钝化的表面与氟化铵溶液接触(优选氧气喷雾)而完成。
洗净和钝化表面的其它方法对于本领域技术人员来说是已知的(参见,例如,Choudhury(1997)the Handbook of Microlithography,Micromachining,andMicrofabrication,Soc.Photo-Optical Instru.Engineer,Bard & Faulkner(1997)Fundamentals of Microfabrication等)。
III.氧化还原活性分子惊奇地发现大量的氧化还原活性有机分子是足够耐热从而在本发明方法中经得起检验并且甚至相当有效。合适的耐热性有机分子通常包括但不限于茂金属(例如,二茂铁)、卟啉、扩展卟啉、收缩卟啉、直链卟啉聚合物、卟啉夹心配位络合物、卟啉阵列和酞菁。
某些优选的耐热性有机分子包括但不限于5-[4-(S-乙酰基硫代甲基)苯基]-10,15,20-三-2,4,6-三甲苯基卟吩锌(II)、5-[4-(巯基甲基)苯基]-10,15,20-三-2,4,6-三甲苯基卟吩锌(II)、5-[4-(羟甲基)苯基]-10,15,20-三-2,4,6-三甲苯基卟吩锌(II)、5-[4-(羟甲基)苯基]-10,15,20-三-对甲苯基卟吩锌(II)、5-(4-烯丙基苯基)-10,15,20-三-2,4,6-三甲苯基卟吩锌(II)、5-(4-甲酰基苯基)-15-苯基-10,20-二-对甲苯基卟吩锌(II)、5-(4-溴甲基苯基)-10,15,20-三-2,4,6-三甲苯基卟吩锌(II)、5-(4-乙炔基苯基)-10,15,20-三-2,4,6-三甲苯基卟吩锌(II)、5-(4-碘代苯基)-10,15,20-三-2,4,6-三甲苯基卟吩锌(II)、5-(4-溴代苯基)-10,15,20-三-对甲苯基卟吩锌(II)、5-(4-羟基苯基)-10,15,20-三-2,4,6-三甲苯基卟吩锌(II)、5,10-二(4-乙炔基苯基)-15,20-二-2,4,6-三甲苯基卟吩锌(II)、5-[4-(4,4,5,5-四甲基-1,3,2-二噁硼-2-基)苯基]-10,20-二(3,5-二叔丁基苯基)-15-2,4,6-三甲苯基卟吩锌(II)、5-碘-10,20-二(3,5-二叔丁基苯基)-15-2,4,6-三甲苯基卟吩锌(II)、5,10-二(4-碘代苯基)-15,20-二-2,4,6-三甲苯基卟吩锌(II)、5-[4-(2-(三甲基甲硅烷基)乙炔基)苯基]-10,15,20-三-2,4,6-三甲苯基卟吩锌(II)、5,15-二(4-乙炔基苯基)-10,20-二-2,4,6-三甲苯基卟吩锌(II)、5,15-二(4-碘代苯基)-10,20-二-2,4,6-三甲苯基卟吩锌(II)、5,10,15-三(4-乙炔基苯基)-20-2,4,6-三甲苯基卟吩锌(II)、5,1 5-二(4-乙炔基苯基)-10,20-二(4-叔丁基苯基)卟吩锌(II)、5,15-二(4-乙炔基苯基)卟吩锌(II)、5,15-二(3-乙炔基苯基)-10,20-二-2,4,6-三甲苯基卟吩锌(II)、5,10,15,20-四(4-乙炔基苯基)卟吩锌(II)、5,10-二[4-(2-(三甲基甲硅烷基)乙炔基)苯基]-15,20-二-2,4,6-三甲苯基卟吩锌(II)、5-(3,5-二乙炔基苯基)-10,15,20-三-2,4,6-三甲苯基卟吩锌(II)、3,7-二溴-10,20-二(3,5-二叔丁基苯基)-15-2,4,6-三甲苯基卟吩锌(II)、5-[4-(2-(三甲基甲硅烷基)乙炔基)苯基]-10,15,20-三-对甲苯基卟吩锌(II)、5-[4-(Se-乙酰基硒基甲基)苯基]-10,15,20-三-2,4,6-三甲苯基卟吩锌(II)、5-(4-碘代苯基)-10,20-二(3,5-二叔丁基苯基)-15-2,4,6-三甲苯基卟吩锌(II)、5,10-二(4-乙炔基苯基)-15,20-二(4-叔丁基苯基)卟吩锌(II)、5,10-二(4-乙炔基联苯-4’-基)-15,20-二(4-叔丁基苯基)卟吩锌(II)、5-(4-乙烯基苯基)-10,15,20-三-2,4,6-三甲苯基卟吩锌(II)、5-(4-乙烯基苯基)-10,15,20-三-对甲苯基卟吩锌(II)、5-(羟甲基)-10,15,20-三-2,4,6-三甲苯基卟吩锌(II)、5-(4-烯丙基苯基)-10,15,20-三-对甲苯基卟吩锌(II)、5-(4-烯丙基苯基)-10,15,20-三-对甲苯基卟吩铜(II)、c型三层结构[(叔丁基)4酞菁]铕[(叔丁基)4酞菁]铕[5,15-二(4-乙炔基苯基)-10,20-二(4-叔丁基苯基)卟啉]、c型三层结构[(叔丁基)4酞菁]铕[(叔丁基)4酞菁]铕[5-[4-[2-(4-(羟甲基)苯基)乙炔基]苯基]-10,15,20-三-对甲苯基卟啉]、5,10-二[4-(2-(三异丙基甲硅烷基)乙炔基)联苯-4’-基]-15,20-二(4-叔丁基苯基)卟吩锌(II)、5,10-二[4-(2-(三异丙基甲硅烷基)乙炔基)苯基]-15,20-二(4-叔丁基苯基)卟吩锌(II)等。
在某些实施方式中,氧化还原活性分子是卟啉。在卟啉非连接位置上的合适取代基包括但不限于芳基、苯基、环烷基、烷基、卤素、烷氧基、硫代烷基、全氟烷基、全氟芳基、吡啶基、氰基、氰硫基、硝基、氨基、烷基氨基、酰基、硫氧基、磺酰基、酰氨基和氨基甲酰基。特别优选的取代基包括但不限于4-甲基苯基、4-叔丁基苯基、4-三氟甲基苯基、戊基和氢(无取代基)。
在某些实施方式中,氧化还原活性分子是酞菁。在酞菁非连接位置上的合适取代基包括但不限于芳基、苯基、环烷基、烷基、卤素、烷氧基、硫代烷基、全氟烷基、全氟芳基、吡啶基、氰基、氰硫基、硝基、氨基、烷基氨基、酰基、硫氧基、磺酰基、酰氨基和氨基甲酰基。特别优选的取代基包括但不限于甲基、叔丁基、丁氧基、氟和氢(无取代基)。
某些特别优选的用乙炔活性基团衍生的氧化还原活性分子示于表1和图4。
用于本发明方法的具体氧化还原活性分子的适用性可以很容易地确定。根据本发明方法,有益的分子仅被聚合并偶合至表面(例如,氢钝化的表面)。然后,可以进行正弦伏安法(例如,此处所描述的或描述于美国专利6,272,038、6,212,093和6,208,553以及PCT公开WO 01/03126,或描述于Roth el al.(2000)Vac.Sci.Technol.B182359-2364;Roth et al.(2003)J.Am.Chem.Soc.125505-517)评价1)分子是否偶合至表面,2)覆盖(偶合)度;3)在偶合过程中分子是否降解,和4)分子多次读/写操作的稳定性。
还注意到在高温下(例如,200℃-400℃)某些氧化还原活性分子在特定部位分解的地方,“反应”部位经常可以用稳定保护基来衍生。该分子根据本发明方法可以偶合至表面,然后保护基可以从有机分子中化学除去。
氧化还原活性分子可以以干燥的形式、溶剂中、分散液、乳液、浆液、凝胶等形式提供。优选的溶剂、浆液、凝胶、乳液、分散液等是这样的溶剂,其可以涂覆至II、III、IV、V和/或VI族材料和/或过渡金属和/或它们的氧化物或氮化物而基本上不会使基质降解,并且可以溶解或悬浮要偶合至基质的氧化还原活性分子,但是不会使其降解。在某些实施方式中,优选的溶剂包括高沸点溶剂(例如,初沸点高于约130℃,优选高于约150℃,更优选高于约180℃的溶剂)。这样的溶剂包括但不限于苄腈、二甲基甲酰胺、二甲苯、邻二氯苯等。
IV.表面连接基团连接体选择和优化存储器结构在某些实施方式中,氧化还原活性聚合物通过连接体,优选通过电导性连接体连接至基质上,和/或通过一个或多个连接体互相连接(在聚合物中)。为了在低电压和小的元件尺寸下实现快速写入/清除,在用本发明方法制造的存储设备中,连接体(例如,L1)的尺寸可以被优化。
最佳的连接体尺寸可以在理论上计算出(参见,例如,提交于2003年5月27日的USSN60/473,782)。或者,连接体可以仅通过例如如此处所述的使氧化还原活性分子偶合至表面,并且进行伏安法评价连接的聚合物的电化学性能而从经验上来评价。
在某些实施方式中,氧化还原活性聚合物通过连接体(L)和连接基团(Z)偶合至表面。Z可以是连接体上被保护或未被保护的反应部位或基团。这样的基团包括但不限于羧酸、醇、硫醇、硒醇、碲醇、膦酸、硫代膦酸酯(phosphonothioate)、胺、腈、4-甲酰基苯基、4-(溴甲基)苯基、4-乙烯基苯基、4-乙炔基苯基、4-烯丙基苯基、4-[2-(三甲基甲硅烷基)乙炔基]苯基、4-[2-(三异丙基甲硅烷基)乙炔基]苯基、4-溴代苯基、4-苯基、4-(4,4,5,5-四甲基-1,3,2-二噁硼-2-基)苯基、溴基、碘基、甲酰基、溴甲基、氯甲基、乙炔基、乙烯基、烯丙基、4-(乙炔基)联苯-4′-基、4-[2-(三异丙基甲硅烷基)乙炔基]联苯-4′-基、3,5-二乙炔基苯基和2-溴甲基。应理解的是与电极的连接可以伴随有反应部位Z上质子(或保护基)的失去。Z-L可以连接至电荷存储分子(Z-L-CSM-乙炔)或可以直接用于聚合(Z-L-乙炔)。
在某些优选的实施方式中,连接基团包含芳基或烷基。某些优选的芳基包括官能团例如溴基、碘基、羟基、羟甲基、甲酰基、溴甲基、乙烯基、烯丙基、S-乙酰基硫代甲基、Se-乙酰基硒代甲基、乙炔基、2-(三甲基甲硅烷基)乙炔基、巯基、巯甲基、4,4,5,5-四甲基-1,3,2-二噁硼-2-基和二羟基磷酰基。某些优选的烷基包括官能团例如溴基、碘基、羟基、甲酰基、乙烯基、巯基、氢硒基、S-硫代乙酰基、Se-硒代乙酰基、乙炔基、2-(三甲基甲硅烷基)乙炔基、4,4,5,5-四甲基-1,3,2-二噁硼-2-基和二羟基磷酰基。
在某些实施方式中,连接基团包括但不限于醇、硫醇、S-乙酰基硫醇、溴甲基、烯丙基、碘代芳基、羧醛基、乙炔等。在某些实施方式中,连接基团包括但不限于4-(羟甲基)苯基、4-(S-乙酰基硫代甲基)苯基、4-(Se-乙酰基硒代甲基)苯基、4-(巯甲基)苯基、4-(氢硒代甲基)苯基、4-甲酰基苯基、4-(溴甲基)苯基、4-乙烯基苯基、4-乙炔基苯基、4-烯丙基苯基、4-[2-(三甲基甲硅烷基)乙炔基]苯基、4-[2-(三异丙基甲硅烷基)乙炔基]苯基、4-溴代苯基、4-碘代苯基、4-羟基苯基、4-(4,4,5,5-四甲基-1,3,2-二噁硼-2-基)苯基、溴基、碘基、羟甲基、S-乙酰基硫代甲基、Se-乙酰基硒代甲基、巯甲基、氢化硒代甲基、甲酰基、溴甲基、氯甲基、乙炔基、乙烯基、烯丙基、4-[2-(4-(羟甲基)苯基)乙炔基]苯基、4-(乙炔基)联苯-4′-基、4-[2-(三异丙基甲硅烷基)乙炔基]联苯-4′-基、3,5-二乙炔基苯基、2-溴乙基等。这些连接基团用于说明而非限定。
合适的连接体和连接基团(L-Z-)包括但不限于4-羧基苯基、羧甲基、2-羧乙基、3-羧丙基、2-(4-羧基苯基)乙炔基、4-(2-(4-羧基苯基)乙炔基)苯基、4-羧甲基苯基、4-(3-羧丙基)苯基、4-(2-(4-羧甲基苯基)乙炔基)苯基;(b)4-羟苯基、羟甲基、2-羟乙基、3-羟丙基、2-(4-羟苯基)乙炔基、4-(2-(4-羟苯基)乙炔基)苯基、4-羟甲基苯基、4-(2-羟乙基)苯基、4-(3-羟丙基)苯基、4-(2-(4-羟甲基苯基)乙炔基)苯基;(c)4-巯苯基、巯甲基、2-巯乙基、3-巯丙基、2-(4-巯苯基)乙炔基、4-(2-(4-巯苯基)乙炔基)苯基、4-巯甲基苯基、4-(2-巯乙基)苯基、4-(3-巯丙基)苯基、4-(2-(4-巯甲基苯基)乙炔基)苯基;(d)4-氢硒基苯基、氢硒基甲基、2-氢硒基乙基、3-氢硒基丙基、2-(4-氢硒基苯基)乙炔基、4-氢硒基甲基苯基、4-(2-氢硒基乙基)苯基、4-(3-氢硒基丙基)苯基、4-氢硒基甲基苯基、4-(2-(4-氢硒基苯基)乙炔基)苯基;(e)4-氢碲基苯基、氢碲基甲基、2-氢碲基乙基、3-氢碲基丙基、2-(4-氢碲基苯基)乙炔基、4-(2-(4-氢碲基苯基)乙炔基)苯基、4-氢碲基甲基苯基、4-(2-氢碲基乙基)苯基、4-(3-氢碲基丙基)苯基、4-(2-(4-氢碲基甲基苯基)乙炔基)苯基;(f)4-(二羟基磷酰基)苯基、(二羟基磷酰基)甲基、2-(二羟基磷酰基)乙基、3-(二羟基磷酰基)丙基、2-[4-(二羟基磷酰基)苯基]乙炔基、4-[2-[4-(二羟基磷酰)苯基]乙炔基]苯基、4-[(二羟基磷酰基)甲基]苯基、4-[2-(二羟基磷酰基)乙基]苯基、4-[2-[4-(二羟基磷酰基)甲基苯基]乙炔基]苯基;(g)4-(羟基(巯基)磷酰基)苯基、(羟基(巯基)磷酰基)甲基、2-(羟基(巯基)磷酰基)乙基、3-(羟基(巯基)磷酰基)丙基、2-[4-(羟基(巯基)磷酰基)苯基]乙炔基、4-[2-[4-(羟基(巯基)磷酰基)苯基]乙炔基]苯基、4-[(羟基(巯基)磷酰基)甲基]苯基、4-[2-(羟基(巯基)磷酰基)乙基]苯基、4-[2-[4-(羟基(巯基)磷酰基)甲基苯基]乙炔基]苯基;(h)4-氰基苯基、氰基甲基、2-氰基乙基、3-氰基丙基、2-(4-氰基苯基)乙炔基、4-[2-(4-氰基苯基)乙炔基]苯基、4-(氰基甲基)苯基、4-(2-氰基乙基)苯基、4-[2-[4-(氰基甲基)苯基]乙炔基]苯基、4-氰基联苯基;(i)4-氨基苯基、氨基甲基、2-氨基乙基、3-氨基丙基、2-(4-氨基苯基)乙炔基、4-[2-(4-氨基苯基)乙炔基]苯基和4-氨基联苯基等。
其它的表面连接基团包括但不限于4-甲酰基苯基、4-(溴甲基)苯基、4-乙烯基苯基、4-乙炔基苯基、4-烯丙基苯基、4-[2-(三甲基甲硅烷基)乙炔基]苯基、4-[2-(三异丙基甲硅烷基)乙炔基]苯基、4-溴代苯基、4-碘代苯基、4-(4,4,5,5-四甲基-1,3,2-二噁硼-2-基)苯基、溴基、碘基、甲酰基、溴甲基、氯甲基、乙炔基、乙烯基、烯丙基、4-(乙炔基)联苯-4′-基、4-[2-(三异丙基甲硅烷基)乙炔基]联苯-4′-基、3,5-二乙炔基苯基和2-溴乙基等。
除了上述的单配位基连接体-表面连接基团外,还可以使用多配位基连接体(参见,例如,[Nikitin(2003)Chem.Commun.,282-283;Hu and Mattem(2000)J.Org.Chem.,65,2277-2281;Yao and Tour(1999)Org.Chem.,641968-1971;Fox et al.(1998)Langmuir,14,816-820;Galoppini and Guo(2001)Am.Chem.Soc.,1234342-4343;Deng et al.(2002)Org.Chem.,675279-5283;Hecto et al.(2001)Surface Science,494,1-20;Whitesell and Chang(1993)Science,261,73-76;Galoppini et al.(2002)J.Am.Chem.Soc.,677801-7811;Siiman et al.Bioconjugate Chem.,11549-556)。
具有硫醇、羧酸、醇或膦酸单元的三脚连接体对于在平面表面上直立构型中稳固安装分子设备特别有吸引力。这种连接体的具体实例是建立在三苯甲烷或四苯甲烷单元周围,其包括但不限于1,1,1-三[4-(S-乙酰基硫代甲基)苯基]甲基、4-{1,1,1-三[4-(S-乙酰基硫代甲基)苯基]甲基}苯基、1,1,1-三[4-(二羟基磷酰基)苯基]甲基、4-{1,1,1-三[4-(二羟基磷酰基)苯基]甲基}苯基、1,1,1-三[4-(二羟基磷酰基甲基)苯基]甲基、4-{1,1,1-三[4-(二羟基磷酰基甲基)苯基]甲基}苯基等。
其它连接基团的适用性可以很容易地评定。具有有益的连接基团(直接或在连接体上)的氧化还原活性聚合物根据此处所述方法被偶合至基质(例如,氢钝化的硅)。然后可以用电化学方法评定连接效力,例如,使用上述的正弦伏安法。
V.使有机分子在基质上形成图样在某些实施方式中,进行本发明方法以形成连接的氧化还原活性聚合物来在基质表面上形成均匀的薄膜。在其它实施方式中,氧化还原活性聚合物形成于表面上的一个或多个不连续位置。在某些实施方式中,不同的氧化还原活性分子/聚合物形成于表面上的不同位置。
形成氧化还原活性聚合物的位置可以通过许多方法的任意一种实现。例如,在某些实施方式中,包含有机分子的溶液可以选择性地沉积在表面上的特定位置。在某些其它实施方式中,溶液可以均匀地沉积在表面上并且可以加热所选区域。在某些实施方式中,有机分子可以偶合至整个表面,然后选择性地从某些区域蚀刻掉。
选择性地使表面接触氧化还原活性分子的最常用方法包括掩蔽将不含氧化还原活性聚合物的表面区域以使包含该分子的溶液或气相不能接触这些区域。这很容易通过在基质上涂布掩蔽材料(例如,聚合物抗蚀剂)并且选择性蚀刻掉要被偶合区域的抗蚀剂而实现。或者,可光活化的抗蚀剂可以涂覆于表面并选择性在要被保护的区域活化(例如,通过UV光)。这样的“光刻”法在半导体工业中是公知的(参见,例如,Van Zant(2000)Microchip FabricationA Practical Guide toSemiconductor Processing;Nishi and Doering(2000)Handbook of SemiconductorManufacturing Technology;Xiao(2000)Introduction to Semiconductor ManufacturingTechnology;Campbell(1996)The Science and Engineering of MicroelectronicFaabication(Oxford Series in Electrical Engineering),Oxford University Press等)。另外,抗蚀剂可以简单地通过将抗蚀剂接触印刷在表面上而在表面上形成图样。
在其它方法中,表面均匀地与分子接触。然后可以选择性地使氧化还原活性聚合物从将不合分子的区域表面蚀刻掉。蚀刻方法对本领域技术人员来洗是公知的,其包括但不限于等离子蚀刻、激光蚀刻、酸蚀刻等。
其它方法包括试剂的接触印刷,例如,使用成形的接触印刷头选择性地将试剂沉积在将被偶合的区域,使用喷墨装置(参见,例如美国专利6,221,653)选择性地将试剂沉积在特定区域,使用障碍物选择性地等试剂限制在特定区域内等。
在某些优选的实施方式中,反复进行几次连接/聚合反应。在反应完成之后,将未偶合的有机分子从表面洗去,例如使用标准的洗涤步骤(例如,用苄腈洗涤,然后在干燥的二氯甲烷中进行超声处理)。
前述方法用于说明。从此处所提供的教导来看,其它方法对于半导体制造领域的技术人员来说是显然的。
VI.在工业上扩大规模本发明方法易于扩大规模以用于商业生产操作。一种这样的扩大规模的方法在图5中说明。该图说明了用于气相分子连接的双区域炉1。在该设备中,分子粉末2被放置在一个区域中,薄片3被放置在不同的区域中。每个区域可以单独被加热(例如,通过加热器4,5,该加热器可以通过一个热控制器或通过各自的热控制器(插图中的6和7)独立调节)。每个区域可以独立加热至所需温度。其可以通过改变温度来调节分子蒸汽压。该系统也允许使用通过进口8进料,并穿过烘箱至出口9的载气(例如,Ar、N2等),该载气可以用于将分子蒸汽输送至另一个区域的薄片上。该炉也可以通过用位于载气出口的泵抽空系统而在低压下(低于大气压)运行。低压法使得可以非常精确地控制分子蒸汽压。并且,与大气压法相比,其降低了杂质的量。
示于图6的另一种设备配置适于气相分子连接方法的高真空操作。在该方法中,基质3被放置在真空炉箱20中。将要连接的分子被放置在泻流单元22(例如,knudson-单元(K-单元),例如SPECS生产的低温泻流单元)中,该泻流室通过泻流室控制器24控制。通过打开和关闭K-单元上的阀门26,其可以控制能够达到基质表面并形成连接的单分子层28的分子的数量。
这些方法意在说明而非限定。使用此处所提供的教导,本领域技术人员可以设计出大量用于加热此处所述的分子并使其接触表面的方法。用于加热和/或挥发耐热性分子或这种分子的混合物以及在高温下使它们在表面上形成图样或均匀沉积的设备和方法是可商购并且对于本领域技术人员来说是公知的。这样的方法包括但不限于分子束外延法(MBE)(装备例如可以从SPECS Scientific Instruments,Inc.,Florida购得)、化学气相沉积法(CVD)(装备例如可以从CVD Equipment Corp.购得)、液相外延沉积法(LPE)(装备例如可以从CVD Equipment Corp.,Ronkonkoma,N.Y.购得)等。
VII.偶合至基质的氧化还原活性聚合物的用途本发明方法可以用于形成共价连接至II、III、IV、V或VI族材料表面,并优选连接至III、IV或V族表面,和/或连接至过渡金属(或金属氧化物或氮化物)表面的氧化还原活性聚合物。
连接的氧化还原活性聚合物可以用于制造许多种混合组件和/或设备(例如,场效应晶体管、传感器、存储元件等)。在某些实施方式中,该方法用于装配混合存储设备,在其中信息被存储在氧化还原活性信息存储分子中。
在“分子存储器”中,此处所述的偶合至过渡金属和/或II、III、IV、V或VI族材料的氧化还原活性分子(例如,具有一个或多个非零氧化态的分子)被用于存储比特(例如,每个氧化还原状态可以对应于一个比特)。连接至基质材料(例如,硅、锗等)的氧化还原活性分子形成了能够在不同的氧化态存储一个或多个比特的存储单元。在某些实施方式中,存储单元特征在于固定电极电偶合至包含一个或多个氧化还原活性分子并具有多种不同并且可区别的氧化态的“存储介质”。数据通过通过电偶合的电极从所述存储介质中加入或移去一个或多个电子而被存储在(优选为非中性的)氧化态中。氧化还原活性分子的氧化态可以用例如描述于美国专利6,272,038、6,212,093和6,208,553以及PCT公开WO 01/03126的电化学方法(例如,循环伏安法)进行设置和/或读取。
因为过渡金属和II、III、IV、V和VI族材料,特别是IV族材料(例如,硅、锗等),通常用于电子芯片的制造,所以此处所提供的方法易于提供与现有加工/制造技术兼容的分子存储芯片的制造。另外,包含氧化还原活性分子的构建和用途的详细资料可以见于美国专利6,272,038、6,212,093和6,208,553以及PCT公开WO 01/03126。
VIII.存储设备在计算机系统中的应用考虑了根据本发明方法制造的存储设备在计算机系统中的应用。一种这样的计算机系统例示于图7A中。该计算机包括信号源(例如,I/O设备或CPU)、本发明的存储设备和读取存储设备状态的合适的电路(例如,伏安电路)。在操作中,表示要被存储的比特的电压被施加至存储设备的工作电极,由此设置了存储器。当需要检索(例如,为了输出,或进一步处理)时,通过I/O电路读取存储设备的状态并且信息被传送至计算机中的其它元件(例如,CPU)。
图7B说明了集成至标准计算机体系结构或计算机系统200的本发明存储设备。系统200的硬件包括处理器(CPU)205、存储器206(其可以包含分子存储设备)、包含本发明分子存储设备的持久存储器208,和用于图形用户界面(GUI)的硬件220,其通过局部总线或接口210连接。持久存储器208可以包括图7A中所示元件。系统200还可以包括额外的硬件组件(未示出)。
系统200可以是,例如,个人计算机或工作站。处理器205可以是,例如,微处理器,如Inter Corp.(Santa Clara,Calif.)所制造的80386、80486或Pentium(tm)微处理器。存储器206可以包括,例如,随机存取存储器(RAM)、只读存储器(ROM)、虚拟存储器、分子存储器(图11)或其它工作存储介质或可通过处理器205存取的介质。持久存储器208可以包括硬盘、软盘、光盘或磁光盘、分子存储器或任何其它的持久存储器。GUI 220有助于用户和系统200之间的交流。其硬件包括可视显示设备221和选择设备(鼠标、键盘等)222。通过可视显示设备221,系统200可以将图形或文本输出传递至用户。系统200可以从选择设备222接收指示用户对特定窗口、菜单和菜单项目的选择的输入信号。可视显示设备221可以包括,例如,阴极射线管(CRT)显示器或平板显示器屏幕,或头戴显示器如虚拟现实显示器。选择设备222可以是,例如,二维指示设备如鼠标、跟踪球、跟踪板、指示笔、操纵杆等。或者或另外,选择设备222可以包括键盘如具有功能键和光标控制键的字母数字键盘。
系统200的软件包括操作系统250和应用程序260。系统200的软件还可包括另外的应用程序(未示出)。操作系统150可以是,例如,用于IBM PC和具有或模拟Intel 80386、80486或Pentium(tm)处理器的兼容计算机的Microsoft(r)Windows(tm)95操作系统。或者,操作系统可以限定于使周分子存诸元件的操作。应用程序160是与操作系统和系统200体系结构兼容的任何应用程序。本领域技术人员将意识到各种各样的硬件和软件配置可以支持各种特定实施方式中本发明的系统和方法。
实施例下列实施例用于说明,而非限定所要求的发明。
实施例1含乙炔基的氧化还原活性分子的循环伏安法和覆盖密度总结在通常用于在Si(或其它)表面上形成单分子层的条件下使具有两个(或更多)乙炔基的卟啉聚合。将卟啉溶于少量有机溶剂中。然后将一小滴含分子的溶剂沉积在硅基质上。在惰性(氩)气氛下烘焙基质(例如,在200℃-400℃)。形成卟啉聚合物的卟啉共价连接至硅表面。聚合物在电化学方面是很强的并且显示出相当于(或长于)相同分子单分子层的电荷保留时间。
图1显示了被研究用于聚合的分子系列。聚合物可以很容易地被电化学检测,因为表面覆盖密度显著高于单分子层所具有的。特别是,Si上的卟啉单分子层的表面覆盖密度不超过~10-10mol cm-2。该性能由分子No.184显示出,其含有一个乙炔基。相反,以顺式和反式构型含有两个乙炔基的分子192和197显示出超过50倍大的表面覆盖密度。另一方面,当多于两个乙炔基存在时,产生聚合但是伏安响应较弱(分子No.199和204)。弱的伏安响应可能是由于生长出表面的分子的大范围交联。预计交联程度可以通过分子设计和制备程序细节的调整来控制。
应注意具有适当形式游离乙炔(RCCH)的卟啉提供了聚合,而具有封端乙炔的那些则没有。反应性之间的差异通过分子No.217(游离乙炔;薄膜)和No.216(TIPS封端的乙炔;SAM)、分子No.219(游离乙炔;薄膜)和No.218(TMS封端的乙炔;SAM)之间的比较进行证明。
表1.含乙炔基的氧化还原活性分子的循环伏安法和覆盖密度总结
应理解的是此处所述的实施例和实施方式仅用于说明的目的、对于本领域技术人员可以建议据此进行的各种调整和改变,并且所述调整和改变都包括于本申请及权利要求范围的主旨和权限内。在所有场合下此处所引用的出版物、专利和专利申请通过引用全文并入本申请。
权利要求
1.一种使氧化还原活性聚合物在表面上形成图样以形成与表面结合的氧化还原活性聚合物的方法,所述方法包括提供具有至少第一反应部位或基团和第二反应部位或基团的氧化还原活性分子;和使所述表面与所述氧化还原活性分子接触,其中所述接触在使所述氧化还原活性分子与所述表面通过所述第一反应部位或基团进行连接以及使氧化还原活性分子通过第二反应部位或基团与已连接至所述表面的氧化还原活性分子进行连接的条件下进行,由此形成连接至所述表面的聚合物,其中所述聚合物包含至少两个所述氧化还原活性分子。
2.根据权利要求1的方法,其中所述第一反应部位或基团和所述第二反应部位或基团是相同的种类。
3.根据权利要求1的方法,其中所述第一反应部位或基团和所述第二反应部位或基团是不同的种类。
4.根据权利要求1的方法,其中所述第一反应部位或基团和/或所述第二反应部位或基团通过连接体连接至所述氧化还原活性分子。
5.根据权利要求1的方法,其中所述第一反应部位或基团是乙炔基。
6.根据权利要求5的方法,其中所述第二反应部位或基团是乙炔基。
7.根据权利要求5或6任一项的方法,其中所述乙炔基是选自乙炔基、4-乙炔基苯基、3-乙炔基苯基、4-乙炔基联苯基、3-乙炔基苯基、4-乙炔基三联苯基和3-乙炔基三联苯基的乙炔基。
8.根据权利要求1的方法,其中所述氧化还原活性分子选自卟啉大环、卟啉、卟啉大环的夹心配合物和茂金属。
9.根据权利要求1的方法,其中所述氧化还原活性分子选自直链多烯、环状多烯、杂原子取代的直链多烯、杂原子取代的环状多烯、四硫富瓦烯、四硒富瓦烯、金属配位络合物、巴奇球(buckyball)、三芳基胺、1,4-苯二胺、氧杂蒽、黄素、吩嗪、吩噻嗪、吖啶、喹啉、2,2’-联吡啶、4,4’-联吡啶、四硫并四苯和迫位桥萘二硫属化物(peri-bridged naphthalenedichalcogenide)。
10.根据权利要求1的方法,其中所述氧化还原活性分子是含有取代基的卟啉,所述取代基选自芳基、苯基、环烷基、烷基、卤素、烷氧基、烷硫基、全氟烃基、全氟芳基、吡啶基、氰基、氰硫基、硝基、氨基、烷基氨基、酰基、硫氧基、磺酰基、酰氨基和氨基甲酰基。
11.根据权利要求1的方法,其中所述氧化还原活性分子是含有取代基的卟啉,所述取代基选自4-甲基苯基、4-叔丁基苯基、4-三氟甲基苯基、戊基和氢(无取代基)。
12.根据权利要求1的方法,其中所述氧化还原活性分子是含有取代基的酞菁,所述取代基选自芳基、苯基、环烷基、烷基、卤素、烷氧基、烷硫基、全氟烃基、全氟芳基、吡啶基、氰基、氰硫基、硝基、氨基、烷基氨基、酰基、硫氧基、磺酰基、酰氨基和氨基甲酰基。
13.根据权利要求1的方法,其中所述氧化还原活性分子是含有取代基的酞菁,所述取代基选自甲基、叔丁基、丁氧基、氟和氢(无取代基)。
14.根据权利要求1的方法,其中所述氧化还原活性分子是表1中所示的分子。
15.根据权利要求1的方法,其中所述接触包括使所述表面与具有通式Y1-L1-Z1的连接体接触,其中Z1是表面连接基团;L1是共价键或连接体;Y1是被保护或未被保护的反应部位或基团;由此所述连接体连接至表面;和使已连接的连接体与所述氧化还原活性分子接触,由此氧化还原活性分子通过所述第一和/或所述第二反应部位或基团互相偶合并且氧化还原活性分子通过Y1和所述第一和/或所述第二反应部位或基团与连接体偶合,从而形成连接至连接体的聚合物,其中所述聚合物包含至少所述两个氧化还原活性分子。
16.根据权利要求15的方法,其中Z1是被保护或未被保护的反应部位或基团,其选自羧酸、醇、硫醇、硒醇、碲醇、膦酸、硫代膦酸酯(phosphonothioate)、胺、腈、4-甲酰基苯基、4-(溴甲基)苯基、4-乙烯基苯基、4-乙炔基苯基、4-烯丙基苯基、4-[2-(三甲基甲硅烷基)乙炔基]苯基、4-[2-(三异丙基甲硅烷基)乙炔基]苯基、4-溴苯基、4-碘苯基、4-(4,4,5,5-四甲基-1,3,2-二噁硼-2-基)苯基、溴基、碘基、甲酰基、溴甲基、氯甲基、乙炔基、乙烯基、烯丙基、4-(乙炔基)联苯-4’-基、4-[2-(三异丙基甲硅烷基)乙炔基]联苯-4’-基、3,5-二乙炔基苯基和2-溴乙基。17、根据权利要求15的方法,其中-L1-Z1-选自4-羧基苯基、羧甲基、2-羧乙基、3-羧丙基、2-(4-羧基苯基)乙炔基、4-(2-(4-羧基苯基)乙炔基)苯基、4-羧甲基苯基、4-(3-羧丙基)苯基、4-(2-(4-羧甲基苯基)乙炔基)苯基;4-羟苯基、羟甲基、2-羟乙基、3-羟丙基、2-(4-羟苯基)乙炔基、4-(2-(4-羟苯基)乙炔基)苯基、4-羟甲基苯基、4-(2-羟乙基)苯基、4-(3-羟丙基)苯基、4-(2-(4-羟甲基苯基)乙炔基)苯基;4-巯苯基、巯甲基、2-巯乙基、3-巯丙基、2-(4-巯苯基)乙炔基、4-(2-(4-巯苯基)乙炔基)苯基、4-巯甲基苯基、4-(2-巯乙基)苯基、4-(3-巯丙基)苯基、4-(2-(4-巯甲基苯基)乙炔基)苯基;4-氢硒基苯基、氢硒基甲基、2-氢硒基乙基、3-氢硒基丙基、2-(4-氢硒基苯基)乙炔基、4-氢硒基甲基苯基、4-(2-氢硒基乙基)苯基、4-(3-氢硒基丙基)苯基、4-氢硒基甲基苯基、4-(2-(4-氢硒基苯基)乙炔基)苯基;4-氢碲基苯基、氢碲基甲基、2-氢碲基乙基、3-氢碲基丙基、2-(4-氢碲基苯基)乙炔基、4-(2-(4-氢碲基苯基)乙炔基)苯基、4-氢碲基甲基苯基、4-(2-氢碲基乙基)苯基、4-(3-氢碲基丙基)苯基、4-(2-(4-氢碲基甲基苯基)乙炔基)苯基;4-(二羟基磷酰基)苯基、(二羟基磷酰基)甲基、2-(二羟基磷酰基)乙基、3-(二羟基磷酰基)丙基、2-[4-(二羟基磷酰基)苯基]乙炔基、4-[2-[4-(二羟基磷酰基)苯基]乙炔基]苯基、4-[(二羟基磷酰基)甲基]苯基、4-[2-(二羟基磷酰基)乙基]苯基、4-[2-[4-(二羟基磷酰基)甲基苯基]乙炔基]苯基;4-(羟基(巯基)磷酰基)苯基、(羟基(巯基)磷酰基)甲基、2-(羟基(巯基)磷酰基)乙基、3-(羟基(巯基)磷酰基)丙基、2-[4-(羟基(巯基)磷酰基)苯基]乙炔基、4-[2-[4-(羟基(巯基)磷酰基)苯基]乙炔基]苯基、4-[(羟基(巯基)磷酰基)甲基]苯基、4-[2-(羟基(巯基)磷酰基)乙基]苯基、4-[2-[4-(羟基(巯基)磷酰基)甲基苯基]乙炔基]苯基;4-氰基苯基、氰基甲基、2-氰基乙基、3-氰基丙基、2-(4-氰基苯基)乙炔基、4-[2-(4-氰基苯基)乙炔基]苯基、4-(氰基甲基)苯基、4-(2-氰基乙基)苯基、4-[2-[4-(氰基甲基)苯基]乙炔基]苯基;4-氰基联苯基、4-氨基苯基、氨基甲基、2-氨基乙基、3-氨基丙基、2-(4-氨基苯基)乙炔基、4-[2-(4-氨基苯基)乙炔基]苯基和4-氨基联苯基。
18.根据权利要求15的方法,其中L选自共价键、1,4-亚苯基、4,4’-二苯基乙炔、4,4’-二苯基丁二炔、4,4’-联苯基、4,4’-均二苯代乙烯、1,4-二环辛烷、4,4’-偶氮苯、4,4’-亚苄基苯胺和4,4”-三联苯。
19.根据权利要求15的方法,其中所述方法还包括将反电极连接至所述聚合物。
20.根据权利要求19的方法,其中所述反电极被直接连接至所述聚合物。
21.根据权利要求19的方法,其中所述反电极通过连接体连接至所述聚合物。
22.根据权利要求15的方法,其中所述氧化还原活性分子还包括仅具有一个可用的反应基团或部位的氧化还原活性分子。
23.根据权利要求22的方法,其中所述仅具有一个可用的反应基团或部位氧化还原活性分子包含封端的第二反应基团或部位。
24.根据权利要求1的方法,其中所述表面包括选自III族元素、IV族元素、V族元素、掺杂的III族元素、掺杂的IV族元素、掺杂的V族元素、过渡金属、过渡金属氧化物和过渡金属氮化物的材料。
25.根据权利要求24的方法,其中所述表面包括选自硅、锗、掺杂硅和掺杂锗的材料。
26.根据权利要求24的方法,其中所述表面是氢钝化的表面。
27.一种使氧化还原活性聚合物在表面上形成图样以形成与表面结合的氧化还原活性聚合物的方法,所述方法包括提供表面,所述表面具有连接至其上的具有反应部位或基团的连接体和/或具有反应部位或基团的氧化还原活性分子;提供具有至少第一反应部位或基团和第二反应部位或基团的氧化还原活性分子;和使所述表面与所述氧化还原活性分子接触,其中所述接触在使所述氧化还原活性分子与连接体和/或已连接至表面的氧化还原活性分子连接以及使氧化还原活性分子聚合的条件下进行,由此形成连接至所述表面的聚合物,其中所述聚合物含有至少两个所述氧化还原活性分子。
28.根据权利要求27的方法,其中所述第一反应部位或基团和所述第二反应部位或基团是相同的种类。
29.根据权利要求27的方法,其中所述第二反应部位或基团和所述第二反应部位或基团是不同的种类。
30.根据权利要求27的方法,其中所述第一反应部位或基团和/或所述第二反应部位或基团通过连接体连接至所述氧化还原活性分子。
31.根据权利要求27的方法,其中所述第一反应部位或基团是乙炔基。
32.根据权利要求31的方法,其中所述第二反应部位或基团是乙炔基。
33.根据权利要求31或32任一项的方法,其中所述乙炔基是选自乙炔基、4-乙炔基苯基、3-乙炔基苯基、4-乙炔基联苯基、3-乙炔基苯基、4-乙炔基三联苯基和3-乙炔基三联苯基的乙炔基。
34.根据权利要求27的方法,其中所述氧化还原活性分子选自卟啉大环、卟啉、卟啉大环的夹心配合物和茂金属。
35.根据权利要求27的方法,其中所述氧化还原活性分子选自直链多烯、环状多烯、杂原子取代的直链多烯、杂原子取代的环状多烯、四硫富瓦烯、四硒富瓦烯、金属配位络合物、巴奇球(buckyball)、三芳基胺、1,4-苯二胺、氧杂蒽、黄素、吩嗪、吩噻嗪、吖啶、喹啉、2,2’-联吡啶、4,4’-联吡啶、四硫并四苯和迫位桥萘二硫属化物(peri-bridged naphthalenedichalcogenide)。
36.根据权利要求27的方法,其中所述氧化还原活性分子是含有取代基的卟啉,所述取代基选自芳基、苯基、环烷基、烷基、卤素、烷氧基、烷硫基、全氟烃基、全氟芳基、吡啶基、氰基、氰硫基、硝基、氨基、烷基氨基、酰基、硫氧基、磺酰基、酰氨基和氨基甲酰基。
37.根据权利要求27的方法,其中所述氧化还原活性分子是含有取代基的卟啉,所述取代基选自4-甲基苯基、4-叔丁基苯基、4-三氟甲基苯基、戊基和氢(无取代基)。
38.根据权利要求27的方法,其中所述氧化还原活性分子是含有取代基的酞菁,所述取代基选自芳基、苯基、环烷基、烷基、卤素、烷氧基、烷硫基、全氟烃基、全氟芳基、吡啶基、氰基、氰硫基、硝基、氨基、烷基氨基、酰基、硫氧基、磺酰基、酰氨基和氨基甲酰基。
39.根据权利要求27的方法,其中所述氧化还原活性分子是含有取代基的酞菁,所述取代基选自甲基、叔丁基、丁氧基、氟和氢(无取代基)。
40.根据权利要求27的方法,其中所述氧化还原活性分子是表1中所示的分子。
41.根据权利要求27的方法,其中所述提供包括提供表面,所述表面具有连接至其上的连接体,由此所述表面和连接体具有通式S-Z1-L1-Y1,其中S是表面;Z1是表面连接基团;L1是共价键或连接体;和Y1是被保护或未被保护的反应部位或基团。
42.根据权利要求41的方法,其中Y1是被保护的反应部位或基团并且所述方法还包括解除对Y1的保护。
43.根据权利要求41的方法,其中Z1在偶合至所述表面之前是被保护或未被保护的反应部位或基团,其选自羧酸、醇、硫醇、硒醇、碲醇、膦酸、硫代膦酸酯(phosphonothioate)、胺、腈、4-甲酰基苯基、4-(溴甲基)苯基、4-乙烯基苯基、4-乙炔基苯基、4-烯丙基苯基、4-[2-(三甲基甲硅烷基)乙炔基]苯基、4-[2-(三异丙基甲硅烷基)乙炔基]苯基、4-溴苯基、4-碘苯基、4-(4,4,5,5-四甲基-1,3,2-二噁硼-2-基)苯基、溴基、碘基、甲酰基、溴甲基、氯甲基、乙炔基、乙烯基、烯丙基、4-(乙炔基)联苯-4’-基、4-[2-(三异丙基甲硅烷基)乙炔基]联苯-4’-基、3,5-二乙炔基苯基和2-溴乙基。
44.根据权利要求41的方法,其中Z1-L1在偶合至所述表面之前选自4-羧基苯基、羧甲基、2-羧乙基、3-羧丙基、2-(4-羧基苯基)乙炔基、4-(2-(4-羧基苯基)乙炔基)苯基、4-羧甲基苯基、4-(3-羧丙基)苯基、4-(2-(4-羧甲基苯基)乙炔基)苯基;4-羟苯基、羟甲基、2-羟乙基、3-羟丙基、2-(4-羟苯基)乙炔基、4-(2-(4-羟苯基)乙炔基)苯基、4-羟甲基苯基、4-(2-羟乙基)苯基、4-(3-羟丙基)苯基、4-(2-(4-羟甲基苯基)乙炔基)苯基;4-巯苯基、巯甲基、2-巯乙基、3-巯丙基、2-(4-巯苯基)乙炔基、4-(2-(4-巯苯基)乙炔基)苯基、4-巯甲基苯基、4-(2-巯乙基)苯基、4-(3-巯丙基)苯基、4-(2-(4-巯甲基苯基)乙炔基)苯基;4-氢硒基苯基、氢硒基甲基、2-氢硒基乙基、3-氢硒基丙基、2-(4-氢硒基苯基)乙炔基、4-氢硒基甲基苯基、4-(2-氢硒基乙基)苯基、4-(3-氢硒基丙基)苯基、4-氢硒基甲基苯基、4-(2-(4-氢硒基苯基)乙炔基)苯基;4-氢碲基苯基、氢碲基甲基、2-氢碲基乙基、3-氢碲基丙基、2-(4-氢碲基苯基)乙炔基、4-(2-(4-氢碲基苯基)乙炔基)苯基、4-氢碲基甲基苯基、4-(2-氢碲基乙基)苯基、4-(3-氢碲基丙基)苯基、4-(2-(4-氢碲基甲基苯基)乙炔基)苯基;4-(二羟基磷酰基)苯基、(二羟基磷酰基)甲基、2-(二羟基磷酰基)乙基、3-(二羟基磷酰基)丙基、2-[4-(二羟基磷酰基)苯基]乙炔基、4-[2-[4-(二羟基磷酰基)苯基]乙炔基]苯基、4-[(二羟基磷酰基)甲基]苯基、4-[2-(二羟基磷酰基)乙基]苯基、4-[2-[4-(二羟基磷酰基)甲基苯基]乙炔基]苯基;4-(羟基(巯基)磷酰基)苯基、(羟基(巯基)磷酰基)甲基、2-(羟基(巯基)磷酰基)乙基、3-(羟基(巯基)磷酰基)丙基、2-[4-(羟基(巯基)磷酰基)苯基]乙炔基、4-[2-[4-(羟基(巯基)磷酰基)苯基]乙炔基]苯基、4-[(羟基(巯基)磷酰基)甲基]苯基、4-[2-(羟基(巯基)磷酰基)乙基]苯基、4-[2-[4-(羟基(巯基)磷酰基)甲基苯基]乙炔基]苯基;4-氰基苯基、氰基甲基、2-氰基乙基、3-氰基丙基、2-(4-氰基苯基)乙炔基、4-[2-(4-氰基苯基)乙炔基]苯基、4-(氰基甲基)苯基、4-(2-氰基乙基)苯基、4-[2-[4-(氰基甲基)苯基]乙炔基]苯基;4-氰基联苯基、4-氨基苯基、氨基甲基、2-氨基乙基、3-氨基丙基、2-(4-氨基苯基)乙炔基、4-[2-(4-氨基苯基)乙炔基]苯基和4-氨基联苯基。
45.根据权利要求41的方法,其中L1选自共价键、1,4-亚苯基、4,4’-二苯基乙炔、4,4’-二苯基丁二炔、4,4’-联苯基、4,4’-均二苯代乙烯、1,4-二环辛烷、4,4’-偶氮苯、4,4’-亚苄基苯胺和4,4”-三联苯。
46.根据权利要求27的方法,其中所述方法还包括将反电极连接至所述聚合物。
47.根据权利要求46的方法,其中所述反电极被直接连接至所述聚合物。
48.根据权利要求46的方法,其中所述反电极通过连接体连接至所述聚合物。
49.根据权利要求27的方法,其中所述氧化还原活性分子还包括仅具有一个可用的反应基团或部位的氧化还原活性分子。
50.根据权利要求49的方法,其中所述仅具有一个可用的反应基团或部位氧化还原活性分子包含封端的第二反应基团或部位。
51.一种电活性基质,其包括第一区域,其中所述第一区域包括根据通式Mn-L-Z-S的具有已连接的氧化还原活性部分的表面,其中S是基质;Z是表面连接基团;L是连接体或共价键;M是氧化还原活性分子;n至少为3。
52.根据权利要求51的电活性基质,其中氧化还原活性分子通过乙炔基互相连接。
53.根据权利要求52的电活性基质,其中所述乙炔基是选自乙炔基、4-乙炔基苯基、3-乙炔基苯基、4-乙炔基联苯基、3-乙炔基苯基、4-乙炔基三联苯基和3-乙炔基三联苯基的乙炔基。
54.根据权利要求51的电活性基质,其中所述氧化还原活性分子选自卟啉大环、卟啉、卟啉大环的夹心配合物和茂金属。
55.根据权利要求51的电活性基质,其中所述氧化还原活性分子选自直链多烯、环状多烯、杂原子取代的直链多烯、杂原子取代的环状多烯、四硫富瓦烯、四硒富瓦烯、金属配位络合物、巴奇球(buckyball)、三芳基胺、1,4-苯二胺、氧杂蒽、黄素、吩嗪、吩噻嗪、吖啶、喹啉、2,2’-联吡啶、4,4’-联吡啶、四硫并四苯和迫位桥萘二硫属化物(peri-bridgednaphthalene dichalcogenide)。
56.根据权利要求51的电活性基质,其中所述氧化还原活性分子是含有取代基的卟啉,所述取代基选自芳基、苯基、环烷基、烷基、卤素、烷氧基、烷硫基、全氟烃基、全氟芳基、吡啶基、氰基、氰硫基、硝基、氨基、烷基氨基、酰基、硫氧基、磺酰基、酰氨基和氨基甲酰基。
57.根据权利要求51的电活性基质,其中所述氧化还原活性分子是含有取代基的卟啉,所述取代基选自4-甲基苯基、4-叔丁基苯基、4-三氟甲基苯基、戊基和氢(无取代基)。
58.根据权利要求51的电活性基质,其中所述氧化还原活性分子是含有取代基的酞菁,所述取代基选自芳基、苯基、环烷基、烷基、卤素、烷氧基、烷硫基、全氟烃基、全氟芳基、吡啶基、氰基、氰硫基、硝基、氨基、烷基氨基、酰基、硫氧基、磺酰基、酰氨基和氨基甲酰基。
59.根据权利要求51的电活性基质,其中所述氧化还原活性分子是含有取代基的酞菁,所述取代基选自甲基、叔丁基、丁氧基、氟和氢(无取代基)。
60.根据权利要求51的电活性基质,其中所述氧化还原活性分子是表1中所示的分子。
61.根据权利要求51的电活性基质,其中所述基质包括根据通式S-Z-L-Mn-Y-E的具有已连接的氧化还原活性部分的表面,其中Y是连接体或反应部位或基团;E是反电极。
62.根据权利要求51的电活性基质,其中Z在偶合至所述表面之前是被保护或未被保护的反应部位或基团,其选自羧酸、醇、硫醇、硒醇、碲醇、膦酸、硫代膦酸酯(phosphonothioate)、胺、腈、4-甲酰基苯基、4-(溴甲基)苯基、4-乙烯基苯基、4-乙炔基苯基、4-烯丙基苯基、4-[2-(三甲基甲硅烷基)乙炔基]苯基、4-[2-(三异丙基甲硅烷基)乙炔基]苯基、4-溴苯基、4-碘苯基、4-(4,4,5,5-四甲基-1,3,2-二噁硼-2-基)苯基、溴基、碘基、甲酰基、溴甲基、氯甲基、乙炔基、乙烯基、烯丙基、4-(乙炔基)联苯-4’-基、4-[2-(三异丙基甲硅烷基)乙炔基]联苯-4’-基、3,5-二乙炔基苯基和2-溴乙基。
63.根据权利要求51的电活性基质,其中Z-L-在偶合至所述表面之前选自4-羧基苯基、羧甲基、2-羧乙基、3-羧丙基、2-(4-羧基苯基)乙炔基、4-(2-(4-羧基苯基)乙炔基)苯基、4-羧甲基苯基、4-(3-羧丙基)苯基、4-(2-(4-羧甲基苯基)乙炔基)苯基;4-羟苯基、羟甲基、2-羟乙基、3-羟丙基、2-(4-羟苯基)乙炔基、4-(2-(4-羟苯基)乙炔基)苯基、4-羟甲基苯基、4-(2-羟乙基)苯基、4-(3-羟丙基)苯基、4-(2-(4-羟甲基苯基)乙炔基)苯基;4-巯苯基、巯甲基、2-巯乙基、3-巯丙基、2-(4-巯苯基)乙炔基、4-(2-(4-巯苯基)乙炔基)苯基、4-巯甲基苯基、4-(2-巯乙基)苯基、4-(3-巯丙基)苯基、4-(2-(4-巯甲基苯基)乙炔基)苯基;4-氢硒基苯基、氢硒基甲基、2-氢硒基乙基、3-氢硒基丙基、2-(4-氢硒基苯基)乙炔基、4-氢硒基甲基苯基、4-(2-氢硒基乙基)苯基、4-(3-氢硒基丙基)苯基、4-氢硒基甲基苯基、4-(2-(4-氢硒基苯基)乙炔基)苯基;4-氢碲基苯基、氢碲基甲基、2-氢碲基乙基、3-氢碲基丙基、2-(4-氢碲基苯基)乙炔基、4-(2-(4-氢碲基苯基)乙炔基)苯基、4-氢碲基甲基苯基、4-(2-氢碲基乙基)苯基、4-(3-氢碲基丙基)苯基、4-(2-(4-氢碲基甲基苯基)乙炔基)苯基;4-(二羟基磷酰基)苯基、(二羟基磷酰基)甲基、2-(二羟基磷酰基)乙基、3-(二羟基磷酰基)丙基、2-[4-(二羟基磷酰基)苯基]乙炔基、4-[2-[4-(二羟基磷酰基)苯基]乙炔基]苯基、4-[(二羟基磷酰基)甲基]苯基、4-[2-(二羟基磷酰基)乙基]苯基、4-[2-[4-(二羟基磷酰基)甲基苯基]乙炔基]苯基;4-(羟基(巯基)磷酰基)苯基、(羟基(巯基)磷酰基)甲基、2-(羟基(巯基)磷酰基)乙基、3-(羟基(巯基)磷酰基)丙基、2-[4-(羟基(巯基)磷酰基)苯基]乙炔基、4-[2-[4-(羟基(巯基)磷酰基)苯基]乙炔基]苯基、4-[(羟基(巯基)磷酰基)甲基]苯基、4-[2-(羟基(巯基)磷酰基)乙基]苯基、4-[2-[4-(羟基(巯基)磷酰基)甲基苯基]乙炔基]苯基;4-氰基苯基、氰基甲基、2-氰基乙基、3-氰基丙基、2-(4-氰基苯基)乙炔基、4-[2-(4-氰基苯基)乙炔基]苯基、4-(氰基甲基)苯基、4-(2-氰基乙基)苯基、4-[2-[4-(氰基甲基)苯基]乙炔基]苯基;4-氰基联苯基、4-氨基苯基、氨基甲基、2-氨基乙基、3-氨基丙基、2-(4-氨基苯基)乙炔基、4-[2-(4-氨基苯基)乙炔基]苯基和4-氨基联苯基。
64.根据权利要求51的电活性基质,其中L选自共价键、1,4-亚苯基、4,4’-二苯基乙炔、4,4’-二苯基丁二炔、4,4’-联苯基、4,4’-均二苯代乙烯、1,4-二环辛烷、4,4’-偶氮苯、4,4’-亚苄基苯胺和4,4”-三联苯。
65.根据权利要求51的电活性基质,其还包含第二区域,其中所述第二区域包括具有已连接的氧化还原活性部分的表面,其中所述氧化还原活性部分不同于M。
66.根据权利要求51的电活性基质,其中所述第一区域是氧化还原活性存储单元。
67.一种氧化还原活性存储单元,所述存储单元包括根据通式E-Y-Mn-L-Z-S的具有已连接的氧化还原活性部分的表面,其中S是基质;Z是表面连接基团;L是连接体或共价键;M是氧化还原活性分子;Y是反应部位或基团或连接体;E是反电极;和n至少为3。
68.根据权利要求67的氧化还原活性存储单元,其中氧化还原活性分子通过乙炔基互相连接。
69.根据权利要求68的氧化还原活性存储单元,其中所述乙炔基是选自乙炔基、4-乙炔基苯基、3-乙炔基苯基、4-乙炔基联苯基、3-乙炔基苯基、4-乙炔基三联苯基和3-乙炔基三联苯基的乙炔基。
70.根据权利要求67的氧化还原活性存储单元,其中所述氧化还原活性分子选自卟啉大环、卟啉、卟啉大环的夹心配合物和茂金属。
71.根据权利要求67的氧化还原活性存储单元,其中所述氧化还原活性分子选自直链多烯、环状多烯、杂原子取代的线性多烯、杂原子取代的环状多烯、四硫富瓦烯、四硒富瓦烯、金属配位络合物、巴奇球(buckyball)、三芳基胺、1,4-苯二胺、氧杂蒽、黄素、吩嗪、吩噻嗪、吖啶、喹啉、2,2’-联吡啶、4,4’-联吡啶、四硫并四苯和迫位桥萘二硫属化物(peri-bridged naphthalene dichalcogenide)。
72.根据权利要求67的氧化还原活性存储单元,其中所述氧化还原活性分子是含有取代基的卟啉,所述取代基选自芳基、苯基、环烷基、烷基、卤素、烷氧基、烷硫基、全氟烃基、全氟芳基、吡啶基、氰基、氰硫基、硝基、氨基、烷基氨基、酰基、硫氧基、磺酰基、酰氨基和氨基甲酰基。
73.根据权利要求67的氧化还原活性存储单元,其中所述氧化还原活性分子是含有取代基的卟啉,所述取代基选自4-甲基苯基、4-叔丁基苯基、4-三氟甲基苯基、戊基和氢(无取代基)。
74.根据权利要求67的氧化还原活性存储单元,其中所述氧化还原活性分子是含有取代基的酞菁,所述取代基选自芳基、苯基、环烷基、烷基、卤素、烷氧基、烷硫基、全氟烃基、全氟芳基、吡啶基、氰基、氰硫基、硝基、氨基、烷基氨基、酰基、硫氧基、磺酰基、酰氨基和氨基甲酰基。
75.根据权利要求67的氧化还原活性存储单元,其中所述氧化还原活性分子是含有取代基的酞菁,所述取代基选自甲基、叔丁基、丁氧基、氟和氢(无取代基)。
76.根据权利要求67的氧化还原活性存储单元,其中所述氧化还原活性分子是表11中所示的分子。
77.根据权利要求67的氧化还原活性存储单元,其中Z在偶合至所述表面之前是被保护或未被保护的反应部位或基团,其选自羧酸、醇、硫醇、硒醇、碲醇、膦酸、硫代膦酸酯(phosphonothioate)、胺、腈、4-甲酰基苯基、4-(溴甲基)苯基、4-乙烯基苯基、4-乙炔基苯基、4-烯丙基苯基、4-[2-(三甲基甲硅烷基)乙炔基]苯基、4-[2-(三异丙基甲硅烷基)乙炔基]苯基、4-溴苯基、4-碘苯基、4-(4,4,5,5-四甲基-1,3,2-二噁硼-2-基)苯基、溴基、碘基、甲酰基、溴甲基、氯甲基、乙炔基、乙烯基、烯丙基、4-(乙炔基)联苯-4’-基、4-[2-(三异丙基甲硅烷基)乙炔基]联苯-4’-基、3,5-二乙炔基苯基和2-溴乙基。
78.根据权利要求67的氧化还原活性存储单元,其中-L-Z-在偶合至所述表面之前选自4-羧基苯基、羧甲基、2-羧乙基、3-羧丙基、2-(4-羧基苯基)乙炔基、4-(2-(4-羧基苯基)乙炔基)苯基、4-羧甲基苯基、4-(3-羧丙基)苯基、4-(2-(4-羧甲基苯基)乙炔基)苯基;4-羟苯基、羟甲基、2-羟乙基、3-羟丙基、2-(4-羟苯基)乙炔基、4-(2-(4-羟苯基)乙炔基)苯基、4-羟甲基苯基、4-(2-羟乙基)苯基、4-(3-羟丙基)苯基、4-(2-(4-羟甲基苯基)乙炔基)苯基;4-巯苯基、巯甲基、2-巯乙基、3-巯丙基、2-(4-巯苯基)乙炔基、4-(2-(4-巯苯基)乙炔基)苯基、4-巯甲基苯基、4-(2-巯乙基)苯基、4-(3-巯丙基)苯基、4-(2-(4-巯甲基苯基)乙炔基)苯基;4-氢硒基苯基、氢硒基甲基、2-氢硒基乙基、3-氢硒基丙基、2-(4-氢硒基苯基)乙炔基、4-氢硒基甲基苯基、4-(2-氢硒基乙基)苯基、4-(3-氢硒基丙基)苯基、4-氢硒基甲基苯基、4-(2-(4-氢硒基苯基)乙炔基)苯基;4-氢碲基苯基、氢碲基甲基、2-氢碲基乙基、3-氢碲基丙基、2-(4-氢碲基苯基)乙炔基、4-(2-(4-氢碲基苯基)乙炔基)苯基、4-氢碲基甲基苯基、4-(2-氢碲基乙基)苯基、4-(3-氢碲基丙基)苯基、4-(2-(4-氢碲基甲基苯基)乙炔基)苯基;4-(二羟基磷酰基)苯基、(二羟基磷酰基)甲基、2-(二羟基磷酰基)乙基、3-(二羟基磷酰基)丙基、2-[4-(二羟基磷酰基)苯基]乙炔基、4-[2-[4-(二羟基磷酰基)苯基]乙炔基]苯基、4-[(二羟基磷酰基)甲基]苯基、4-[2-(二羟基磷酰基)乙基]苯基、4-[2-[4-(二羟基磷酰基)甲基苯基]乙炔基]苯基;4-(羟基(巯基)磷酰基)苯基、(羟基(巯基)磷酰基)甲基、2-(羟基(巯基)磷酰基)乙基、3-(羟基(巯基)磷酰基)丙基、2-[4-(羟基(巯基)磷酰基)苯基]乙炔基、4-[2-[4-(羟基(巯基)磷酰基)苯基]乙炔基]苯基、4-[(羟基(巯基)磷酰基)甲基]苯基、4-[2-(羟基(巯基)磷酰基)乙基]苯基、4-[2-[4-(羟基(巯基)磷酰基)甲基苯基]乙炔基]苯基;4-氰基苯基、氰基甲基、2-氰基乙基、3-氰基丙基、2-(4-氰基苯基)乙炔基、4-[2-(4-氰基苯基)乙炔基]苯基、4-(氰基甲基)苯基、4-(2-氰基乙基)苯基、4-[2-[4-(氰基甲基)苯基]乙炔基]苯基;4-氰基联苯基、4-氨基苯基、氨基甲基、2-氨基乙基、3-氨基丙基、2-(4-氨基苯基)乙炔基、4-[2-(4-氨基苯基)乙炔基]苯基和4-氨基联苯基。
79.根据权利要求67的氧化还原活性存储单元,其中L选自共价键、1,4-亚苯基、4,4’-二苯基乙炔、4,4’-二苯基丁二炔、4,4’-联苯基、4,4’-均二苯代乙烯、1,4-二环辛烷、4,4’-偶氮苯、4,4’-亚苄基苯胺和4,4”-三联苯。
80.根据权利要求67的氧化还原活性存储单元,其中所述反电极包含导电材料。
81.根据权利要求67的氧化还原活性存储单元,其中所述反电极包含半导体材料。
82.根据权利要求67的氧化还原活性存储单元,其中所述存储单元是密封的。
83.一种存储数据的方法,所述方法包括i)提供包含一个或多个权利要求67的存储单元的装置;和ii)在足以设置Mn的氧化态的电流下施加电压至反电极。
84.根据权利要求83的方法,其中所述电压范围至多为约2伏。
85.根据权利要求83的方法,其中所述电压是集成电路的输出。
86.根据权利要求83的方法,其中所述电压是逻辑门的输出。
87.根据权利要求83的方法,其还包括检测Mn的氧化态并由此读取存储在其中的数据。
88.根据权利要求87的方法,其中检测Mn的氧化态还包括刷新Mn的氧化态。
89.根据权利要求87的方法,其中所述检测包括在时域内分析读出信号。
90.根据权利要求87的方法,其中所述检测包括在频域内分析读出信号。
91.根据权利要求87的方法,其中所述检测包括对读出信号进行傅里叶变换。
92.根据权利要求87的方法,其中所述检测使用伏安法。
93.根据权利要求87的方法,其中所述检测使用阻抗光谱法。
94.根据权利要求87的方法,其中所述检测包括将所述存储介质暴露于电场中以产生具有特征频率的电场振动并检测所述特征频率。
95.根据权利要求87的方法,其中Mn具有至少8个不同并且可区别的氧化态。
96.在计算机系统中的存储设备,所述存储设备包括权利要求67的存储单元。
97.一种计算机系统,其包含中央处理器、显示器、选择设备和存储设备,其中所述存储设备包括权利要求67的存储单元。
全文摘要
本发明提供了连接至表面的氧化还原活性聚合物的新的形成方法。在某些实施方式中,该方法包括提供具有至少第一反应部位或基团和第二反应部位或基团的氧化还原活性分子;和使表面与氧化还原活性分子接触,其中接触在使所述氧化还原活性分子与所述表面通过第一反应部位或基团进行连接以及使氧化还原活性分子通过第二反应部位或基团与已连接至所述表面的氧化还原活性分子进行连接的条件下进行,由此形成连接至所述表面的聚合物,其中所述聚合物包含至少两个所述氧化还原活性分子。
文档编号B32B37/00GK1984775SQ200580015129
公开日2007年6月20日 申请日期2005年3月10日 优先权日2004年3月11日
发明者戴维·F·博西安, 刘志明, 乔纳森·S·林赛 申请人:加利福尼亚大学董事会, 北卡罗来纳大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1