曝光方法、曝光装置及元件制造方法

文档序号:2683725阅读:113来源:国知局
专利名称:曝光方法、曝光装置及元件制造方法
技术领域
本发明,是移动体驱动方法及移动体驱动系统、图案形成方法及图案形成装置、曝光方法及曝光装置、以及元件制造方法,更详细而言是有关于将移动体至少驱动于一轴方向的移动体驱动方法、非常适用于该方法的移动体驱动系统、使用该移动体驱动方法的图案形成方法、具备该移动体驱动系统的图案形成装置、使用该移动体驱动方法的曝光方法、 具备移动体驱动系统的曝光装置、以及使用该图案形成方法的元件制造方法。
背景技术
以往,于半导体元件、液晶显示元件等微型元件(电子元件等)的制造时的光刻步骤中,多是使用步进重复方式的缩小投影曝光装置(即步进机)、或是步进扫描方式的扫描型投影曝光装置(即扫描步进机、也称扫描机)等。此种曝光装置,为了要将标线片(或光掩膜)的图案转印至晶片上的复数个照射区域,通过例如线性马达等,将保持着晶片的晶片载台驱动于XY2维方向。特别是在扫描步进机的情形时,不仅限于晶片载台,连标线片载台也通过线性马达等以既定行程驱动于扫描方向。标线片载台及晶片载台的位置测量,一般作法,是使用长期看来测量值具有良好稳定性、且具备高解析能力的激光干涉仪。然而,图案随着半导体元件的高积体化而渐趋微细,而对载台的位置控制遂有更高精度的要求,目前,已无法忽视在激光干涉仪的光束光路上因环境气氛的温度晃动而造成测量值的短期变动现象。另一方面,在最近的位置测量装置中,有出现一种编码器,其测量的解析能力高于激光干涉仪(例如,参照专利文献1)。然而,由于编码器有使用标尺(光栅),而会随着标尺的使用时间的经过而衍生各种误差要因(格子间距的偏移、固定位置的偏移、及热膨胀等),而欠缺长期稳定的机械特性。因此,编码器与激光干涉仪相较,有欠缺测量值的直线性、长期稳定性较差的缺点。专利文献1美国专利第6,639,686号说明书

发明内容
本发明,基于以上事项而揭示,由第1观点观之,是一种移动体驱动方法(第1移动体驱动方法),用以将移动体驱动于至少一轴方向,具备第1步骤,使用第1测量装置、 以及测量值的短期稳定性优于该第1测量装置的第2测量装置,来测量该移动体在该一轴方向的位置信息,并根据该第1、第2测量装置的测量结果来执行校正动作,该校正动作用以决定修正该第2测量装置的测量值的修正信息;以及第2步骤,根据该第2测量装置的测量值与该修正信息来将该移动体驱动于该一轴方向。据此,通过上述的校正动作,使用第1测量装置的测量值,来决定测量值的短期稳定性优于该第1测量装置的第2测量装置的测量值的修正信息。接着,根据第2测量装置的测量值与修正信息,将移动体驱动于该一轴方向。因此,根据已使用修正信息而予修正的第2测量装置的测量值,即根据短期稳定性与长期稳定性等均良好的移动体在一轴方向的位置信息的测量值,而能将移动体以良好精度驱动于一轴方向。本发明,由第2观点观之,是一种移动体驱动方法(第2移动体驱动方法),用以将移动体驱动于与彼此正交的第1及第2轴平行的2维面内,其特征在于通过一对的第1光栅与第1编码器,来测量该移动体在与该第1轴平行的方向的位置信息;且通过第2光栅与第2编码器,来测量该移动体在与该第2轴平行的方向的位置信息;该一对的第1光栅,分别包含在该移动体上与该2维面平行的面内周期性地排列于与第1轴平行的方向的格子, 其在与各自的长边方向于该面内正交的方向彼此分离配置;该第1编码器,具有与该长边方向交叉的读头;该第2光栅,位在该移动体上的与该2维面平行的面上,以与该第1光栅的长边方向交叉的方向为长边方向延伸,且包含周期性的排列于与第2轴平行的方向;该第2编码器,具有与该第2光栅的长边方向交叉的读头单元。由此,只要移动体位在一对第1光栅中有至少一方与第1编码器所具有的读头单元对向、且第2光栅与第2编码器所具有的读头单元对向的既定行程范围内,则能通过至少一方的第1光栅与第1编码器,来测量移动体在与第1轴平行的方向的位置信息;并能通过第2光栅与第2编码器,来测量移动体在与第2轴平行的方向的位置信息。由于第1、第2 编码器的测量值具有良好的短期稳定性,因此能高精度的测量移动体在2维面内的位置信息。又,根据上述高精度测得的移动体的位置信息来驱动移动体。因此,能使移动体被高精度的驱动。本发明,依第3观点观之,是一种移动体驱动方法(第3移动体驱动方法),用于将移动体至少驱动于一轴方向,包含根据编码器的测量值与该格子间距的修正信息,将该移动体驱动于该既定方向的步骤,该编码器,将检测光照射于在该移动体上面以既定方向为周期方向而配置的格子,并根据其反射光来测量该移动体在该既定方向的位置信息。由此,能够不受格子间距的偏置等的影响,而能高精度的驱动移动体。本发明,依第4观点观之,是用以将图案形成于物体的方法(第1图案形成方法), 使用本发明的第1至第3的移动体驱动方法中的任一方法,来驱动装载有该物体的移动体, 以将图案形成于该物体。由此,通过将图案形成于装载在移动体(使用本发明第1至第3移动体驱动方法的任一方法而被以高精度驱动)上的物体,而能高精度的将图案形成于物体上。依本发明的第5观点观之,是一种将图案形成于物体的方法(第2图案形成方法),使用本发明第1至第3移动体驱动方法的任一方法,驱动包含装载有该物体的移动体的复数个移动体中的至少一者,以将图案形成于该物体。由此,为了要将图案形成于物体,使用本发明第1至第3移动体驱动方法中的任一项,使复数个移动体中的至少1个能以高精度被驱动,以在被装载于任一移动体上的物体产生图案。本发明,依第6的观点观之,是一种包含图案形成步骤的元件制造方法,在该图案形成步骤中,使用本发明第1、第2图案形成方法中的任一项而在基板上形成图案。本发明,依第7观点观之,是一种通过能量束的照射来于物体形成图案的曝光方法(第1曝光方法),使用本发明第1至第3移动体驱动方法的任一方法来驱动装载有该物体的移动体,以使该能量束与该物体相对移动。由此,使用本发明第1至第3移动体驱动方法的任一方法来驱动装载有该物体的移动体,以使照射于该物体的该能量束与该物体相对移动。因此,可通过扫描曝光来高精度的在物体上形成图案。 本发明,依第8观点观之,是一种移动体驱动系统(第1移动体驱动系统),用以将移动体驱动于至少一轴方向,具备第1测量装置,用以测量该移动体在该一轴方向的位置信息;第2测量装置,用以测量该移动体在该一轴方向的位置信息,其测量值的短期稳定性优于该第1测量装置;校正装置,执行用以决定修正信息的校正动作,该修正信息使用该第 1测量装置的测量值来修正该第2测量装置的测量值;以及驱动装置,根据该第2测量装置的测量值与该修正信息,来将该移动体驱动于该一轴方向。由此,通过校正装置来执行上述的校正动作,决定修正信息的校正动作,该修正信息使用该第1测量装置的测量值来修正第2测量装置(测量值的短期稳定性优于该第1测量装置)的测量值的信息。又,通过驱动装置,根据第2测量装置的测量值与修正信息来将移动体驱动于一轴方向。因此,根据已使用修正信息而予修正的第2测量装置的测量值,即根据短期稳定性与长期稳定性等均良好的移动体在一轴方向的位置信息的测量值,而能将移动体以良好精度驱动于一轴方向。本发明,依第9观点观之,是一种移动体驱动系统(第2移动体驱动系统),用以将移动体驱动于与彼此正交的第1及第2轴平行的2维面内,具备第1光栅,配置在该移动体上的与该2维面平行的面上,包含在与第1轴平行的方向周期排列的格子;一对第2光栅,配置在该移动体上的与该2维面平行的面上,以与该第1光栅的长边方向交叉的方向为长边方向延伸,且在与该长边方向正交的方向分离配置,又,分别包含周期性排列于与第2 轴平行的方向的格子第1编码器,具有与该第1光栅的长边方向交叉的读头单元,与该第 1光栅一起测量该移动体在与该第1轴平行的方向的位置信息;第2编码器,具有与该一对第2光栅的长边方向交叉的读头单元,与该一对第2光栅一起测量该移动体在与该第2轴平行的方向的位置信息;以及驱动装置,根据该第1及第2编码器所测得的位置信息来驱动该移动体。由此,只要移动体位在第1编码器所具有的读头单元对向于第1光栅、且一对第2 编码器所具有的读头单元对向于一对第2光栅中的至少一方的既定行程范围内,则能通过第1光栅与第1编码器,来测量移动体在与第1轴平行的方向的位置信息;并能通过该第2 光栅与第2编码器,来测量移动体在与第2轴平行的方向的位置信息。由于第1、第2编码器的测量值具有良好的短期稳定性,因此能高精度的测量移动体在2维面内的位置信息。 又,根据上述高精度测得的移动体的位置信息来驱动移动体。因此,能使移动体被高精度的驱动。本发明,依第10观点观之,是一种移动体驱动系统(第3移动体驱动系统),将移动体驱动于与彼此正交的第1及第2轴平行的2维面内,具备第1光栅,在该移动体上以与第2轴平行的方向为长边方向延伸,且其格子系周期性排列于与第1轴平行的方向;第2光栅,在该移动体上以与该第1轴平行的方向为长边方向延伸,且其格子周期性排列于与该第2轴平行的方向;第1编码器,具有与该第2轴的平行方向交叉的读头单元,与该第1 光栅一起测量该移动体在与该第1轴平行的方向的位置信息;第2编码器,具有与该第1轴的平行方向交叉的读头单元,与该第2光栅一起测量该移动体在与该第2轴平行的方向的位置信息;以及驱动装置,根据该第1及第2编码器所测得的位置信息来驱动该移动体;该第1及第2编码器的至少一方,具有复数个在该长边方向分离配置的读头单元。因此,通过第1光栅与第1编码器、及第2光栅与第2编码器,除了能测量移动体在与第1轴平行的方向的位置信息及与第2轴平行的方向的位置信息,也能测量其在2维面内的旋转(绕与2维面正交的轴的旋转)。又,由于第1、第2编码器的测量值的短期稳定性良好,因此能高精度的测量移动体在2维面内的位置信息(包含旋转信息)。又,驱动装置在驱动移动体时,根据上述的高精度测得的移动体的位置信息。因此,可高精度的驱动移动体。本发明,依第11观点观之,是一种移动体驱动系统(第4移动体驱动系统),用以将移动体驱动于至少一轴方向,具备编码器,将检测光照射在以既定方向为周期方向而配置在该移动体上面的格子,根据其反射光来测量该移动体在该既定方向的位置信息;以及驱动装置,根据该编码器的测量值与该格子间距的修正信息,来将该移动体驱动于该既定方向。据此,通过驱动装置,可根据编码器的测量值与格子间距的修正信息,来将移动体驱动于既定方向。因此,移动体能不受格子间距的偏置等的影响,而能高精度的驱动。本发明,由第12观点观之,是一种在物体形成图案的装置(第1图案形成装置), 具备图案化装置,用以在该物体上产生图案;以及本发明第1至第4移动体驱动系统中的任一项;其是通过该移动体驱动系统,来驱动装载有该物体的移动体,以将图案形成于该物体。由此,以图案化装置而将图案形成于物体时,该物体位于被本发明第1至第4移动体驱动系统中的任一者高精度驱动的移动体上,由此能高精度的将图案形成于物体上。本发明,依第13观点观之,是一种在物体上形成图案的装置(第2图案形成装置),具备图案化装置,用以在该物体上产生图案;复数个移动体,包含装载有该物体的移动体;以及本发明第1至第4移动体驱动系统的任一项;以该移动体驱动系统来驱动该复数个移动体的至少一个,以将图案形成于该物体。由此,为了将图案形成于物体,通过本发明的第1至第4移动体驱动系统中的任一者,来高精度的驱动复数个移动体中的至少一者,且通过图案化装置而将图案产生于被装载于任一移动体上的物体。本发明,依第14观点之,是一种曝光装置(第1曝光装置),是通过能量束的照射而在物体形成图案,具备用以将该能量束照射至该物体的图案化装置;以及本发明第1至第4移动体驱动系统中的任一者;通过该移动体驱动系统来驱动装载该物体的移动体,以使该能量束与该物体相对移动。由此,为了使由图案化装置照射至物体的能量束与该物体相对移动,通过本发明的第1至第4移动体驱动系统中的任一者,来高精度的驱动装载有物体的移动体。因此,可通过扫描曝光而将图案高精度的形成于物体上。
本发明,依第15的观点观之,是一种曝光方法(第2曝光方法),进行步进扫描方式、即重复交替进行扫描曝光与该物体的移动,来将该图案依序转印至该物体上的复数个区划区域,该扫描曝光,使光掩膜与物体同步移动于既定扫描方向而将形成于该光掩膜的图案转印在该物体上的区划区域,该物体的移动,是为了对次一区划区域进行扫描曝光,至少在对各区划区域进行扫描曝光时,通过编码器测量保持该光掩膜的光掩膜载台的位置信息,且根据该编码器的测量值、以及根据该编码器与干涉仪所测得的该光掩膜载台的位置信息而决定出的该编码器的测量值修正信息,来控制该光掩膜载台的移动,并根据该步进扫描方式的曝光动作中所储存的该干涉仪及编码器的测量值,据以校正该修正信息。由此,在对于次一物体进行步进扫描方式的曝光时,能根据已使用修正信息而予修正的编码器的测量值,即是根据短期稳定性及长期稳定性均良好的光掩膜载台在扫描方向的位置信息的测量值,来高精度的控制光掩膜载台在各区划区域的扫描曝光时(图案转印时)的移动。由此,能通过扫描曝光而将形成于光掩膜的图案高精度的转印至该物体上的复数个区划区域。本发明,依第16观点观之,是一种曝光装置(第2曝光装置),进行步进扫描方式的曝光动作、即重复交替进行扫描曝光与该物体的移动,该扫描曝光,使光掩膜与物体同步移动于既定扫描方向而将形成于该光掩膜的图案转印在该物体上的区划区域,该物体的移动,是为了对次一区划区域进行扫描曝光,具备光掩膜载台,能在保持该光掩膜的状态下至少移动于该扫描方向;物体载台,能在保持该物体的状态下至少移动于该扫描方向;干涉仪及编码器,用以测量该光掩膜载台在扫描方向的位置信息;以及控制装置,至少在对各区划区域的扫描曝光中,根据该编码器的测量值,以及该编码器与该干涉仪所测得的该光掩膜载台的位置信息而决定出的该编码器的测量值修正信息,据以控制该光掩膜载台的移动,并根据该步进扫描方式的曝光动作中所储存的该干涉仪及该编码器的测量值,据以校正该修正信息。由此,控制装置在将图案依序转印至物体上的复数个区划区域的步进扫描方式曝光动作时,在对各区划区域的扫描曝光中,根据编码器的测量值,以及编码器与该干涉仪所测得的该光掩膜载台的位置信息而决定出的该编码器的测量值修正信息,据以控制该光掩膜载台的移动,并根据步进扫描方式的曝光动作中所储存的干涉仪及编码器的测量值,据以校正修正信息。因此,对于该校正后的物体上各区划区域进行扫描曝光时(图案转印时) 的光掩膜载台的移动,能根据已使用校正后的修正信息而予修正的编码器的测量值,即根据短期稳定性、直线性及长期稳定性良好的光掩膜载台在扫描方向的位置信息的测量值, 而能进行高精度的控制。由此,能通过扫描曝光而将形成于光掩膜的图案高精度的转印至该物体上的复数个区划区域。本发明,依第17的观点观之,是一种曝光装置(第3曝光装置),用以使光掩膜与物体相对于照明光同步移动于既定扫描方向,以将形成于该光掩膜的图案转印至该物体上,具备光掩膜载台,能在保持该光掩膜的状态下至少移动于该扫描方向;物体载台,能在保持该物体的状态下至少移动于该扫描方向;干涉仪及编码器,用以测量该光掩膜载台在扫描方向的位置信息;校正装置,分别将该光掩膜载台定位于复数个位置,边以既定的取样间隔来取得该干涉仪及编码器的测量值,然后根据所取得的测量值来实施校正动作,以修正用以显示该干涉仪与编码器的测量值关系的图形信息的定标(scaling)误差;该复数个位置包含第1位置与第2位置,该第1位置与第2位置,指曝光对象的光掩膜图案区域被该照明光所照射的范围的两端位置;以及控制装置,根据该编码器的测量值与该修正后的图形信息,来控制在该图案转印时该光掩膜载台的移动。由此,能通过校正装置,以能忽视该干涉仪测量值的短期变动的低速将光掩膜载台驱动于扫描方向,使用干涉仪及编码器来测量光掩膜载台在扫描方向的位置信息,并根据干涉仪及编码器的测量结果来决定出使用干涉仪的测量值来修正编码器的测量值时的校正信息,即所决定的修正信息,使用测量值的直线性及长期稳定性优于编码器的干涉仪的测量值,以对于测量值的短期稳定性优于该干涉仪的编码器定出用来修正其测量值的修正信息。又,通过控制装置,根据编码器的测量值与修正信息,来控制图案转印时该光掩膜载台的移动。因此,能根据已使用修正信息而予修正的编码器的测量值,即根据短期稳定性、直线性及长期稳定性良好的光掩膜载台在扫描方向的位置信息的测量值,而能高精度的控制图案转印时光掩膜载台在扫描方向的移动。由此,能高精度的将形成于光掩膜的图案藉扫描曝光而予转印至物体上。本发明,依第18的观点观之,是一种曝光装置(第4曝光装置),用以使光掩膜与物体相对于照明光同步移动于既定扫描方向,以将形成于该光掩膜的图案转印至该物体上,具备光掩膜载台,能在保持该光掩膜的状态下至少移动于该扫描方向;物体载台,能在保持该物体的状态下至少移动于该扫描方向;干涉仪及编码器,用以测量该光掩膜载台在该扫描方向的位置信息;校正装置,分别将该光掩膜载台定位于复数个位置,边以既定的取样间隔来取得该干涉仪及编码器的测量值,然后根据所取得的测量值来实施校正动作, 以修正用以显示该干涉仪与编码器的测量值关系的图形信息的定标误差;该复数个位置包含第1位置与第2位置,该第1位置与第2位置,是指曝光对象的光掩膜图案区域被该照明光所照射的范围的两端位置;以及控制装置,根据该编码器的测量值与该修正后的图形信息,来控制在该图案转印时该光掩膜载台的移动。本发明,依第19的观点观之,是一种曝光装置,通过光掩膜以能量束使物体曝光, 具备上述的移动体驱动系统;通过所述移动体驱动系统来驱动保持所述物体的移动体, 以使所述能量束与所述物体相对移动。本发明,依第20的观点观之,是一种曝光装置,通过光掩膜以能量束使物体曝光, 具备移动体,能保持所述物体在既定面内移动;编码器,将光束照射于与所述既定面平行配置的格子部,以测量所述移动体的位置信息;与所述编码器不同的另一测量装置,用以测量所述移动体的位置信息;以及控制装置,在所述物体的曝光动作中,根据所述编码器的测量信息控制所述移动体的驱动,且将用于所述移动体的驱动的位置信息,从所述编码器与所述另一测量装置中的一方切换至另一方。本发明,依第21的观点观之,是一种曝光方法,通过光掩膜以能量束使物体曝光, 具备使用上述述的移动体驱动方法来驱动保持所述物体的移动体,以使所述能量束与所述物体相对移动。本发明,依第22的观点观之,是一种曝光方法,通过光掩膜以能量束使物体曝光, 包含以能在既定面内移动的移动体保持所述物体的动作;在所述物体的曝光动作中,通过将光束照射于与所述既定面平行配置的格子部的编码器测量所述移动体的位置信息,且根据所测量的位置信息控制所述移动体的驱动的动作;在所述曝光动作中,能将用于所述移动体的驱动的位置信息,从所述编码器与不同于所述编码器的另一测量装置中的一方切换至另一方,所述另一测量装置用以测量所述移动体的位置信息。本发明,依第23的观点观之,是一种组件制造方法,包含光刻步骤,使用上述述的曝光方法来于感光物体转印图案。依此,可通过校正装置,分别将光掩膜载台定位于复数个位置,边以既定的取样间隔来取得干涉仪及编码器的测量值,然后根据所取得的测量值来实施校正动作,以修正用以显示干涉仪与编码器的测量值关系的图形信息的定标误差;该复数个位置包含第1位置与第2位置,该第1位置与第2位置,是指照明光通过曝光对象的光掩膜图案区域的范围的两端位置。即,对于测量值的直线性及长期稳定性优于编码器的干涉仪、以及测量值的短期稳定性优于该干涉仪的编码器,以图形信息来显示其测量值关系,并予以修正图形信息中的定标误差。又,控制装置根据编码器的测量值与修正后的图形信息,来控制图案转印时光掩膜载台的移动。因此,根据修正后的图形信息与编码器的测量值,能高精度的控制光掩膜载台在图案转印时于扫描方向的移动。


图1是一实施方式的曝光装置的概略构成图。图2是将标线片载台连同用来测量该标线片载台的位置信息的编码器系统及干涉仪系统一并显示的俯视图。图3是将晶片载台连同用来测量该晶片载台的位置信息的编码器及干涉仪一并显示的俯视图。图4是从图1中取出用来测量晶片载台WST位置的Y干涉仪及Z干涉仪、和其附近的构成部分来予以显示。图5是编码器的一构成示例图。图6是与一实施方式的曝光装置的载台控制相关的控制系统方块图,其中已省略一部分图示。图7是位置测量系统的切换动作的说明图(其1)。图8是位置测量系统的切换动作的说明图(其2)。图9是为了曝光目的而进行的标线片载台的扫描动作的说明图,该动作,包含标线片侧的编码器的切换(测量值的承接)动作(第1图)。图10是为了曝光目的而进行的标线片载台的扫描动作的说明图,该动作,包含标线片侧的编码器的切换(测量值的承接)动作(第2图)。图11是为了曝光目的而进行的标线片载台的扫描动作的说明图,该动作,包含标线片侧的编码器的切换(测量值的承接)动作(第3图)。图12(A)是当晶片的中央附近位在投影单元正下方时的晶片载台状态图;图 12(B)是当晶片的中心与外周的中间附近位在投影单元正下方时的晶片载台状态图。图13㈧是当晶片的+Y侧的边缘附近位在投影单元PU正下方时的晶片载台状态图;图13⑶是当晶片中相对X轴及Y轴成45°方向(由晶片的中心观之)的边缘附近位在投影单元PU正下方时的晶片载台状态图。图14是当晶片的+X侧的边缘附近位在投影单元PU正下方时的晶片载台状态图。
图15是表示编码器^A1JeB1Jec1的第1校正动作所得到的图例的线图。图16是用以校正编码器^A1JeB1Jec1的测量误差的校正、即第2校正动作的说明图(其1)。图17是用以校正编码器^A1JeB1Jec1的测量误差的校正、即第2校正动作的说明图(其2)。图18是用以表示通过第2校正动作而得到的图例的图。图19是用以表示通过用以校正编码器^A1JeB1Jeci的测量误差的第2校正动作而得到的图例的图。图20是编码器50A 50D的测量值的长期校正动作(第1校正动作)的说明图, 即是移动标尺的格子间距的修正信息、及格子变形的修正信息的取得动作的说明图。图21是由编码器的测量误差的逐次校正所得到的干涉仪及编码器的测量值的图。图22是在变形例中,移动标尺44A、44C的格子间距的修正信息的取得动作说明图 (其 1)。图23是在变形例中,移动标尺44A、44C的格子间距的修正信息的取得动作说明图 (其 2)。图对是在变形例中,移动标尺44B、44D的格子线变形(格子线的扭曲)的修正信息的取得动作说明图。图25是晶片载台用的编码器系统的变形例的图。图沈是晶片载台用的编码器系统的另一变形例的图。图27是液浸曝光装置所用的晶片载台的变形例的图。
具体实施例方式以下,根据图1至图21来说明本发明的一实施方式。图1所示,是一实施方式的曝光装置100的概略构成。该曝光装置100是步进扫描方式的扫描型曝光装置,换言之,是所谓扫描步进机。如后述,本实施方式设有投影光学系统PL,在以下的说明中,将与该投影光学系统PL的光轴AX平行的方向设为Z轴方向;将在与Z轴方向正交的面内标线片与晶片相对扫描的方向设为Y轴方向;将与Z轴及Y轴正交的方向设为X轴方向,绕X轴、Y轴、及Z轴旋转(倾斜)的方向,分别设为ΘΧ、0y、及 θ ζ方向。曝光装置100具备照明系统10,其包含光源及照明光学系统,用以将照明光(曝光用光)IL照明于标线片R1、R2 ;标线片载台RST,用以保持标线片R1、R2 ;投影单元PU;晶片载台装置12,其包含供装载晶片W的晶片载台WST ;主体BD,其搭载着标线片载台RST及投影单元PU等;以及这些控制系统等。照明系统10,通过照明光IL来以大致均一照度照明由未图示标线片遮板(屏蔽系统)所限定的于标线片Rl或R2上延伸于X轴方向的狭缝状照明区域IAR(参照图2)。此处所使用的照明光IL,举一例,是ArF准分子激光(波长193nm)。上述的标线片载台RST,是通过设于其底面的未图示空气轴承等,例如通过数μπι 左右的间距支撑于构成后述第2柱架(column) 34的顶板的标线片底座36上。标线片载台RST,虽可使用例如能保持1片标线片的标线片载台、或是能独立的各保持1片标线片并移动的双载台式的标线片载台,但本实施方式中,使用能同时保持2片标线片的双载台式的标线片载台。此处的标线片载台RST,能通过包含线性马达等的标线片载台驱动系统11,而在垂直于投影光学系统PL的光轴AX的XY平面内进行2维方向(X轴方向、Y轴方向、及θ z 方向)的微幅驱动。又,标线片载台RST可通过标线片载台驱动系统11,以指定的扫描速度在标线片底座36上驱动于既定的扫描方向(此处是指图1中纸面的左右方向、即Y轴方向)。此外,标线片载台RST的构造,也可为例如日本特开平8-130179号公报(对应美国专利第6,721,034号)所揭示的粗微动构造,其构造并不局限于本实施方式(图2等)。标线片载台RST在XY平面(移动面)内的位置信息,在图1所示的构成中,可由包含标线片Y激光干涉仪(以下称为“标线片Y干涉仪”)16y等的标线片干涉仪系统、及包含编码器读头(以下简称“读头”)26~ ^A3JeC1 ^C3和移动标尺24A等的编码器系统来测量。此外,在图1中,虽显示标线片R1、R2的上端面是外露于移动标尺24A的上方的状态,但此图示方式是为了说明的便利起见,与实际情况有异。此处,针对于测量标线片载台RST及其XY平面(移动面)内的位置的标线片干涉仪系统及编码器系统的构成等,予以进一步详述。如图2所示,在标线片载台RST的中央部形成有一在Y轴方向(扫描方向)呈细长状(俯视时,亦即由上方观之)的矩形的凹部22。在凹部22的内部底面,有2个大致呈正方形的开口(未图示)以并排于Y轴方向的方式而形成,标线片R1、标线片R2以各自覆于上述开口的状态并排配置于Y轴方向。标线片R1、R2,分别通过设置在凹部22的内部底面的2个开口的X轴方向两侧的吸附机构(未图示),例如真空夹具,而各以真空方式来吸附。又,在标线片载台RST上面的+X侧端部及-X侧端部,设有一对以Y轴方向为长边方向延伸的移动标尺24A、24B,其配置位置,由通过照明区域IAR的中心(本实施方式中, 在投影光学系统PL的第1面(物体面)内与其光轴AX大致一致)的平行于Y轴方向的中心轴观之,呈现对称的关系。移动标尺24A、24B由同一材料(例如陶瓷或低热膨胀的玻璃等)所构成,在其表面,形成有以Y轴方向作为周期方向的反射型的绕射光栅,相对上述中心轴为对称配置的关系。移动标尺24A、24B通过真空吸附(或板弹簧)等,以不会发生局部伸缩的状态而被固定在标线片载台RST。在移动标尺24A、24B的上方(+Z侧),如图2所示,设有2对与移动标尺24A、24B 彼此对向的用来测量Y轴方向位置的读头和,相对上述中心轴而成为对称配置的关系(参照图1)。其中的读头^A1JeB1,位在通过前述照明区域IRA中心的X 轴方向的直线(测量轴)上,并将其测量中心配置于大致一致的位置。又,读*^A2、26B2 被配置于从读头^A1JeB1算起在+Y方向离开同一距离的位置处,且与读头^A1JeB1配置在同一面上。再者,在与读头沈~、26&的同一面上设有一对读头^A3、26B3,其与上述读头 26A2,26B2成为对称于上述测量轴的关系,并分别位于从读头算起在-Y方向离开同一距离的位置处。上述3对的读头^A1JeB1JAe2JeideAy^B3,分别通过未图示的支撑构件而被固定于标线片底座36。又,在标线片载台RST上面的移动标尺24A的-X侧,设有以Y轴方向为长边方向的移动标尺观,其与移动标尺24A并排配置,通过例如真空吸附(或板弹簧)等方式而被固定于标线片载台RST。该移动标尺观的构成,以与移动标尺24A、24B相同的材料(例如陶瓷、或低热膨胀的玻璃等)构成,且在其上面形成有以X轴方向为周期方向的反射型绕射光栅,其在Y轴方向横越大致全长而形成。在移动标尺观的上方(+Z侧),如图2所示般,配置有2个与移动标尺观彼此对向的用来测量X轴方向位置的读头26(^、26(2(参照图1)。其中的读头^C1,大致位在通过前述照明区域IAR的中心的X轴方向的直线(测量轴)上。又,读头^C2被配置于从读头 26Q算起在+Y方向离开既定距离的读头^A2的附近位置,且与读头^^、26A2等配置在同
一面上。再者,在读头^C1的同一面上,以与读头^C2对称于上述测量轴的位置关系,在距离读头^C1于-Y方向离开既定距离的处配置有读头^C3。上述3个读头沈(;、26(2、26(3, 分别通过未图示的支撑构件而被固定于标线片底座36。此外,本实施方式中的9个读头 26A! ^A3JeB1 、及^C1 ^C3,虽是通过未图示的支撑构件来固定于标线片底座 36,但并不局限于此,例如,也可通过防振机构,而设置在于地板F或底面平板BS所设置的框架(frame)构件。在本实施方式中,通过读头ZeA1JeB1与对向的移动标尺24A、24B,构成一对用以测量标线片载台RST在Y轴方向的位置(Y位置)的Y线性编码器。在以下为方便起见,而对这些Y线性编码器使用相同于各读头的符号,而记述成Y线性编码器^A1JeB115Y线性编码器^A1、26B!的测量轴,由上述照明区域IRA的中心(在本实施方式中, 与投影光学系统PL的光轴AX —致)算起,在X轴方向具有相同距离,在例如曝光等之际, 可根据Y线性编码器沈~、26&的测量值的平均值,来测量标线片载台RST的Y位置。艮口, 以Y线性编码器^A1及B1来测量标线片载台RST的位置信息时,其实质的测量轴,通过投影光学系统PL的光轴AX上。因此,在曝光等之际,能使用Y线性编码器^A1JeB1,在没有阿贝误差的情况下测量标线片载台RST的Y位置。再者,根据Y线性编码器沈A1^eB1的测量值,而可测量标线片载台RST在θ ζ方向的旋转信息(偏摇(yawing))。同样的,通过读头^A2JeA3与对向的移动标尺24A,来分别构成用来测量标线片载台RST的Y位置的Y线性编码器。同样的,通过读头^4、26B3、与对向的移动标尺MB, 来分别构成用来测量标线片载台RST的Y位置的Y线性编码器。在以下为便利起见,而对这些Y线性编码器各使用与读头相同的符号,记述成Y线性编码器^A2、26A3J6&、26B3。又,通过读头^C1、与对向的移动标尺28构成X线性编码器,用以在通过上述照明区域IAR的中心的X轴方向的平行直线(测量轴),测量标线片载台RST在X轴方向的位置 (X位置)。在以下为便利起见,而对该X线性编码器使用与该读头相同的符号,记述成X线性编码器^Cp因此,在曝光等之际,可使用X线性编码器^C1,在没有阿贝误差的情况下测量标线片载台RST的X位置。同样的,通过读头^C2、26C3与移动标尺观,来分别构成用来测量标线片载台RST 的X位置的X线性编码器。在以下为便利起见,而对其等的X线性编码器各使用与其读头相同的符号,而记述成X线性编码器^C2、26C3。上述9个线性编码器(以下,也有仅称为“编码器”者)26Ai ^C3的测量值,被传送至主控制装置20 (参照图1及图6)。
此外,上述3个移动标尺24六、248、观在¥轴方向的长度(在移动标尺24A、24B中相当于绕射光栅的形成范围,在移动标尺28中相当于绕射光栅的宽度)被设定成,至少足以在各通过标线片Rl、R2而对晶片W进行扫描曝光时,能涵盖标线片载台RST在Y轴方向的移动行程(移动范围)的全域(在本实施方式中,至少在扫描曝光中、与扫描曝光前后的标线片载台RST的加减速及同步整定的期间当中,能使例如3个为一组的读头^^”268” 260,(1 = 1 3)中有至少1组的读头(测量光束)不会离开对应的移动标尺(绕射光栅), 换言之,不会成为无法测量的状态)。又,上述3个移动标尺24A、24BJ8在X轴方向的宽度(在移动标尺24A、24B相当于绕射光栅的宽度,在移动标尺观相当于绕射光栅的形成范围)也同样的被设定成,能涵盖标线片载台RST在X轴方向的移动行程的全域(本实施方式中,使例如3个为一组的读头^AiJeBiJeci (i = 1 3)中有至少一组读头(测量光束) 不会离开对应的移动标尺(绕射光栅),换言之,不会成为无法测量的状态)。由于标线片载台RST可朝02方向微幅旋转,因此当然上述3个移动标尺24々、248、观也必须考虑θζ 方向的旋转范围来设定在X轴及Y轴方向的大小(长度、宽度),以避免因此旋转而至少造成3个线性编码器^A1JeB1JeC1无法测量。再者,在本实施方式中,于使用标线片R2的扫描曝光时,可通过6个线性编码器 ZeA1JeA2 JeB1JeB2 Jec1Jec2,来测量标线片载台RST的位置信息(至少包含χ轴及Υ轴方向的位置与θζ方向的旋转信息)。又,于使用标线片Rl的扫描曝光时,可通过6个线性编码器^v1JeA3JeBr ^B3Jec1Jec3,来测量标线片载台RST的位置信息(至少包含χ 轴及υ轴方向的位置与θζ方向的旋转信息)。又,在本实施方式中,于相对上述照明区域 IAR的+Y侧或-Y侧进行标线片Rl、R2的更换,或者,在-Y侧进行标线片Rl的交换、在+Y 侧进行标线片R2的交换;在该交换位置中,同样可通过至少3个线性编码器^A2、26B2J6C2 或线性编码器^A3、26B3J6C3,来测量标线片载台RST的位置信息。再者,在本实施方式中,标线片载台RST用的编码器系统的构成中,包含3个移动标尺24A、24B、28,与具有9个读头^A1 ^A3、26Bi ^ 、26(^ ^C3的读头单元,但编码器系统的构成并不局限于图2所示,例如,读头单元也可仅具有3个读头^A1JeB1Jec115 此情形下,当在上述标线片更换位置、或是至该更换位置的途中不能以线性编码器沈~、 266^26^来测量晶片载台RST的位置时,也能使用例如其它的测量装置或是上述标线片干涉仪系统的至少一部分,来进行标线片载台RST的位置测量。又,在本实施方式中,通过吸附机构或板弹簧等,而将3个移动标尺24Α、24Β、28固定在标线片载台RST,但并不限于此, 也能使用例如螺丝锁定方式、或是直接将绕射光栅形成于标线片载台RST。再者,在本实施方式中,将移动标尺24A、24BJ8设置在标线片载台RST的上面(照明系统侧),但也可设置在其下面(投影光学系统侧);也可将上述读头单元(编码器读头)与移动标尺24A、24B、 28的配置采相反方式,即将上述读头单元设置在标线片载台RST,将移动标尺24A、24B、28 配置在主体侧。上述的标线片干涉仪系统,如图2及图6所示般,具备标线片Y干涉仪16y与标线片X干涉仪16X。标线片X干涉仪16x如图2所示,包含传感器读头19A(在图1中并未图示),与固定在标线片载台RST的+X侧端面的光学系统单元19B。传感器读头19A被固定在标线片底座36上面,在其内部安装有光源、光学系统、2个检光元件(偏光元件)、及2个光电转换元件等。光源利用季曼(zeeman)效果的双频激光。来自该光源的激光束,通过光学系统而使截面形状在水平方向扩大,如图2所示般,从传感器读头19A输出已扩大其截面形状的光束BM。接着,在光学系统单元19B内将光束BM 分割为二,一边的分割光束,射入未图示的第1分束器而分割成测定光BM1与参考光,测定光BM1在平面镜21的反射面反射,且参考光在例如标线片载台RST的反射面反射而回到第 1分束器,经同轴合成而由光学单元19B输出。同样的,另一方的分割光束射入未图示的第 2分束器而分割成测定光BM2与参考光,测定光BM2在平面镜21的反射面反射,且参考光在例如标线片载台RST的反射面反射而回到第2分束器,经同轴合成而由光学系统单元19B 输出。尽管并未图示,本实施方式中的平面镜21,固定在上述主体BD的一部分,例如固定在第2柱架34的标线片底座36、或是后述的第1柱架32的镜筒固定座(主框架)38。又,分别来自光学系统单元19B内的第1及第2分束器的返回光(上述的测定光 BMp BM2与各自的参考光的合成光)返回至传感器读头19A。在传感器读头19A的内部, 这些返回光通过光学系统而分别射入个别的检光元件,通过2个光电转换元件个别接收从各检光元件输出的干涉光,然后将对应于各干涉光的干涉信号传送至未图标的信号处理系统。该信号处理系统,根据来自各光电转换元件的干涉信号,使测定光的相位相对参考光的相位产生都卜勒偏移(Doppler shift),利用相位的改变,以外差方式(heterodyne)来检测因该相位改变产生的干涉信号的变化。接着,信号处理系统根据检测出的干涉信号的变化,以例如0. 5 Inm左右的解析能力,持续检测在测定光BM1JM2的照射点中,以平面镜21 为基准的X轴方向的位置信息,即检测标线片载台RST在测定光BMJM2的照射点的X位置 fn息ο标线片Y干涉仪16y所使用的光源,与标线片X干涉仪16x相同,使用有季曼效果的双频激光的迈克生型外差式激光干涉仪。该标线片Y干涉仪16y,以固定在镜筒(用以构成投影单元PU) 40的侧面的固定镜14 (参照图1)作为基准,以例如0. 5 Inm左右的解析能力,持续的通过固定在标线片载台RST的移动镜(平面镜或后向反射镜等)15来检测标线片载台RST的Y位置。此外,标线片Y干涉仪16y的至少一部分(例如,光源除外的光学单元)固定在例如标线片底座36。来自标线片X干涉仪16x的X位置双轴信息、以及来自标线片Y干涉仪16y的Y 位置信息,被送至主控制装置20 (参照图6)。此外,上述的标线片干涉仪系统所具备的X干涉仪16x中,虽包含传感器读头19A 与设置在标线片载台RST的光学系统单元19B,但X干涉仪16x的构成方式并不局限于此, 例如也能将其配置成与光学系统单元19B及平面镜21相反的方式,即,也可由配置在标线片底座36的光学系统单元19B,来将测定光照射于在标线片载台RST侧面延Y轴方向形成的反射面(相当于平面镜21)。再者,传感器读头19A虽然设置在标线片底座36,但也能将其至少一部分设置在有别于主体BD的另一框架构件。又,在本实施方式中,标线片干涉仪系统的干涉仪用反射面,是使用固定在标线片载台RST端部的前述的移动镜15等,但也能取代于此,例如在标线片载台RST的端面(侧面)施以镜面加工,而使用所取得的反射面亦可。再者,在本实施方式中,Y干涉仪16y有1条测距轴、X干涉仪16x有2条测距轴,然而, 也可使测距轴的条数与其X轴方向及Y轴方向相反,或是各具有2条以上。特别是后者的情形,也能以Y干涉仪16y来测量标线片载台RST在ΘΧ方向的旋转信息(纵摇pitChing),并以X干涉仪16x来测量标线片载台RST在θ y方向的旋转信息(横摇rolling)。在本实施方式的曝光装置100中,标线片干涉仪系统16x、16y的测量值,如后述, 仅是用于编码器^A1JeB1Jeci等的测量值的校正(Calibration)之际,在曝光动作时的标线片载台RST的位置,根据标线片侧的编码器的测量值来控制。特别是,在扫描曝光中的标线片载台RST的位置,由主控制装置20根据编码器^A1JeB1Jec1的测量值来管理。因此,由图2也能轻易想象得知,在曝光动作之际,必须要进行编码器的切换(测量值的承接) 以用于标线片载台RST的位置控制,关于此点且容待后述。在标线片载台RST的上方,在X轴方向相隔既定的距离,设有一对以使用曝光波长的光的TTRCThrough The Reticle)方式的对准系统所构成的标线片对准系统13A、13B (在图1并未图示,参照图6),以通过投影光学系统PL来同时检测晶片载台WST上的一对基准标记、与对应于此的标线片上的一对对准标记。上述一对的标线片对准系统13A、13B,可使用例如日本特开平7-176468号公报(对应美国专利第5,646,413号说明书)等所揭示的构成。投影单元PU,位在标线片载台RST的(图1)下方,由主体BD的一部分所保持。 该主体BD中具备第1柱架32,其被装设于无尘室的地面F上所设置的框架铸体(gtame caster) FC上;以及第2柱架34,其被固定于该第1柱架32之上。框架铸体FC中具备有,水平置放于地面F上的底面平板BS,以及固定在该底面平板BS上的复数根(例如3根或4根,但在图1中省略了位居纸面深侧者)的脚部39。第1柱架32具有镜筒固定座(main frame) 38,其通过被个别固定在脚部39 (用来构成上述框架铸体FC的脚部39)上端的复数个(例如3个或4个)第1防振机构58,而以大致水平的状态被保持着。在镜筒固定座38的大致中央部位形成有未图示的圆形开口,投影单元PU由上方插入该圆形开口内;投影单元PU通过设在其外周部的凸缘FLG而被镜筒固定座38所保持。 在镜筒固定座38的上面,于外绕投影单元PU的位置,固定有复数根(例如3根)的脚部 41 (但在图1中省略了位居纸面深侧者)的一端(下端)。上述脚部41的另一端(上端) 的面,各位在大致同一水平面上,上述标线片底座36被固定在上述脚部41。如上所述,通过复数根脚部41而将标线片底座36保持成水平状态。即,通过标线片底座36、与支撑标线片底座36的复数根脚部41来构成第2柱架34。在标线片底座36的中央部位形成有作为照明光IL的通路的开口 36a。投影单元PU包含设有该凸缘FLG的圆筒状的镜筒40 ;以及由该镜筒40所保持的复数个光学元件所构成的投影光学系统PL。在本实施方式中,虽然将投影单元PU装载于镜筒固定座38上,但也可如国际公开第2006/038952号小册子所揭示般,将投影单元PU悬吊支撑于配置在投影单元PU上方的未图标主体框架构件或标线片底座36等。投影光学系统PL使用折射光学系统,其构成中所包含的复数片透镜(透镜元件) 例如沿与Z轴方向平行的光轴AX而排列。该投影光学系统PL,例如是两侧远心且具有既定投影倍率(例如1/4倍、1/5倍、或1/8倍等)。由此,当以来自照明系统10的照明光IL来照明照明区域IAR时,通过投影光学系统PL的第1面(物体面)与其图案面大致配置成一致的标线片(Rl或R2)的照明光IL,使该照明区域IAR内的标线片R的电路图案缩小像(电路图案的一部分缩小像)通过投影光学系统PL(投影单元PU)形成于区域(曝光区域);该区域与配置于其第2面(像面)侧、表面涂布有光刻胶(感光剂)的晶片W上的前述照明区域IAR共轭。又,借着标线片载台RST与晶片载台WST的同步驱动,使标线片相对照明区域IAR(照明光IL)而移动于扫描方向(Y轴方向),且使晶片W相对曝光区域(照明光IL) 而移动于扫描方向(Y轴方向),由此而进行晶片W上的1个照射区域(区划区域)的扫描曝光,以将标线片的图案转印至该照射区域。即,本实施方式中,通过照明系统10、标线片、 及投影光学系统PL,而在晶片W上产生图案,借着照明光IL对晶片W上的感应层(光刻胶层)的曝光而在晶片W上形成该图案。晶片载台装置12具备载台底面71,其通过配置在底面平板BS上的复数个(例如3个或4个)第2防振机构(未图示),而以大致成水平的状态被支撑着;配置在该载台底面71上的晶片载台WST ;以及用以驱动该晶片载台WST的晶片载台驱动系统27等。载台底面71,由亦称为固定座的板状构件所构成,其上面被修整成具有极高的平坦度,成为晶片载台WST在移动之际的引导面。晶片载台WST具有本体部与其上部的台部,可通过包含例如线性马达或音圈马达等的晶片载台驱动系统27,将其驱动于X轴方向、Y轴方向、Z轴方向、ΘΧ方向、9y方向、 及θζ方向的6个自由度方向。此外,晶片载台WST所能采用的构造方式尚可举例为,使其具备可通过线性马达等而至少驱动于X轴方向、Y轴方向、及θ ζ方向的晶片载台本体;以及,位在该晶片载台本体上,可由音圈马达等而使其至少能于Z轴方向、ΘΧ方向、及方向进行微幅驱动的晶片台。在上述晶片载台WST上(更正确而言是上述台部上),通过未图示的晶片保持具而装载晶片W;晶片W通过例如真空吸附(或静电吸附)等方式而被固定于晶片保持具。又,晶片载台WST在XY平面(移动面)内的位置信息,可由包含图1所示的读头单元46B、46C、46D及移动标尺44B、44C、44D等的编码器系统,与晶片激光干涉仪系统(以下称为“晶片干涉仪系统”)18来分别测量。以下,针对晶片载台WST使用的编码器系统及晶片干涉仪系统18的构成等予以详述。在晶片载台WST的上面,如图3所示,以外绕晶片W的方式而固定有4个移动标尺 44A 44D。更详细而言,移动标尺44A 44D由同一材料(例如陶瓷或低热膨胀的玻璃等)而构成,在其表面形成有以长边方向为周期方向的反射型绕射光栅。该绕射光栅,以例如4μπι 138nm间的间距来形成,在本实施方式采用Ιμπι的间距。再者,在图3中为了图示的便利起见,而将格子间距图示的较实际要大的多。此点在其它图亦是相同。移动标尺44Α及44C,长边方向与图3中的Y轴方向一致,相对通过晶片载台 WST(移动镜17X、17Y不予考虑)的中心的平行于Y轴方向的中心线配置成对称,形成于移动标尺44A、44C的各绕射光栅,也相对该中心线配置成对称。这些移动标尺44A、44C,由于其绕射光栅是周期的排列于Y轴方向,因此用来测量晶片载台WST在Y轴方向的位置。又,移动标尺44B及44D,长边方向与图3中的X轴方向一致,相对通过晶片载台 WST(移动镜17X、17Y不予考虑)的中心的平行于X轴方向的中心线配置成对称,形成于移动标尺44B、44D的各绕射光栅,也相对该中心线配置成对称。这些移动标尺44B、44D,由于其绕射光栅是周期性的排列于X轴方向,因此用来测量晶片载台WST在X轴方向的位置。再者,图1中的晶片W,呈现由移动标尺44C的上方外露的状态,但此为图方便的权宜作法,实际上,移动标尺44A 44D的上面与晶片W的上面大致等高,或是位在其上方。另一方面,由图1及图3所示可以了解,以从四方围绕投影单元PU最下端部周围的状态,与各自对应的移动标尺44A 44D交叉配置有4个编码器单元(以下简称为“读头单元”)46A 46D。这些读头单元46A 46D,实际上是通过支撑构件而以悬吊支撑的状态固定于镜筒固定座38,但在图1中为避免图面过于复杂而省略其图示。读头单元46A、46C,于投影单元PU的-X侧、+X侧,以与对应的移动标尺44A、44C 的长边方向(图3的Y轴方向)正交的X轴方向为长边方向、且相对投影光学系统PL的光轴AX配置成对称。又,读头单元46B、46D,于投影单元PU的+Y侧、-Y侧,以与对应的移动标尺44B、44D的长边方向(图3的X轴方向)正交的Y轴方向为长边方向、且相对投影光学系统PL的光轴AX配置成对称。各读头单元46A 46D可为例如单一的读头,或具有复数个在排列时几乎没留下空隙的读头,在本实施方式中,例如以图3中的读头46C为代表而揭示者,具有沿其长边方向以既定间隔而配置的复数个例如11个读头48a 48k。此外,在读头单元46A 46D各自配置复数个读头时,其间的配置间隔,须使相邻的2个读头不会离开其所对应的移动标尺(绕射光栅),换言之,以较绕射光栅在与移动标尺长边方向(绕射光栅的排列方向)的宽度小的间隔来配置复数个读头。读头单元46A,与移动标尺44A —起构成用来测量晶片载台WST的Y位置的具备多眼(读头48a 48k,更正确而言系11眼)的Y线性编码器50A(参照图6)。又,读头单元46B,与移动标尺44B —起构成用来测量晶片载台WST的X位置的11眼的X线性编码器 50B (参照图6)。又,读头单元46C,与移动标尺44C 一起构成用来测量晶片载台WST的Y位置的11眼的Y线性编码器50C(参照图6)。又,读头单元46D,与移动标尺44D —起构成用来测量晶片载台WST的X位置的11眼的X线性编码器50D(参照图6)。编码器50A 50D 的测量值被供应至主控制装置20。此外,本实施方式中的4个读头单元46A 46D悬吊支撑于镜筒固定座38,但若图1的曝光装置100的构成如前所述,将投影单元PU悬吊支撑于主框架构件或标线片底座36时,则也能将读头单元46A 46D与投影单元PU成为一体来悬吊支撑,或也能以独立于投影单元PU的方式,将4个读头单元46A 46D设置于主框架构件,或将这些设置于悬吊支撑于标线片底座36的测量用框架。又,晶片载台WST的位置信息,如图1所示般,由晶片干涉仪系统18将测定光照射至固定于晶片载台WST的移动镜17、43,而能持续以例如0. 5 Inm左右的分辨率来检测之。晶片干涉仪系统18的至少一部分(例如,光源除外的光学单元),以悬吊支撑于镜筒固定座38的状态而被固定。此外,也可使晶片干涉仪系统18的至少一部分与投影单元PU成为一体来悬吊支撑;或也可设置在上述的测量用框架。此处,晶片载台WST上,如图3所示般,实际上虽设有具备与扫描方向(Y轴方向) 正交的反射面的Y移动镜17Y、以及具备与非扫描方向(X轴方向)正交的反射面的X移动镜17X,但在图1之中,仅以移动镜17作为代表。上述的晶片干涉仪系统18,如图3所示,包含晶片Y干涉仪18Y、2个晶片X干涉仪 ISX1及X2、以及2个Z干涉仪18 及Z2,而有5个干涉仪。上述5个干涉仪18Y、ISX1USX2, ISZ1USZ2,利用有季曼效果的双频激光的迈克生型的外差式激光干涉仪。其中的晶片Y干涉仪18Y,如图3所示,是使用具有复数个测距轴的多轴干涉仪,该复数个测距轴包含的2个测距轴,相对通过投影光学系统PL的光轴AX (上述曝光区域的中心)及对准系统ALG的检测中心的Y轴的平行轴(中心轴)成对称。晶片X干涉仪18 ,沿着通过投影光学系统PL的光轴AX的平行于X轴的测距轴, 将测定光照射至移动镜17X。由该晶片X干涉仪18 来测量移动镜17X的反射面的位置信息(以固定在投影单元PU的镜筒40侧面的X固定镜的反射面为基准),以作为晶片载台 WST的X位置。晶片X干涉仪ISX2,沿着通过对准系统ALG的检测中心的平行于X轴的测距轴,将测定光照射在移动镜17X,以测量移动镜17X的反射面的位置信息(以固定在对准系统ALG 侧面的固定镜的反射面为基准),以作为晶片载台WST的X位置。又,在晶片载台WST的本体部的+Y侧的侧面,如图1及图4所示般,通过未图标的动态式支撑机构安装有以X轴方向作为长边方向的移动镜43。在移动镜43的对向处,设有一对用以将测定光照射至该移动镜43、构成干涉仪系统18 —部分的Z干涉仪18&、Z2(参照图3及图4)。更详细而言,由图3及图4可以了解, 移动镜43在X轴方向的长度较移动镜17Y为长,由具有如将长方形与等腰梯形予以一体化的六角形截面形状的构件构成。对该移动镜43的+Y侧的面施以镜面加工,形成了如图4 所示的3个反射面43b、43a、43c。反射面43a,构成移动镜43的+Y侧的端面,与YL平面平行并且朝X轴方向延伸。 反射面43b,构成与反射面43a的+Z侧相邻的面,其平行于一倾斜面(即图4中,在顺时针方向相对)(Z平面以既定角度倾斜的面)且朝X轴方向延伸。反射面43c,构成与反射面43a 的-Z侧相邻的面,且隔着反射面43a设置成与反射面4 成对称。该Z干涉仪I^1USZ2,由图3及图4可以了解,距Y干涉仪18Y的X轴方向的一侧与另一侧隔着大致相等的距离,且配置在较Y干涉仪18Y稍低之处。Z干涉仪18&、ISZ2,如图3及图4所示般,沿着Y轴方向分别将测定光B1、B2投射至反射面43b、43c。在本实施方式,具有各自延伸设置于X轴方向的固定镜47A及固定镜 47B ;该固定镜47A具有能使由反射面4 所反射的测定光Bl大致垂直射入的反射面;该固定镜47B具有能使由反射面43c所反射的测定光B2大致垂直射入的反射面。固定镜47A、47B,例如由设置在镜筒固定座38的同一支撑体(未图示)所支撑。 此外,固定镜47A、47B也可由上述的测量用框架等来支撑。该Y干涉仪18Y,如图3所示般,沿着Y轴方向的测距轴(该测距轴,由通过投影光学系统PL的投影中心(光轴AX,参照图1)的平行于Y轴的直线算起,在-X侧和+X侧各离开同一距离之处)将测定光B4p B42投射至移动镜17Y,然后接收其等的反射光,由此能以固定在投影单元PU的镜筒40侧面的Y固定镜的反射面为基准,检测出晶片载台WST在测定光B4p B42的照射点的Y轴方向的位置信息。此外,图4中,测定光B4p B42代表性的以测定光B4来图示。又,Y干涉仪18Y将一沿着Y轴方向的测距轴的测定光B3投射至固定镜43的反射面43a (该测定光B3于俯视时位在测定光B4pB42的大致中央,于侧视时位在测定光B4pB42 的-Z侧),然后接收反射面43a所反射的测定光B3,由此检测出移动镜43的反射面43a (即晶片载台WST)在Y轴方向的位置信息。主控制装置20根据与Y干涉仪18Y的测定光B4pB42对应的测距轴的测量值的平均值,算出移动镜17Y、即晶片台WTB(晶片载台WST)的Y位置。又,主控制装置20根据移动镜17Y及移动镜43的反射面43a的Y位置,来算出晶片载台WST在θ x方向的位移(纵
摇量)。又,Z干涉仪所投射的测定光B1、B2,分别以既定的入射角(θ/2)射入移动镜43的反射面43b、43c,并由反射面4!3b、43C所反射而垂直的射入固定镜47A、47B的反射面。又,由固定镜47A、47B所反射的测定光Bi、B2,再度于反射面4;3b、43c各自反射, 然后由Z干涉仪来接收。此处,若是将晶片载台WST (即移动镜43)在Y轴方向的位移(移动量)设为⑶’ 在Z轴方向的位移(移动量)设为,则由Z干涉仪ISZ1USA所接收的测定光Bl的光路长变化ALl及测定光Β2的光路长变化Δ L2,可各自由下式(1)、式(2)来表示。
Δ Li—Δ Yo X COS θ - Δ Zo X sin θ......(1)
δ L2 n δ Yo X COS θ - δ Zo X sin θ......(2)因此,根据式(1)、式O),可由下述的式(3)、式(4)来求出κτο Δ^。Δ Zo = (AL2-ALl)/2sin θ......⑶Δ Yo = ( Δ Ll+ Δ L2) /2cos θ......(4)上述的位移Δ Ζο、Δ Υο,各由Z干涉仪182^18 来求出。因此,若将Z干涉仪WZ1 所求出的位移设为Δ MR、Δ ^R,将Z干涉仪18 所求出的位移设为AhL、A^L,并将测定光Bi、B2在X轴方向的距离(间隔)设为D(参照图3)时,则可根据下述的式(5)、 式(6),来求出移动镜43(即晶片载台WST)在θ ζ方向的位移(偏摇量)Δ θ ζ、及移动镜 43(即晶片载台WST)在ey方向的位移(横摇量)Δ θΥοΔ θ ζ = (ΔYoR-ΔYoL)/D......(5)Δ θ y = (Δ ZoL- Δ ZoR) /D......(6)因此,主控制装置20通过上述式⑴至式(6)的使用,可根据Z干涉仪ISZ1USA 的测量结果,来算出晶片载台WST在4个自由度的位移ΔΖο、ΔΥο、Δ θζ、Δ 0y。又,如上述,主控制装置20可根据Y干涉仪18Y的测量结果,求出晶片载台WST在 Y轴方向的位移Δ Y、及晶片载台WST在θ χ方向的位移(偏摇量)Δ θ χ0此外,在图1中,对于X干涉仪ISX1U^C2、干涉仪18Υ、及Z干涉仪18&、18Ζ2,代表性的以晶片干涉仪系统18来表示;对于用来测量X轴方向位置的固定镜与用来测量Y轴方向位置的固定镜,代表性的以固定镜57来表示。又,对于对准系统ALG及固定于此的固定镜,在图1中则是予以省略。在本实施方式中,晶片X干涉仪18 与晶片干涉仪18Y的用途,对于晶片在曝光动作时所用的编码器系统施以校正,且晶片X干涉仪18 与晶片Y干涉仪18Y,用于对准系统ALG的标记检测时。又,晶片Y干涉仪18Y,除了用来测量晶片载台WST的Y位置外,也能测量ΘΧ方向的旋转信息(纵摇)。此外,在本实施方式中,上述晶片干涉仪系统18的X 干涉仪18Χ” 18 及Y干涉仪18Υ的测定光的反射面,虽使用固定在晶片载台WST的移动镜 17X、17Y,但并不局限于此,例如也可对晶片载台WST的端面(侧面)施以镜面加工而形成反射面(相当于移动镜17X、17Y的反射面)。
晶片Y干涉仪18Y、晶片X干涉仪18 及ISX2、及Z干涉仪ISZ1和18 的测量值被供应至主控制装置20。又,在晶片载台WST上设有未图标的基准标记板,其以表面与晶片W等高的状态而被固定。在该基准标记板的表面,形成至少一对用来进行标线片对准的第1基准标记、以及与此等第1基准标记为既定的位置关系的对准系统ALG基线测量用第2基准标记。本实施方式的曝光装置100,尽管在图1中已予省略,但其设有由照射系统4 与受光系统42b(参照图6)构成的斜入射方式的多焦点位置检测系统,其与例如日本特开平 6-283403号公报(对应美国专利第5,448,332号说明书)等所揭示者相同。又,曝光装置100中,在投影单元PU的附近,设有上述的对准系统ALG(在图1中并未图示)。该对准系统ALG,例如是影像处理方式的对准传感器、即FIA(Field Image Alignment)系统。该种离轴方式的对准系统ALG,是将以指针中心作为基准的标记的位置信息供应至主控制装置20。主控制装置20乃根据所供应的信息、与晶片干涉仪系统18的干涉仪18YU8&的测量值,来测量检测对象的标记的位置信息,具体而言,对于基准标记板上的第2基准标记、或晶片上的对准标记,测量其等在干涉仪18YU8&所规定的坐标系统 (对准坐标系统)上的位置信息。接着,针对于编码器50A 50D的构成等,使用图5所示的扩大后的编码器50C作为代表而予说明。图5中显示将检测光照射至移动标尺44C的读头单元46C的读头48a 48k (图幻的一个来作为读头48y。读头48y的构成中,主要可分成照射系统64a、光学系统64b、及受光系统64c的3 大部分。照射系统6 包含光源,例如半导体激光LD,用以将激光LB射至相对Y轴及Z轴的45°方向;及透镜Li,其配置于由该半导体激光LD所射出的激光LB的光路上。光学系统64b,包含其分离面与XL平面平行的偏光分光器PBS,一对反射镜Rla, Rlb,透镜L2a,L2b,四分之一波长板(以下记述为λ /4板)WPla,WPlb,以及反射镜R2a,R2b寸。受光系统6 包含偏光元件(检光元件)及光检测器等。该Y编码器50C中,从半导体激光LD射出的激光束LB系通过透镜Ll射入偏光分光器PBS,使其偏光被分离成两个光束LB1, LB2。透射过偏光分光器PBS的光束LB1,通过反射镜Rla到达形成于移动标尺44的反射型绕射光栅RG,在偏光分光器PBS反射的光束LB2 则通过反射镜Rlb到达反射型绕射光栅RG。此外,此处的“偏光分离”,是指将入射光束分离成P偏光成分与S偏光成分。通过光束LB1, LB2的照射而从绕射光栅RG产生的既定次数的绕射光束、例如一次绕射光束,是在通过透镜L2b,Ua而被λ /4板WPla,WPlb转换成圆偏光后,在反射镜R2a, R2b反射而再度通过λ/4板WPla,WPlb,沿与返路相同光路的相反方向到达偏光分光器 PBS。到达偏光分光器PBS的两个光束,其各自的偏光方向相对原本的方向被旋转了 90 度。因此,先透射过偏光分光器PBS的光束LB1的一次绕射光束,在偏光分光器PBS反射而射入受光系统64c,先在偏光分光器PBS反射的光束LB2的一次绕射光束,则透射过偏光分光器PBS后与光束LB1合成为同轴而射入受光系统64c。
接着,上述两个一次绕射光束,在受光系统64c内部被检光元件整合其偏光方向, 而彼此干涉成为干涉光,该干涉光被光检测器检测,并转换成与干涉光强度对应的电气信号。从上述说明可知,编码器50C中,由于彼此干涉的两个光束的光路长极短且大致相等,因此几乎可忽视空气晃动的影响。又,当移动标尺44C(即晶片载台WST)移动于测量方向(此时为Y轴方向)时,两个光束各自的相位即变化使干涉光的强度变化。该干涉光的强度变化被受光系统6 检测出,与该强度变化相对应的位置信息即作为编码器50C的测量值输出。其它的编码器50A,50B,50D也与编码器50A为相同构成。又,上述标线片载台所使用的9个编码器^A1 ^C3,是使用与编码器50C相同构成的绕射干涉方式。各编码器的分辨率,例如为0. lnm。图6所示的方块图,是本实施方式的曝光装置100中与载台控制有关的控制系统, 但已省略其中一部分。该图6的控制系统,包含由CPU(中央运算处理装置)、R0M(只读存储器)、RAM(随机存取存储器)等所构成的微电脑(或工作站),其构成中心系主控制装置 20,以供统筹控制装置整体。具有上述构成的曝光装置100,在进行例如日本特开昭61-444 号公报及对应的美国专利第4,780,617号等所揭示的EGA (Enhanced global alignment 加强型全区域对准)方式等的晶片对准动作时,如上述,是根据晶片干涉仪系统18的测量值,由主控制装置 20来管理晶片载台WST的位置;在晶片对准动作以外,例如曝光动作等状况时,则是根据编码器50A 50D的测量值,由主控制装置20来管理晶片载台WST的位置。此外,在晶片对准动作时,也能根据编码器50A 50D的测量值来管理晶片载台WST的位置。又,在根据编码器50A 50D的测量值来管理晶片载台WST的位置石,也可并用晶片干涉仪系统18的至少1个测量值(例如Z轴、θ χ、及θ y方向的位置信息)。因此,本实施方式中,在晶片对准动作终止后直到曝光开始前的期间,须进行位置测量系统的切换动作,以将用于晶片载台位置测量的位置测量系统,从晶片干涉仪系统 18 (即晶片Y干涉仪18Y及晶片X干涉仪18)Q切换成编码器50A 50D。以下,简单说明该位置测量系统的切换动作。在结束晶片对准的时点,例如图7所示,晶片载台WST的位置由主控制装置20根据干涉仪18Y、ISX2USZ1USA的测量值来管理。因此,在结束晶片对准后,主控制装置20即根据这些干涉仪18Y、I^C2USZ1USA的测量值,通过晶片载台驱动系统27将晶片载台WST 驱动于+Y方向。接着,如图8所示,当晶片载台WST已到达可使来自干涉仪18 的测定光、与来自干涉仪18 的测定光同时照射至移动镜17X的位置时,主控制装置20即根据干涉仪18Y 的测量值来调整晶片载台WST的姿势,而使晶片载台WST的θ ζ旋转误差(偏摇误差)及 (θ χ旋转误差(纵摇误差))成为零,之后则将干涉仪ISX1的测量值预设成与此时干涉仪 18 的测量值相同。此外,晶片载台WST的θ z旋转误差,也可根据Z干涉仪ISZ1USA的测量值来调整。在上述的预设之后,主控制装置20使晶片载台WST在该位置停止既定时间,直到所停止的既定时间,已足以通过平均化效果而对于干涉仪18&U8Y的测量值中受空气晃动 (空气的温度摆荡)的短期变动处理至得以忽视的程度,在该停止时间中所取得的干涉仪ISX1的测量值的加算平均值(停止时间中的平均值),被作为X线性编码器50B、50D所承接的测量值。并且,主控制装置也将在该停止时间中所取得的干涉仪18Y的复数轴的各测量值的加算平均值(停止时间中的平均值),作为Y线性编码器50A、50C所承接的测量值。 由此,结束X线性编码器50B、50D及Y线性编码器50A、50C的初始设定,即结束位置测量系统的切换动作。之后,主控制装置20根据编码器50A 50D的测量值来管理晶片载台WST 的位置。接着所说明者,是曝光时的标线片载台RST的扫描动作,其中包含标线片载台用的编码器系统中的编码器切换(测量值的承接)动作。例如,使晶片W朝+Y方向移动、并使标线片Rl朝-Y方向移动以进行扫描曝光(此处着眼于晶片W的移动方向而称为正向扫描曝光)时,以图9所示的加速开始位置起点开始标线片载台RST往-Y方向的加速。在该加速开始位置,标线片载台RST的位置由主控制装置20以编码器^A2、26B2及^C2来测量。接着,在结束标线片载台RST朝-Y方向的加速的加速终止时点,举图10为其一例,使标线片RI的-Y端与照明区域IAR的+Y端大致一致。在此之前,读头^A1JeB1 Jeci各与移动标尺24A、24BJ8成为对向。即,不仅编码器^A2、26B2、及^C2,也能由编码器^A1, 266^26^来测量标线片载台RST的位置。因此,从编码器^A1JeB1Jeci已能测量标线片载台RST的位置的时点起算,直至结束加速的时点,主控制装置20将此期间编码器^^2、2682、沈(2的测量值(将既定的原点视为零时的计算值(标尺的读取值))直接作为编码器ZeA1^eB1Jec1所承接的测量值。其后,主控制装置20遂使用编码器^A1JeB1、及^C1来管理标线片载台RST的位置。又,从图10的时点开始标线片载台RST的等速移动,直到经过既定的整定时间,当标线片Rl的图案区域到达照明区域IAR时即开始进行曝光(参照图16)。接着,在经过既定时间后,结束曝光进行(参照图17),并开始标线片载台RST的减速,而在图11所示的位置停止。又,可在曝光结束的大致同时开始标线片载台RST的减速。由图10及图11可以了解,从曝光即将开始之前(即,用于标线片载台RST的位置控制的编码器的切换时点)起经过扫描曝光期间而直至结束减速为止的期间,标线片载台 RST的位置,由主控制装置20根据编码器^A1JeB1Jec1的测量值来管理。另一方面,使晶片W朝-Y方向移动、并使标线片Rl朝+Y方向移动而进行扫描曝光 (负向扫描曝光)时,与上述的正向扫描曝光相反,从图11的状态开始使标线片载台RST朝 +Y方向加速,在图10所示的曝光终止后一刻的时点,进行编码器的切换(测量值的承接); 在减速期间中的标线片载台RST的位置,由主控制装置20根据编码器^A2、26B2J6C2的测量值来管理。此处,图9、图10、图11等,虽显示除了编码器之外也以干涉仪16x、16y来测量标线片载台RST的位置,但以干涉仪进行的标线片载台RST的位置测量当然并不一定要进行。 本实施方式中,有关扫描曝光中所取得的编码器及干涉仪16x、16y的测量结果的利用方法,留待后述。此外,虽省略详细说明,但使用标线片R2的正向扫描曝光及负向扫描曝光,是使用编码器^A1JeB1Jec1与编码器^A3J6 、26C3。此时,也进行与前述同样的编码器的切换(测量值的承接),至少在扫描曝光的期间,标线片载台RST的位置,是由主控制装置20根据编码器ZeA1^eB1Jec1的测量值来管理。又,主控制装置20不仅根据编码器的测量值来管理标线片载台RST的X、Y位置,也管理其在Θ ζ方向的位置(偏摇量)。在本实施方式的曝光装置100中,与一般的扫描步进机相同,是使用标线片对准系统13Α、13Β (图6)、晶片载台WST上的基准标记板及对准系统ALG等,来进行标线片对准 (包含使标线片坐标系统与晶片坐标系统成对应)、及对准系统ALG的基线测量等一连串作业。在上述一连串作业中,标线片载台RST、晶片载台WST的位置控制,是根据干涉仪16y及 i6x、与干涉仪ISX1USX2USYUSZ1USA的测量值来进行。此夕卜,在进行标线片对准、或基线测量等时,也可仅根据上述编码器的测量值、或根据干涉仪与编码器双方的测量值,来进行标线片载台RST、晶片载台WST的位置控制。接着,主控制装置20以未图标的晶片载具(搬送装置)来进行晶片载台WST上的晶片更换(当晶片载台WST上并无晶片时,是进行晶片的装载),以对准系统ALG对该晶片施以例如EGA方式的晶片对准作业。通过该晶片对准作业而能求出,晶片在上述对准坐标系统上的复数个照射区域的排列坐标。之后,通过主控制装置20进行上述位置测量系统的切换之后,根据先予测量的基线量及编码器50A 50D的测量值,来管理晶片载台WST的位置,且根据上述编码器^Ap 266^26^的测量值来管理标线片载台RST的位置,且以相同于一般的步进扫描机的顺序, 进行步进扫描方式的曝光,而将标线片(Rl或R2)的图案分别转印至晶片上的复数个照射区域。图12(A)是表示,当晶片W的中央附近位在投影单元PU的正下方位置时的晶片载台WST的状态;图12⑶是表示,当晶片W的中心与外周的中间附近位在投影单元PU的正下方位置时的晶片载台WST的状态。又,图13 (A)是表示,晶片W的+Y侧边缘附近位在投影单元PU的正下方位置时的晶片载台WST的状态;图13⑶是表示,当晶片W中相对于X轴及Y轴位在45°方向(从其中心观之)的边缘附近位在投影单元PU的正下方位置时,晶片载台WST的状态。又,图14是表示,当晶片W的+X侧边缘附近位在投影单元PU的正下方位置时,晶片载台WST的状态。由图12(A) 图14可以了解,无论是其中的任一图,于读头单元46A 46D各自具有的11个读头中,会有至少1个(本实施方式系1个或2个)与对应的移动标尺成为对向。基于此一事实,连同以下事项来做综合考虑,即读头单元46A 46D的配置是以投影光学系统PL的光轴AX为中心而对称的位在上下左右方向;以及,移动标尺44A 44D的配置是相对晶片载台WST的中心而对称的位在X轴方向及Y轴方向,可了解以下信息。即,在曝光装置100中,无论晶片载台WST在曝光动作中位在晶片载台WST 的移动范围内的哪一位置,在读头46A 46D各自具有的11个读头中,至少会有1个,与对应的移动标尺成为对向,可持续的由4个编码器50A 50D来测量晶片载台WST的X位置及Y位置。又,也可测量晶片载台WST的偏摇。换言之,上述4个移动标尺44A 44D各自的长边方向长度(相当于绕射光栅的形成范围)被设定成,至少能涵盖在扫描晶片W全面而其使曝光时的该晶片载台WST的移动行程(移动范围)的全域,因而设定的较晶片W的尺寸(直径)要长(本实施方式中,在所有的照射区域,至少在扫描曝光中、与晶片载台WST在扫描曝光前后的加减速及同步整定的期间当中,是使4个读头单元46A 46D(测量光束)不会离开其所对应的移动标尺(绕射光栅),即不会成为无法测量的状态)。
又,对于4个读头单元46A 46D也是相同,其各自的长边方向的长度(相当于绕射光栅的检测范围)被设定成,至少能涵盖在对晶片W全面施以扫描曝光时该晶片载台WST 的全部移动行程,因而设定成该移动行程的同程度以上(换言之,至少在圆W的曝光动作中,4个读头单元46A 46D(测量光束)不会离开其所对应的移动标尺(绕射光栅),即不会成为无法测量的状态)。再者,读头单元46A 46D的构成方式,若能使编码器50A 50D 对晶片载台WST的位置测量不单局限于曝光动作,也能包含其它动作,例如对准动作(包含上述的晶片对准及基线测量),也是可行作法。此外,编码器的移动标尺,会随着使用时间的经过而从固定位置偏离、或因热膨胀等原因而使绕射光栅的间距有部分乃至整体发生变化,因此,编码器欠缺长期稳定性。故而,由于该测量值内所包含的误差会随使用时间的经过而增加,而必须对此进行校正。以下,针对于本实施方式的曝光装置100中所进行的编码器的校正动作提出说明。首先说明第1校正动作,其对于构成标线片载台用的编码器系统的编码器,予以校正其测量值中的增益(gain)误差及线性误差。该第1校正动作的进行时机可举例为,对每一批量前头的晶片开始曝光前而进行之,即是以较为长期的间隔来进行,因而在以下也称为长期校正动作。具体而言,主控制装置20以可忽视干涉仪测量值的短期变动的程度的极低速,在标线片Rl及R2(的图案区域)被照明区域IAR通过(实际上,使照明区域IAR横越标线片 Rl及R2(的图案区域))的范围内,使标线片载台RST在Y轴方向扫描。此外,在进行此第 1校正动作之际,虽然照明区域IAR并非由照明光IL照明,但此处为了易于理解标线片载台 RST的移动位置,而使用“照明区域IAR通过”等的表现方式。在上述的扫描中,主控制装置20以既定的取样间隔,撷取标线片干涉仪16y和Y 线性编码器沈~、26&的测量值,以及标线片X干涉仪16x和X线性编码器^C1的测量值, 然后将这些测量值储存在未图标的存储器,且对于Y线性编码器^A1及^B1的测量值与标线片Y干涉仪16y的测量值,以及标线片X干涉仪16x的测量值与X线性编码器^C1的测量值,分别作成图15所示的图。此处,之所以撷取3个编码器^A1JeB1、及^C1的测量值, 原因在于,在照明区域IAR通过标线片Rl及R2(的图案区域)的范围内,是使用这些3个编码器^A1JeB1、及^C1来控制标线片载台RST的位置之故。图15所示的线图,以横轴表示干涉仪的测量值、以纵轴表示编码器的测量值,并将此时两者的关系以曲线C来表示;该曲线C与理想线段TL的差值,表示编码器的测量值内所包含的误差。该图15的线图可直接当作用来修正编码器测量值的修正图。其原因在于,例如在图15的点Pl表示编码器的测量值为el时,虽显示所对应的干涉仪的测量值为 il,但由于此干涉仪的测量值在上述的极低速状态下扫描标线片载台RST扫描而取得者, 因此不但不包含长期性变动误差,也几乎不包含因空气晃动等导致的短期性变动误差,可将之视为可忽视误差的正确的值。根据该图15的修正图,求出编码器^A1JeB1Jec1的修正后的测量值、与对应的干涉仪的测量值的关系后,会与图15的理想线段TL 一致。此外,用来修正编码器^C1的测量值的修正图,当然可将标线片载台RST驱动于X轴方向的可动范围内,并根据在上述驱动中取得的编码器26Ci、标线片X干涉仪16x的测量值来作成。主控制装置20对于其余的编码器,也能以相同于上述编码器^A1JeB1、及^C1的步骤,使用干涉仪16x、16y的测量值来作成修正图。又,当除了上述的长期校正动作之外也一并实施后述短期校正动作的情形时,可将上述修正图的曲线C分离成有偏置成分及倾斜成分的低次成分、以及除此之外的高次成分,以分别将低次成分、高次成分作成修正图,或也可对于低次成分又分离成偏置成分与倾斜成分,但使各自的修正图与高次成分并存。或者,也可对于在假想上认为能长期不生变动的高次成分保有修正图(修正信息),对于假想上认为会在短期内发生变动的低次成分的修正信息,则以短期校正动作来取得。此外,在上述的说明中,至少在取得(决定)编码器沈~、26&的测量值的修正信息的校正动作中,如上述,使标线片载台RST在扫描方向(Y轴方向)移动于标线片Rl及R2 的图案区域各被照明区域IAR所横越的范围,但标线片载台RST的移动范围并不局限于此。 例如,也可移动于编码器^A1JeB1的可测量范围(与移动标尺MA、24B的绕射光栅的形成范围相对应)的大致全域、或是移动于使用标线片Rl、R2的任一方来进行扫描曝光时的移动范围等。上述扫描曝光时的移动范围,并不局限于扫描曝光期间,也可是包含在其前后的加减速期间及同步整定期间等的至少一部分的标线片载台RST的移动范围。又,标线片载台RST的移动范围,并不局限于使用标线片Rl、R2进行扫描曝光时该标线片载台RST的移动范围,也能包含使用设置在标线片载台RST的基准标记(未图标)来进行测量动作时的移动范围。该基准标记,是在标线片载台RST上相对标线片Rl而设置在-Y侧、及/或相对标线片R2而设置在+Y侧(至少设置1个)。接着说明,例如对每片晶片逐一(即在交迭时间(由前一晶片的曝光结束起直至下一晶片开始曝光为止的期间))实施的编码器^A1JeB1、及^C1的增益误差(编码器的测量值相较于干涉仪测量值的定标误差)校正、即第2校正动作。此第2校正动作例如对每一片晶片逐一进行,即具有较为短期的实施间隔,故在以下也称短期校正动作。 首先,如图16所示,主控制装置20将标线片载台RST在扫描方向(Y轴方向)定位于第IY位置(以下亦简称为第1位置),该第IY位置是指,用于下一曝光的标线片Rl (或 R2)的图案区域的-Y侧端部与照明区域IAR的+Y侧端部一致的位置。在该校正动作之际, 同样的,虽然实际上照明光IL并未照明照明区域IAR,但在图16为了要易于了解标线片载台RST的位置起见,而图标出照明区域IAR。又,主控制装置20,使图16所示的标线片载台RST被定位于上述第1位置的状态持续既定时间,在该定位状态的持续当中,以既定的取样间隔取得编码器ZeA1^eB1、及 26Ci,与干涉仪16x和16y的测量值,储存在未图标的存储器。接着,主控制装置20将标线片载台RST驱动于-Y方向,如图17所示般,将标线片载台RST定位于第2Y位置(以下,有时简称为第2位置);该第2Y位置是指,标线片Rl (或 R2)的图案区域的+Y侧的端部与照明区域IAR的-Y侧的端部一致的位置。又,主控制装置20使图17所示的标线片载台RST被定位于上述第2位置的状态持续既定时间,在该定位状态的持续当中,以既定的取样间隔取得编码器^A1JeB1、及^C1,与干涉仪16x和16y 的测量值,储存在未图标的存储器。之后,主控制装置20根据存储器内所存储的各在上述第1及第2位置取得的测量值(测量信息),对于编码器^A1JeB1及^C1,与干涉仪16x和16y,各算出其在上述第1 位置及第2位置的测量值的加算平均值(时间平均值)。又,根据所算出的结果,对于Y线性编码器^A1及^B1的测量值和标线片Y干涉仪16y的测量值,以及标线片X干涉仪16x 的测量值和X线性编码器26Ci的测量值,分别作成如图18所示的图。在图18中的点P2、 点P3分别表示,在上述第1及第2位置中的干涉仪的测量值(其已通过平均化效果来降低空气晃动等所导致的短期变动)、与对应的编码器的测量值的关系。接着,主控制装置20通过下式,来算出使用干涉仪的测量值来修正编码器的测量值时,其修正图的倾斜成分(斜率)Sc。Sc = (e3-e2)/(i3-i2)接着,主控制装置20将算出的修正图的倾斜成分,置换成低次成分的修正图中的倾斜成分,然后根据上述置换后的低次成分的修正图、以及已有修正图的高次成分,作成新的修正图俾用来修正低次成分及高次成分。此外,在上述的说明中,分别将标线片载台RST定位于第1位置及第2位置,即曝光对象的标线片Rl (或R2)的图案区域被照明区域IAR所通过的范围内的两端位置,然后经过既定的处理算出上述的新的修正信息。然而,其作法并不局限于此,也可将标线片载台 RST分别定位于除了第1位置、第2位置之外、另包含位于其间的至少一个位置的3个以上的位置,然后实施相同于上述的处理,对于所得到的3个以上的点求出最小平方的近似直线,进而根据该近似直线,除了算出修正图的倾斜成分(定标误差)外也算出偏置成分。此时,只要根据所算出的修正图的低次成分(倾斜成分及偏置成分)、与已具有修正图的高次成分,来作成用于修正低次成分及高次成分的新修正图即可。又,用以定位标线片载台RST 的第1位置及第2位置,对应于在扫描方向的标线片载台RST的移动范围中,标线片的图案的整体横越照明区域IAR时的两端位置,但并不局限于此,也可使其对应于,在使用标线片 R1、R2的任一方来进行扫描曝光时该标线片载台RST所实际移动的范围(包含扫描曝光前后的加减速期间、及同步整定时间)。再者,由第1及第2位置所规定的扫描方向的移动范围,即使与标线片的图案区域的全体被照明区域IAR所横越时标线片载台RST的移动范围有部分偏离亦可,但较佳作法是至少包含此移动范围。又,标线片载台RST的移动范围也能包含,使用上述基准标记来进行测量动作时的移动范围。接着所说明者,是对每片晶片逐一(在所谓交迭时间)实施的第3校正动作,其用以更新编码器^A1JeB1及^c1的增益误差(编码器测量值相较于干涉仪测量值的定标误差及偏置)、即更新上述修正图的低次成分。该第3校正动作,同样能基于上述的理由而在下述称为短期校正动作。首先,主控制装置20以相当程度的低速(此低速的程度系即使曝光装置100有因为该第3校正动作的实施而降低产能,仍能将产能维持在容许范围内),在下一曝光所用的标线片Rl (或R2)的图案区域被照明区域IAR所通过的既定范围内,将标线片载台RST驱动于Y轴方向。又,在该驱动当中,使用干涉仪16x、16y、及编码器^A1、^B1、26Q,以既定取样间隔取得标线片载台RST的位置信息,并储存在未图标的存储器内。此外,在进行该第 3校正动作时,虽照明区域IAR并未被照明光IL照明,但仍基于相同于上述的理由,而使用 “照明区域IAR通过”等的表现方式。又,标线片载台RST的移动范围,与上述第2校正动作所说明的范围相同。不过,此第3校正动作,无须在该移动范围的两端进行标线片载台RST 的定位。接着,与上述相同,主控制装置20针对于Y线性编码器^A1及^B1的测量值与标线片Y干涉仪16y的测量值、及标线片X干涉仪16x的测量值与X线性编码器26Q的测量值,分别作成如图19所示Cl的曲线。此外,在图19中的符号EA,表示标线片Rl (或R2)的图案区域被照明区域IAR所通过的既定范围、即曝光区间。其次,主控制装置20求出该曲线Cl的最小平方的近似直线FL,并求出该近似直线 FL相对于理想直线TL的偏置误差0D、定标误差SD。接着,使用所求出的偏置误差(offset drift)、定标误差(scaling drift),来更新已持有的低次成分的修正图。又,根据该修正后的低次成分的修正图、与已持有的高次成分的修正图,作成新的修正图以供修正低次成分及高次成分。此外,在第3校正动作中的标线片载台RST的移动范围,虽也可与标线片的图案区域整体横越照明区域IAR时的既定范围(与曝光区间EA相对应)有至少一部分偏移,但最好能至少包含该既定范围,例如,可为使用标线片Rl、R2的任一方进行扫描曝光时标线片载台RST实际移动的范围(包含扫描曝光前后的加减速期间及同步整定期间)。又,标线片载台RST的移动范围也可包含使用上述基准标记来进行测量动作时的移动范围。又,在曝光装置100中,用来在曝光动作时控制晶片载台WST位置的编码器50A 50D,其长期校正动作与短期校正动作,通过主控制装置20以相同于上述第1至第3校正动作的方法来进行。然而,晶片载台WST的移动系在2维面内进行。此情形下,将晶片载台 WST驱动于由晶片Y干涉仪18Y及晶片X干涉仪18 所规定的正交坐标系统上,根据X线性编码器50B、50D的测量值的误差分布来求出修正图;根据Y线性编码器50A、50C的测量值的误差分布来求出修正图。此时的Y线性编码器50A、50C,其移动标尺44A、44C的绕射光栅排列方向及长边方向均是Y轴方向;读头单元46A、46C的长边方向(读头的排列方向) 是X轴方向。接着,针对于本实施方式的曝光装置100所进行的编码器50A 50D的长期校正动作(第1校正动作),即晶片载台WST的移动标尺的格子间距的修正信息、及格子变形的修正信息的取得动作,辅以图20来说明。在图20中,来自Y干涉仪18Y的测定光M1、B42,相对通过投影光学系统PL的光轴的平行于Y轴的直线(与读头单元46B及读头单元46D中复数个读头的中心连结线一致) 配置成对称,Y干涉仪18Y的实质测距轴,与通过投影光学系统PL的光轴的平行于Y轴的直线一致。因此,根据Y干涉仪18Y,可在没有阿贝误差的情况下测量晶片载台WST的Y位置。同样的,来自X干涉仪ISX1的测定光,是配置在通过投影光学系统PL的光轴的平行于 X轴的直线(与读头单元46A及读头单元46C的复数个读头中的中心连结线一致)上,X干涉仪18 的测距轴,与通过投影光学系统PL的光轴的平行于X轴的直线一致。因此,通过 X干涉仪ISX1,在进行曝光等时,能在没有阿贝误差的情况下测量晶片载台WST的X位置。此处提出一例,以说明X标尺的格子线变形(格子线的扭曲)的修正信息、与Y标尺的格子间距的修正信息的取得动作。此处为了简化说明起见,而将移动镜17X的反射面视为理想平面。首先,主控制装置20根据Y干涉仪18Y、X干涉仪ISX1、及Z干涉仪18乙、18 的测量值来驱动晶片载台WST,将晶片载台WST定位成如图20所示般,使移动标尺44A、44C各位于其所对应的读头单元46A、46C(至少1个读头)的正下方,且使移动标尺(绕射光栅)44A、 44C的+Y侧的一端,各与其所对应的读头单元46A、46C —致。
接着,主控制装置20以可忽视Y干涉仪18Y的测量值的短期变动的低速,一边将 X干涉仪18 的测量值固定于既定值,一边根据Y干涉仪18Y及Z干涉仪184、18 的测量值,在使纵摇量、横摇量、及偏摇量俱维持于零的情况下,将晶片载台WST移动于图20中的箭头F所示的+Y方向,直到例如移动标尺44A、44C的另一端(_Y侧的一端)各与其所对应的读头单元46Α、46C —致为止。在上述移动中,主控制装置20以既定的取样间隔,撷取Y线性编码器50A、50C的测量值与Y干涉仪18Y的测量值(测定光B4pB42的测量值),根据该撷取的测量值,求出Y线性编码器50A、50C的测量值与Y干涉仪18Y的测量值的关系。艮口, 主控制装置20,求出随着晶片载台WST的移动而依序对向配置于读头单元46A及46C的移动标尺44A及44C的格子间距(相邻的格子线的间隔)及该格子间距的修正信息。该格子间距的修正信息,例如当以横轴为干涉仪的测量值,以纵轴为编码器的测量值时,可求出为将两者关系以曲线显示的修正图等。此时Y干涉仪18Y的测量值由于是以前述极低速扫描晶片载台WST时所得的值,因此不但不包含长期性变动误差,也几乎不包含因空气晃动等导致的短期性变动误差,可将之视为可忽视误差的正确的值。此处,虽是沿移动标尺44A、 44C两端横越所对应的读头单元46A、46C的范围使晶片载台WST驱动于Y轴方向,但并不限于此,例如也可在晶片的曝光动作时晶片载台WST所移动的Y轴方向的范围内驱动晶片载台WST。又,主控制装置20,是在晶片载台WST的移动中,对伴随该移动而依序对向配置于移动标尺44B、44D的读头单元46B及46D的复数个读头所得到的测量值(X线性编码器 50B及50D的测量值)进行统计处理,例如通过将之平均化(或加权平均),而一并求出依序对向于该复数个Y读头的格子线的变形(扭曲)的修正信息。之所以如此,是当移动镜 17X的反射面为一理想平面时,由于在将晶片载台WST运送于+Y方向的过程中应会反复出现相同的模糊图案,因此只要将以复数个读头取得的测量数据予以平均化,即能正确地求出依序对向于该复数个读头的移动标尺44B、44D的格子线的变形(扭曲)的修正信息。此外,当移动镜17X的反射面非为理想平面时,即预先测量该反射面的凹凸(扭曲)以求出该扭曲的修正数据。接着,在上述晶片载台WST移动于+Y方向时,只要代替将 X干涉仪IS1的测量值固定于既定值的方式,通过根据该修正数据来控制晶片载台WST的X 位置,即可正确地使晶片载台WST移动于Y轴方向。如此一来,即能与上述同样地,求得移动标尺44A、44C的格子间距的修正信息及移动标尺44B、44D的格子线的变形(扭曲)的修正信息。此外,以读头单元46B及46D的复数个读头取得的测量数据是移动镜17X的反射面在相异部位基准的复数个数据,由于任一读头均是测量同一格子线的变形(扭曲),因此通过上述的平均化动作,也有反射面的扭曲修正剩余误差经平均化而接近真正的值(换言之,通过将以复数个读头取得的测量数据(格子线的扭曲信息)予以平均化,而能减弱扭曲剩余误差的影响)的附带效果。此外,X线性编码器50B、50D中,移动标尺44B、44D的绕射光栅的排列方向及长边方向、以及读头单元46B、46D的长边方向(读头的排列方向),均和Y线性编码器50A、50C 仅是在X轴及Y轴方向相反,因此,在进行Y标尺的格子线变形(格子线的扭曲)的修正信息、及移动标尺50B、50D的格子间距的修正信息的取得动作(第1校正动作)时,只要将上述修正时的X轴方向与Y轴方向予以对调即可,故省略其详细说明。主控制装置20是通过上述方式,在既定的时点中、例如依各批量,求得移动标尺 44A、44C的格子间距的修正信息及移动标尺44B、44D的格子线的变形(扭曲)的修正信息,以及移动标尺44B、44D的格子间距的修正信息及移动标尺44A、44C的格子线的变形(扭曲)的修正信息。接着,在批量内的晶片的曝光处理中,主控制装置20是一边根据移动标尺44A、 44C的格子间距的修正信息及格子线的变形(扭曲)的修正信息来修正读头单元46A,46C 所得的测量值(即线性编码器50A,50C的测量值),一边控制晶片载台WST在Y轴方向的位置。由此,可不受移动标尺44A、44C的格子间距随时间的变化及格子线的扭曲的影响,使用线性编码器50A,50C以良好精度控制晶片载台WST在Y轴方向的位置。又,在批量内的晶片的曝光处理中,主控制装置20是一边根据移动标尺44B、44D 的格子间距的修正信息及格子线的变形(扭曲)的修正信息来修正读头单元46B、46D所得的测量值(即编码器50B、50D的测量值),一边控制晶片载台WST在X轴方向的位置。由此, 可不受移动标尺44B、44D的格子间距随时间的变化及格子线的扭曲的影响,使用线性编码器50B、50D以良好精度控制晶片载台WST在X轴方向的位置。此外,上述说明中,虽是对移动标尺44A 44D均进行格子间距、以及格子线扭曲的修正信息的取得,但并不限于此,也可仅对移动标尺44A、44C及移动标尺44B、44D的任一者进行格子间距及格子线扭曲的修正信息的取得,或也可对移动标尺44A、44C及移动标尺 44B、44D两者进行格子间距、格子线扭曲中任一者的修正信息的取得。又,虽省略详细说明,但在曝光动作时用来控制晶片载台WST位置的编码器50A 50D的短期校正动作(第2、第3校正动作),同样是依照上述长期校正动作(第1校正动作)来进行。又,在进行步进扫描方式的曝光动作之际,如上述,是由主控制装置20根据编码器ZeA1^eB1Jec1的测量值及其修正图,来控制标线片载台RST的位置,并且根据编码器 50A 50D的测量值及其修正图,来控制晶片载台WST的位置。又,本实施方式的曝光装置100,可在标线片载台RST上同时装载标线片Rl与标线片R2。因此,主控制装置20若通过预先对标线片Rl与标线片R2进行标线片对准的方式, 则只须根据编码器^A1JeB1JeC1的测量值来移动标线片载台RST (而不须对标线片载台 RST进行标线片更换动作),即可使用标线片Rl与标线片R2来实施例如双重曝光等。再者,在本实施方式中所用的各编码器,不局限于上述的绕射干涉方式,可使用例如读取(pick up)等各种方式,例如能使用美国专利第6,639,686号说明书等所揭示的所谓扫描式编码器等。如以上所详述般,根据本实施方式的曝光装置100,乃是通过主控制装置20来执行例如编码器^A1JeB1Jec1等的校正动作。即,使用测量值的直线性及长期稳定性较编码器^A1JeB1Jeci等为佳的干涉仪16y、16x的测量值,来取得测量值的短期稳定性优于该干涉仪16y、16X的编码器^A1JeB1Jeci等的测量值的修正信息。接着,主控制装置20 在进行扫描曝光等时,根据编码器^A1JeB1Jec1的测量值与上述修正信息来驱动标线片载台RST。因此,能根据已使用修正信息而予修正的编码器^A1JeB1Jec1的测量值,即根据短期稳定性、直线性及长期稳定性等均良好的标线片载台RST的位置信息,来以良好精度驱动标线片载台RST。又,依本实施方式的曝光装置100,通过上述的长期校正,使用测量值的直线性及展期稳定性优于编码器ZeA1^eB1的干涉仪16y的测量值,来取得测量值的短期稳定性优于该干涉仪16y的编码器沈~、26&的测量值的修正信息。又,主控制装置20在图案转印等时,根据编码器ZeA1^eB1的测量值与上述修正信息,来控制标线片载台RST的移动。因此, 可根据已使用修正信息而予修正的编码器沈~、26&的测量值,即根据短期稳定性、直线性及长期稳定性等均良好的标线片载台RST的位置信息,来以良好精度控制标线片载台RST 在扫描方向的移动。又,根据本实施方式的曝光装置100,通过上述任一者的短期校正,取得一用来修正图形信息中的低次成分(定标误差、或定标误差及斜率偏置)的修正信息;该图形信息, 表示干涉仪16y (其测量值的直线性及长期稳定性优于编码器^A1JeB1)及编码器26~、 26Bi (其测量值的短期稳定性优于该干涉仪16y)的测量值关系。又,主控制装置20在图案转印等时,根据编码器沈~、26&的测量值,以及已使用上述修正信息而予修正低次成分的图形信息,来控制标线片载台RST的移动。又,根据曝光装置100,主控制装置20以相同于上述编码器^A1JeB1的校正动作, 来实施例如编码器50A 50D的校正动作。即,取得一修正信息,该修正信息,供使用干涉仪ISXUSX1 (其测量值的直线性及长期稳定性优于编码器50A 50D)的测量值来修正测量值的短期稳定性优于干涉仪18YU8&的编码器50A 50D的测量值。又,主控制装置20 在扫描曝光时、及照射区域间的步进移动等时,根据编码器50A 50D的测量值与该修正信息来驱动晶片载台WST。因此,根据已使用修正信息予以修正的编码器50A 50D的测量值,即根据短期稳定性、直线性及长期稳定性等均良好的晶片载台WST在X轴及Y轴方向的位置信息,来将晶片载台WST高精度的驱动于X轴方向及Y轴方向的任一方向。因此,本实施方式的曝光装置100,在对晶片上的各照射区域进行扫描曝光时,主控制装置20可根据编码器^A1JeB1Jeci及编码器50A 50D的测量值,使标线片Rl或 R2(标线片载台RST)与晶片W(晶片载台WST)高精度的沿扫描方向(Y轴方向)驱动,且在非扫描方向(X轴方向),也能使标线片Rl或R2(标线片载台RST)与晶片W(晶片载台 WST)高精度的定位(对准)。由此,可将标线片Rl (或R2)的图案高精度的形成于晶片W 上的复数个照射区域。此外,本实施方式的曝光装置100中,虽主控制装置20是根据与曝光动作独立进行的标线片载台RST的移动而得的编码器及干涉仪的测量值,但也可使用例如曝光动作时该标线片载台RST的移动中所得的编码器及干涉仪的测量值,来修正修正信息。即,在进行步进重复方式的曝光动作而将标线片Rl (或R2)的图案依序转印至晶片W上的复数个照射区域时,可在例如各照射区域的扫描曝光中,根据编码器的测量值及其修正信息来控制标线片载台RST的位置,且以并行于该控制(晶片的曝光动作)的方式储存干涉仪及编码器的测量值,然后根据该储存的测量值,在下一晶片的曝光前先行校正修正信息(例如图21 所示,用来表示干涉仪与编码器的测量值关系的图形信息)、即实施编码器的测量误差的逐次校正。图21中的符号C2,表示所储存的数据的平均值,该平均值的数据,是已对干涉仪的测量值的短期变动(由空气晃动等原因所导致的测量值的变动)施以平均者。此时,并无须对于所有照射区域均储存其扫描曝光中的数据,只要在足以平均化干涉仪的测量值短期变动的照射区域储存扫描曝光中的数据即可。图21的符号EA,与图19同样表示曝光区间。此情形下,对次一晶片进行步进扫描方式的曝光时,同样的,标线片载台RST在各照射区域的扫描曝光时(图案转印时)的移动,也是根据已以修正信息(例如图21的图形信息)而予修正的编码器的测量值来控制,即根据短期稳定性、直线性及长期稳定性等均良好的晶片载台的位置信息而予高精度控制。由此,能通过扫描曝光方式,将形成于标线片 Rl (或R2)的图案高精度的转印至该晶片上的复数个照射区域。此外,该种校正方式,不仅能对Y线性编码器进行,也可对X线性编码器进行,进一步地也可对晶片载台的编码器系统 (编码器50A 50D)进行。又,上述实施方式的曝光装置100,也能根据下述变形例的方法,来取得移动标尺的格子间距的修正信息、及格子线扭曲的修正信息。此处,针对于移动标尺44A、44C的格子间距的修正信息的取得动作、及移动标尺 44B、44D的格子线变形(格子线的扭曲)的修正信息的取得动作,提出如下说明。再者,此处为简化说明起见,而将移动镜17X的反射面假定为理想平面。首先,主控制装置20 —边将X干涉仪18 的测量值固定成既定值,一边根据Y干涉仪18Y及Z干涉仪18&、18 的测量值,在将纵摇量、横摇量、及偏摇量俱维持于零的状态下,使晶片载台WST在例如上述行程范围内朝着图22中箭头F所示的+Y方向移动。在该移动中,主控制装置20以既定的取样间隔,将编码器50A、50C的测量值、及Y干涉仪18Y的测量值(测定光B4i、B42&测量值)撷取至内部存储器中。此时,编码器50C的测量值,取自于与移动标尺44C对向的读头单元46C的读头48k,其位于,由通过投影光学系统PL的平行于Y轴的直线LV往+X方向距离a之处、即图22中由圆圈所圈示者。又,编码器50A的测量值,取自与移动标尺44A对向的读头单元46A的读头48e,其位于,由直线LV往-X方向距离b之处、即图22中由圆圈所圈示者。接着,主控制装置20根据X干涉仪18 的测量值而使晶片载台WST在+X方向移动既定距离后,根据Y干涉仪18Y的测量值使其停止于图22中箭头F'所示的朝-Y方向移动既定距离的位置。接着,主控制装置20 —边将X干涉仪18 的测量值固定于既定值,一边根据Y干涉仪18Y及Z干涉仪18&、18 的测量值,在将纵摇量、横摇量维持于零、且将偏摇量尽可能维持于零的情况下,使晶片载台WST在例如上述的行程范围内移动于图23中箭头F所示的 +Y方向。在该移动中,主控制装置20以既定的取样间隔,将编码器50A、50C的测量值、及干涉仪18Y的测量值(测定光MpBtW测量值)撷取至内部存储器。此时,编码器50C的测量值,取自与移动标尺44C对向的读头单元46C的读头48e,其位于,由直线LV往+X方向距离b之处、即图23中圆圈所圈示者。又,编码器50A的测量值,取自与移动标尺44A对向的读头单元46A的读头48k,其位于,由直线LV往-X方向距离a之处、即图23中圆圈所圈示者ο又,由于各读头在XY坐标系统上的位置为已知,因此通过使用在上述2次动作中所取得的取样值来建立联立方程式后解该联立方程式,即可个别的求出移动标尺44C、44A 的格子间距的修正信息(例如修正图)。此外,当移动镜17X的反射面并非理想平面时,可预先测量该反射面的凹凸(扭曲)而求出该扭曲的修正数据。又,在将晶片载台WST移动于上述图22、图23所示的+Y方向之际,只要根据该修正数据来控制晶片载台WST的X位置,即可取代将X干涉仪18 的测量值固定于既定值的作法,而能将晶片载台WST正确的移动于Y轴方向。如上述,在分别求出移动标尺44A、44C的格子间距的修正信息(例如修正图)后, 主控制装置20以例如图M所示般的方式,将晶片载台WST以相同于上述图22等情形时的步骤而移动于+Y方向。此时,与取得移动标尺44A、44C的格子间距的修正信息时并不相同,各与移动标尺44B及44D对向的(图M中圆圈所圈示者)读头单元46B的读头48g、及读头单元46D的读头48i,从X干涉仪18 的测距轴上脱离。因此,因空气晃动而造成的干涉仪所测量的晶片载台WST在估计上的偏摇量的影响,会成为编码器50B及50D (读头单元 46B的读头48g、及读头单元46D的读头48i)的测量值中所包含的误差(以下,简称为偏摇起因误差)。此时,可使用编码器50A、50C(与移动标尺44A、44C分别对向的图M中由圆圈所圈示的读头单元46A的读头4 与读头单元46C的读头48h),来测量上述因空气晃动而造成干涉仪所测量的晶片载台WST在估计上的偏摇量。S卩,主控制装置20使用先求出的移动标尺44C、44A的格子间距的修正信息,来修正编码器50A、50C的测量值,并一边根据上述已修正的测量值,来求出上述晶片载台WST在估计上的偏摇量。又,主控制装置20可使用上述所求出的估计上的偏摇量,来修正上述的偏摇起因误差。在将晶片载台WST移动于+Y方向的过程中,主控制装置20以上述方式,边修正偏摇起因误差,边以既定的取样间隔,将读头单元46B及46D的复数个读头(其与移动标尺 44B、44D系依序对向配置)中所得到的测量值,撷取至内部存储器。接着,主控制装置20以相同于上述的理由,对内部存储器所读取的测量值施以统计处理、例如施以平均(或施以加权平均),由此也能求出移动标尺44B、44D的格子线变形(扭曲)的修正信息。又,若考虑到所谓正逆差,而将晶片载台WST驱动于图22、图23、及图M中箭头 F'所示的-Y方向,以图求出移动标尺44A、44C的格子间距的修正信息(例如修正图)、及 /或移动标尺44B、44D的格子线变形(扭曲)的修正信息时,只要施以相同于上述的处理即可。另一方面,当欲取得移动标尺44A、44C的格子线变形(扭曲)的修正信息,及移动标尺44B、44C的格子间距的修正信息时,主控制装置20所进行的处理,是将上述情形时的 X轴方向与Y轴方向对调,此处乃省略其详细说明。再者,因为各标尺(绕射光栅)具有宽度,例如,可在其宽度方向沿着左右中央的3 个线段来取得上述格子间距的修正信息,对格子弯曲则是取出代表性的格子线来进行弯曲测量即可。由此,较有助于精度考虑及作业性考虑。依据上述变形例的方法,在取得标尺的格子间距的修正信息、及/或标尺的格子线变形(格子线的扭曲)的修正信息之际,不必然非得使晶片载台WST以极低速移动不可, 因此,其等修正信息的取得动作,在短期间内即可进行。接着,参照图25、图26,以说明晶片载台用的编码器系统的变形例。再者,图25、图 26与图3的差异仅在于编码器系统的构成方式,因此,在以下,对于与图3相同或是有相等作用、机能的构成部分,赋与同一符号而省略其说明。如图25所示般,在晶片载台WST的上面,具有2个固定成L字形的移动标尺52A、 52B,其各自的长边方向成为正交,并且各以Y轴及X轴方向作为长边方向。在2个移动标尺52A、52B的表面,形成有反射型的绕射光栅,其以与长边方向正交的方向作为周期方向。又,读头单元46A与一对的读头单元46&、46B2,各自与其所对应的移动标尺52A、 52B成交错配置,并通过未图标的支撑构件而以悬吊支撑状态被固定在镜筒固定座38。读头单元46A,以X轴方向(绕射光栅的周期方向,即,与移动标尺52A的长边方向所在的Y轴方向成正交的方向)作为其长边方向(读头的排列方向),其被配置于通过投影光学系统 PL的光轴AX的X轴的平行轴(中心轴)上,连同移动标尺52A后,即构成了用来对晶片载台WST测量其X轴方向位置的X线性编码器56A。而一对的读头单元46Bi、46B2,各以Y轴方向(绕射光栅的周期方向,即,与移动标尺52B的长边方向所在的X轴方向成正交的方向) 作为长边方向(读头的排列方向),从通过投影光学系统PL的光轴AX的Y轴的平行轴(中心轴)看来,呈对称配置关系,连同移动标尺52B后,即构成了用来对晶片载台WST测量其 Y轴方向的2个位置信息的Y线性编码器。再者,2个线性编码器56A、56B的测量值,被供应至主控制装置20,主控制装置20 根据X轴及Y轴方向的位置信息与θ Z方向的旋转信息,通过晶片载台驱动系统27来控制晶片载台WST的位置。由此,与上述实施方式完全相同,可高精度的实施晶片载台WST的2 维驱动。图26,是晶片载台用的编码器的另一变形例,其与图25的差异仅在于,除了有一组的线性编码器56Α、56Β之外,另设有一组的线性编码器56C、56D。如图沈所示般,在晶片载台WST的上面,设有2个固定成L字形的移动标尺52C、52D,其彼此的长边方向成为正交, 并且各以Y轴及X轴方向作为长边方向。在2个移动标尺52C、52D的表面,形成有反射型的绕射光栅,其以与长边方向正交的方向,作为周期方向,且,从晶片载台WST的中心看来, 移动标尺52A、52B成为对称配置关系。又,读头单元46C、与一对的读头单元460^46 ,各与其所对应的移动标尺52C、 52D成为交错配置,通过未图标的支撑构件而以悬吊支撑状态被固定在镜筒固定座38。读头单元46C,以X轴方向(绕射光栅的周期方向,即是,与移动标尺52C的长边方向所在的Y 轴方向正交的方向)作为长边方向(读头的排列方向),从投影光学系统PL的光轴AX看来,其与上述读头单元46A成为对称配置关系(即,系配置在通过上述光轴AX的X轴的平行轴(中心轴)上),且,连同移动标尺52C后,即构成了用来对晶片载台WST测量其X轴方向的位置信息的X线性编码器56C。而一对的读头单元46Di、46D2,以Y轴方向(绕射光栅的周期方向,即是,与移动标尺52D的长边方向所在的X轴方向成为正交的方向)作为长边方向(读头的排列方向),从投影光学系统PL的光轴AX看来,其与上述读头单元46Bi、46B2 成为对称配置关系(即,相对于上述通过光轴AX的Y轴的平行轴(中心轴)而成为对称配置),并且,连同移动标尺52D后,即构成了用来对晶片载台WST测量其在Y轴方向的2个位置信息的Y线性编码器56D。又,将4个线性编码器56A 56D的测量值供应至主控制装置20,主控制装置20 根据X轴及Y轴方向的位置信息与θ Z方向的旋转信息,通过晶片载台驱动系统27来控制晶片载台WST的位置。由此,与上述实施方式完全相同,可高精度的实施晶片载台WST的2 维驱动。再者,由于图沈的编码器系统具有4个线性编码器56Α 56D,因此,与图25的编码器系统相较,就算未将读头单元近接配置于投影光学系统PL,在晶片的曝光动作时并不会受制于晶片载台WST的位置,能持续的以4个线性编码器56Α 56D中的至少3个来取得晶片载台WST的位置信息(X轴及Y轴方向的位置信息、与θζ方向的旋转信息)。又,图 26的编码器系统中的Y线编码器56B、56D,各具有2个读头单元,但作法并不局限于此,例如,仅具有1个读头单元者亦可。此处的晶片X干涉仪18 ,具有包含上述测距轴(该测距轴,与通过投影光学系统 PL的光轴AX的X轴的平行轴(中心轴)一致、并与图中的实线相对应)的至少1个测距轴。又,在图25及图沈所示的编码器系统中,X线性编码器56A(及56C)被配置成,使读头单元46A(及46C)的测量轴(读头的排列方向)与其中心轴(晶片X干涉仪18 的X测量的测距轴)一致。又,上述的晶片Y干涉仪18Y,具有包含上述2个测距轴(该2个测距轴, 从通过投影光学系统PL的光轴AX及对准系统ALG的检测中心的Y轴的平行轴(中心轴) 看来,成为对称配置关系,并与图25、26中的实线所示的光束B4p B42相对应)的复数个测距轴。又,Y线性编码器56B(及56D)被配置成,使读头单元46Bi、46B2(及46Di、46D2)的测量轴(读头的排列方向)各与上述2个测距轴一致。由此,由于使用的线性编码器与晶片干涉仪中,其测量轴与测距轴一致(如上述),因而难以使其测量值发生差值,而能高精度的实施上述校正动作。再者,在本变形例中,虽使线性编码器的测量轴与晶片干涉仪的测距轴一致,但作法并不局限于此,可在XY平面内将两轴以不在同一轴上的方式来配置。又,此点对于上述实施方式(图3)也是相同。又,在图25、图沈所示的编码器中的2个或4个移动标尺(52A 52D),是由同一素材(例如陶瓷或低热膨胀的玻璃等)所构成,其各自的长边方向的长度(相当于绕射光栅的宽度)被设定成,至少能涵盖晶片载台WST在晶片W的曝光动作时的行程(移动范围) 的全域(换言之,在所有的照射区域的扫描曝光时,各读头单元(测量光束)不会离开其所对应的移动格子(绕射光栅),即,不会成为无法测量的状态),因而设定的较晶片W的尺寸 (直径)为长。又,在图25、图26所示的编码器中的3个或6个读头单元G6A 46D2),可分别具有例如单一个读头、或具有复数个以几乎未留间隙的方式而排列的读头,但在图25、 图沈所示中,任一编码器系统都具有复数个沿其长边方向以既定间隔配置的读头。再者, 各个读头单元被配置成,使相邻的2个读头具有不会离开其所对应的移动标尺(绕射光栅) 的间隔,即,复数个读头的配置间隔,绕射光栅在移动标尺长边方向的正交方向(的排列方向)的形成范围的同程度以下。又,3个或6个的读头单元G6A 46D2),其各自的长边方向的长度(相当于绕射光栅的检测范围),至少要能涵盖晶片载台WST在晶片W的曝光动作时的行程(移动范围)的全域(换言之在所有的照射区域的扫描曝光时,各读头单元(测量光束)不会离开其所对应的移动标尺(绕射光栅),即,不会成为无法测量的状态),因而将其设定成该行程的同程度以上。又,对于具备图25、图沈所示编码器系统的曝光装置,与上述实施方式的曝光装置100(包含图3所示的编码器系统)完全相同,有进行用来决定各编码器测量值的修正信息的校正动作(上述第1至第3的校正动作)。此时的各编码器,举一例而言,在其长边方向,将移动标尺的位置设定成,以其一端与对应的读头单元一致,然后,使移动标尺在绕射光栅的排列方向(与长边方向正交的方向)移动,其移动距离为该宽度以上。接着,使移动标尺在其长边方向移动,移动距离与读头单元的1个读头的测量光束的尺寸相等,然后又同样的使移动标尺在绕射光栅的排列方向移动该宽度以上。此处之后则重复实施上述动作,直到移动标尺的另一端与读头单元一致为止。接着,只要根据以上述驱动而得到的编码器测量值、以及测量方向与该编码器相同的晶片干涉仪的测量值,来决定该编码器的修正信息即可。此处例,晶片载台WST的驱动范围跨于,在长边方向使移动标尺的两端与其所对应的读头单元一致的范围,但作法并不局限于此,例如,也可将晶片载台WST驱动于,在晶片的曝光动作时该晶片载台WST所移动的长边方向的范围。此外,在上述实施方式及变形例中,在晶片的曝光动作时,仅是使用上述的编码器系统(图2、图3、图25、图26)来控制标线片载台RST及晶片载台WST的位置。然而,即使有实施上述校正动作(特别是短期校正动作),仍可能因为各种原因(例如,有异物附着于移动标尺、移动标尺的位置偏移、读头单元的不正、或是偏离并行线、或是移动标尺在Z方向(与表面正交的方向)有超过容许范围的位移等),而发生不能进行位置测量、或是测量精度超过容许范围等问题,因而导致,在曝光动作中用来进行上述位置控制所不可缺少的X 轴及Y轴方向的位置信息与θ ζ方向的旋转信息,有至少一部分不能取得。再者,在图3、 图26所示的编码器系统,具有4个编码器,因此,就算有1个编码器发生上述问题,仍不致发生上述无法进行位置控制的情况,然而,在图2、图25所示的编码器系统中,若有1个编码器发生上述问题,就不能进行上述位置控制。此处,备有第1驱动模式,其使用以上述编码器而测得的位置信息;及第2驱动模式,其使用以上述干涉仪系统而测得的位置信息,并且,将第1驱动模式预设为一般的曝光动作时所使用者。一旦有发生情况,例如在曝光动作当中,用于位置控制的X轴及Y轴的任置信息与θ Z方向的旋转信息有至少一部分不能取得,则可从第1驱动模式切换成第2 驱动模式,据以控制标线片载台或晶片载台的位置控制,是为较佳作法。再者,也可具有第 3驱动模式,其是并用由上述编码器系统而测得的位置信息的至少一部分、以及由上述干涉仪系统而测得的位置信息的至少一部分,但在换掉第1驱动模式时,使用第2及第3驱动模式的一方来进行标线片载台或晶片载台的位置控制。从第1驱动模式往第2驱动模式(或第3驱动模式)的切换,并不局限于曝光动作时,在其它动作(例如对准测量动作等)时, 同样可进行上述切换。又,在其它动作并无须先设定成第1驱动模式,也可设定成其它驱动模式(例如,第2及第3驱动模式的一方等)以取代第1驱动模式。此时,例如在以其它驱动模式来控制晶片载台位置时有发生错误,则也可切换成其它驱动模式(例如,第2及第3 驱动模式的另一方、或是第1驱动模式等)。再者,在曝光动作以外,也可选择任意的驱动模式。再者,在上述实施方式及变形例的说明例中,于位置测量系统的切换动作时,是将晶片载台WST停止既定时间,直到已能通过平均化效果而使干涉仪18&U8Y的测量值中受到空气晃动(空气的温度摆荡)所造成的短期变动的影响能全然不计,之后方由编码器 50Α 50D来承接干涉仪WXp Y的测量值,但作法并不局限于此,例如,也能进行与上述第 2校正动作相同的动作,根据所得到的低次成分,进行测量值由干涉仪18&U8Y至编码器 50Α 50D的交接。又,上述位置测量系统的切换动作,不见得非实施不可。即,能通过对准系统ALG与晶片干涉仪系统(18)(2、18Υ)来测量晶片W上的对准标记、及晶片载台WST上的基准标记的位置信息,并通过标线片对准系统与编码器系统来测量晶片载台WST上的基准标记的位置信息,但根据由其等的位置信息,由编码器系统来控制晶片载台的位置。又,在上述实施方式及变形例中,所说明的位置测量系统的切换动作,是从干涉仪切换成编码器,但本发明并不局限于此。例如,若是将对准系统ALG设置在远离投影单元PU之处,对于有使用该对准系统而进行对准动作的区域,同样有将与上述读头单元46A 46D 相同的读头单元以对准系统ALG为中心而设置成十字形配置。又,在移动标尺44A 44D各具原点而进行EGA等晶片对准之际,以其等移动标尺44A 44D的组合而规定的坐标系统的原点(S卩,通过移动标尺44A 44D的原点而规定的点)作为基准的晶片W的各对准标记的位置信息,遂能使用读头单元与移动标尺44A 44D来检测之,又根据其检测结果来进行既定的运算,而也能求出各照射区域相对于上述原点的相对位置信息。此情形下,于曝光之际,使用编码器50A 50D来检测出上述原点,由此,可使用各照射区域相对上述原点的相对位置,而将各照射区域移动至准备曝光的开始加速位置。此情形下,读头与投影单元、 对准系统ALG之间的位置偏移,同样会成为误差的要因,故较佳的是同样对其进行校正。再者,在上述实施方式及变形例中,于晶片的曝光动作时,是使用上述编码器系统 (图2、图3、图25、图26)来控制标线片载台RST及晶片载台WST的位置,然而,使用编码器系统的载台位置控制,并不局限于曝光动作之时,也可在曝光动作以外,例如以标线片对准系统进行的标线片对准标记的检测动作、或标线片载台RST的基准标记的检测动作、或标线片的交换动作等诸状况时,同样能使用图2所示的编码器系统来控制标线片载台RST的位置。同样的,例如以对准系统ALG进行晶片W的对准标记检测时、或是晶片的交换动作等诸状况中,同样能使用图3、图25、图沈所示的编码器系统来控制晶片载台WST的位置。此情形下,当然无须有上述位置测量系统的切换动作。在以对准系统ALG来检测晶片W上的对准标记或晶片载台WST的基准标记,或者是以标线片对准系统来检测晶片载台WST的基准标记时,若同样有用到上述的编码器系统(图3、图25、图沈),此情形下,较佳的是同样将该检测动作时的晶片载台WST的移动范围一并考虑。特别是对于,将晶片载台移动至对准系统ALG的测量位置而进行的标记的检测动作中,同样最好将各读头单元的长度方向的长度(或配置等)设定成,使各读头单元 G6A 46D、46A 46D2)不会离开其所对应的移动标尺(绕射光栅),即,不致发生无法以编码器系统来控制位置而导致晶片载台位置失控的情形;或者是,可设置有别于其等读头单元的他种读头单元。又,若是在晶片的交换位置(包含装载位置与卸载位置的至少一方)中,或是晶片载台WST由上述交换位置、曝光位置(用来通过投影光学系统PL而转印标线片图案的位置)、及测量位置(以对准系统ALG进行标记检测的位置)中的一方朝向另一方进行移动的途中,有使用上述的编码器系统(图3、图25、图沈)时,同样的,最好也考虑晶片交换位置及该交换动作时晶片载台的移动范围,在各读头单元的配置、长度等的设定时,须能避免发生无法以编码器测量位置而导致晶片载台位置失控的情形;或者是,也可设置有别于其等读头单元的他种读头单元。又,例如日本特开平10-214783号公报及对应的美国专利第6,341, 007号,以及国际公开WO 98/40791号公报和其所对应的美国专利第6,262, 796号等所揭示般的曝光装置,也能使用2个晶片载台而大致同时并行曝光动作与测量动作(例如,由对准系统进行的标记检测等)的双晶片载台式的曝光装置,也能使用上述的编码器系统(图3、图25、图沈) 来控制各晶片载台的位置。此处,不仅限于曝光动作,就连在测量动作时,只要将各读头单元的配置、长度等作适切的设定,就能直接将上述编码器系统(图3、图25、图26)用来控制各晶片载台的位置,然而,也能设置不同于上述读头单元G6A 46D、54A MD2)的可在该测量动作中使用的读头单元。例如,也可设有以对准系统ALG作为中心、并且配置成十字形的4个读头单元,但在上述测量动作之时,使用其等读头单元与相对应的移动标尺G6A 46D、52A 52D)来测量各晶片载台WST的位置信息。在双晶片载台方式的曝光装置中,是在2个晶片载台各设有2个或4个移动标尺(图3、图25、图沈),当被装载于一方晶片载台的晶片结束曝光动作后,通过与另一方晶片载台之间进行交换的方式,将已装载下一晶片 (该晶片,已在测量位置进行过标记检测等)的另一方的晶片载台,配置于曝光位置。又,与曝光动作并行的测量动作,并不局限于对准系统对晶片等的标记检测,例如,也能以晶片的面信息(段差信息等)的检测来代替之、或是与其组合。再者,在上述的说明中,于测量位置或是交换位置、或是晶片载台从曝光位置、测量位置、及交换位置的其中1个朝另一位置移动当中,若是使用编码器系统并不能控制晶片载台的位置,较佳的是使用有别于该编码器系统的他种测量装置(例如干涉仪、编码器等),在上述各位置或移动中进行晶片载台的位置控制。又,在上述实施方式及变形例中,也可如国际公开第2005/074014号公报、国际公开第1999/23692号公报、美国专利第6,897,963号说明书等所揭示般,在晶片载台之外,也设有包含测量构件(基准标记、传感器等)的测量载台,用以在晶片的交换动作等之时,通过与晶片载台间的交换,而将测量载台配置在投影光学系统PL的正下方,以供测量曝光装置的特性(例如,投影光学系统的成像特性(波面像差)等、照明光IL的偏光特性等)。此情形下,在测量载台也可配置移动标尺,但使用上述的编码器系统来控制测量载台的位置。 又,对于被装载于晶片载台的晶片进行曝光动作的期间,测量载台退避至不会与晶片载台发生干涉的既定位置,使其在该退避位置与曝光位置之间移动。因而,对于该退避位置、或是从该退避位置与曝光位置的一方往另一方移动的途中,若能以同样于晶片载台的方式而将测量载台的移动范围也予以考虑,在各读头单元的配置、长度等的设定时,须能避免发生无法以编码器系统测量位置而使测量载台的位置失控的情形,较佳作法;或者,也可设置有别于读头单元的他种读头单元。又,若是在该退避位置或是上述的移动中,编码器系统无法进行测量载台的位置控制时,较佳的是使用有别于编码器系统的他种测量装置(例如干涉仪、编码器等)来控制测量载台的位置。又,在上述实施方式及变形例,举一例,可能因为投影单元PU的尺寸等所致,而不得不扩大延伸设置于同一方向的一对读头单元的间隔,从而,在对晶片W上的特定照射区域(例如位在最外周的照射区域)进行扫描曝光时,造成上述一对的读头单元中的一方离开其所对应的移动标尺。举一例而言,若是图3中的投影单元PU稍大一些,一对读头单元46B、46D中的读头单元46B,就会从其所对应的移动标尺44B离开。再者,例如在国际公开第99/49504号公报、国际公开第2004/053955号公报(对应美国专利申请案公开第 2005/0252506号说明书)、美国专利第6,952,253号说明书、欧洲专利公开第1420298号公报、国际公开第2004/055803号公报、国际公开第2004/057590号公报、美国专利申请案公开第2006/0231206号、及美国专利申请案公开第2005/(^80791号等所揭示般、在投影光学系统PL与晶片之间填满液体(例如纯水等)的液浸型曝光装置,其中的用来供应液体的嘴构件等,乃是以外绕投影单元PU的方式而设置,因此,欲将读头单元近接配置于投影光学系统PL的上述曝光区域时,难度更上一层。此处,在图3、图沈所示的编码器系统中,若是在其X轴及Y轴方向,并没有各要持续测量2个位置信息的必要性,则也能使编码器系统(特别是读头单元)的构成方式成为,在X轴及Y轴方向的一方可供测量2个位置信息、在另一方可供测量1个位置信息。即,由编码器系统对晶片载台(或测量载台)的位置控制中,即使没有在X轴及Y轴方向各具有2个(合计4个)的位置信息亦可。又,在液浸型曝光装置中,也能如图27所示般,以玻璃作为晶片载台WST上(或晶片台WTB)的疏液板WRP, 并直接在该玻璃设置标尺图案。或者,也能以玻璃作成晶片台。再者,液浸型曝光装置中所具备的晶片载台(或测量载台内),若具有上述实施方式及变形例的移动标尺(图3、图25、 图26),其较佳的作法,是预在该移动标尺的表面形成疏液膜。再者,若是考虑到晶片载台的小型化及轻量化等,较佳作法,是在晶片载台WST上将移动标尺的配置尽可能接近晶片W,然而,在容许有较大的晶片载台时,也能加大晶片载台,而拉宽与其对向配置的一对移动标尺的间隔,由此,至少在晶片的曝光动作中,能常态的在X轴及Y轴方向各测量2个、合计4个的位置信息。又,也能使例如移动标尺的一部分以外露于晶片载台的方式而设置,或者,也能使用至少设有1个移动标尺的辅助板,将移动标尺设置在晶片载台本体的外侧,由此,可取代加大晶片载台的作法,而能加宽对向配置的一对移动标尺的间隔。又,其较佳作法,是在以编码器系统进行载台的位置控制之前,先行测量例如读头单元的倾倒程度(对于Z轴方向的倾斜)、XY平面内的读头的排列(位置或间隔等)、或是读头对并行线的倾斜等,而将该测量结果用于上述的位置控制。又,较佳作法可举例为,测量移动标尺在Z轴方向(与表面垂直的方向)的位移量或倾斜量等,将该测量结果用于上述的位置控制。上述实施方式及变形例所说明的编码器的第1至第3校正动作、及上述的逐次校正动作,能以单独或经过适当组合的方式来实施。又,在上述的校正动作中,在以编码器系统及干涉仪系统进行位置测量时,是使载台低速移动,但作法不限于此,如上述,也能以相等于扫描曝光时的速度而使载台移动。又,在上述实施方式及变形例中,使用编码器系统来控制标线片载台及晶片载台的位置,但作法并不局限于此,例如,也能以编码器系统而对标线片载台及晶片载台的一方进行位置控制,并使用干涉仪系统而对另一方的载台进行位置控制。再者,在上述实施方式及变形例中,是将编码器的读头单元配置在标线片载台的上方,但也可将编码器的读头单元配置在标线片载台的下方。此时的移动标尺,同样是设在标线片载台的下面侧。再者,在上述实施方式及变形例(图3、图25、图26)的编码器系统中,复数个移动标尺G4A 44D、52A 52D),是分别通过例如真空夹头等吸附机构或板式弹簧等而被固定在晶片载台WST,但作法并不局限于此,也能通过螺丝锁紧、或直接将绕射光栅形成于晶片载台。特别是在后者的情形,可将绕射光栅形成于用以形成晶片保持具的桌台,尤其是在液浸型曝光装置中,可将绕射光栅形成于疏液板。又,无论是标线片载台RST或晶片载台WST 中,用以形成绕射光栅的构件(包含上述的移动标尺等),较佳的是以陶瓷等低热膨胀的材料(例如首德公司的krodur(商品名)等)来构成。又,为了要防止因为异物附着、脏污等而降低测量精度,例如,也可在表面施以涂布,使其至少覆盖于绕射光栅、或是设有盖玻璃亦可。再者,无论是标线片载台RST或是晶片载台WST,各移动标尺中的绕射光栅,是连续的形成于其长边方向的大致全域,然而并不局限于此,例如将绕射光栅分成复数个区域而以不连续方式来形成者亦可,或者,也能以复数个标尺来构成各移动标尺。
再者,在上述实施方式及变形例中,特别是在图3的编码器系统中,用于Y轴方向的位置测量的一对移动标尺44A、44C,以及用于X轴方向的位置测量的一对移动标尺44B、 44D,是设置在晶片载台WST上,并以对应于此的方式,将一对的读头单元46A、46C配置在投影光学系统PL的X轴方向的一侧与另一侧,将一对的读头单元46B、46D配置在投影光学系统PL的Y轴方向的一侧与另一侧。然而,其应用例并不局限于此,尚可举例为,在晶片载台 WST上,所设置的用来测量Y轴方向位置的移动标尺44A、44C,以及用来测量X轴方向位置的移动标尺44B、44D,其中至少有一方并非成对,而是仅有一个;或者是,使一对的读头单元46A、46C及一对的读头单元46B、46D中,至少有一方并非成对而是仅有一个。此点对于图26所示的编码器系统也是相同。又,移动标尺的延伸设置方向及读头单元的延伸设置方向,并不局限于上述实施方式中所示的X轴方向、Y轴方向的类的正交方向。又,在上述实施方式及变形例中,晶片干涉仪系统18的构成并不局限于图3所示, 例如,若是对于对准系统ALG(测量位置)也配置有读头单元时,就算不设有晶片X干涉仪 ISX2亦可;也可使晶片X干涉仪18 的构成,成为与晶片Y干涉仪18Y相同的多轴干涉仪, 使其除了能测量晶片载台WST的X位置,也能测量旋转信息(例如偏摇及横摇)。又例如, 也能使晶片Y干涉仪18Y成为相同于晶片X干涉仪18 的单轴干涉仪;也能使晶片X干涉仪18 成为相同于晶片Y干涉仪的多轴干涉仪。多轴干涉仪,也能仅对旋转信息测量其偏摇量。再者,晶片X干涉仪18 与晶片Y干涉仪18Y的任一方,也能仅测量旋转信息中的1 个(横摇或纵摇)。即,本实施方式的晶片干涉仪系统18在晶片的曝光动作中,能至少测量 X轴及Y轴方向的位置信息与θ ζ方向的旋转信息(偏摇)者即可。再者,在上述实施方式中的说明例,是将本发明运用在扫描步进机,但其并不局限于此,也可将本发明运用在步进机等静止型曝光装置。即使是在步进机等情形时,同样是通过编码器,来对搭载有曝光对象(物体)的载台测量位置,由此,与使用干涉仪来测量载台位置者不同的是,几乎不会因为空气晃动而造成位置测量误差。又,其是根据编码器的测量值,以及,使用干涉仪的测量值来对该编码器测量值的短期变动进行修正的修正信息,而能使载台有高精度的定位,遂能高精度的将标线片图案转印至物体上。又,本发明同样适用于,将照射区域与照射区域互相合成的步进贴合方式的缩小投影曝光装置、近接方式的曝光装置、或镜面投影对准曝光器(mirror projection aligner)等。又,上述实施方式的曝光装置中的投影光学系统倍率并不仅可为缩小系统,也可为等倍及放大系统的任一者,投影光学系统PL不仅可为折射系统,也可是反射系统及反折射系统的任一者,其投影像也可是倒立像与正立像的任一者。再者,通过投影光学系统PL 来照射照明光IL的曝光区域,虽是在投影光学系统PL的视野内包含光轴AX的轴上区域, 但例如也可与如国际公开第2004/107011号小册子所揭示的所谓在线型反折射系统同样地,其曝光区域为不含光轴AX的离轴区域,该在线型反折射系统具有复数个反射面且将至少形成一次中间像的光学系统(反射系统或反折射系统)设于其一部分,并具有单一光轴。 又,前述照明区域及曝光区域的形状虽为矩形,但并不限于此,也可是例如圆弧、梯形、或平行四边形等。又,照明光IL,不限于ArF准分子激光(波长193nm),也能使用KrF准分子激光 (波长M8nm)等紫外光,或F2激光(输出波长157nm)等真空紫外光。真空紫外光,可使用例如国际公开第1999/46835号小册子(对应美国专利第7,023,610号说明书)所揭示的谐波,其是以涂布有铒(或铒及镱两者)的光纤放大器,将从DFB半导体激光或纤维激光射出的红外线区或可见区的单一波长激光放大来作为真空紫外光,并以非线形光学结晶将其转换波长成紫外光。又,上述实施方式中,作为曝光装置的照明光IL,并不限于波长大于IOOnm的光, 也可使用波长未满IOOnm的光。例如,近年来,为了形成70nm以下的图案,已进行了一种 EUV曝光装置的开发,其是以SOR或电浆激光为光源来产生软X线区域(例如5 15nm的波长域)的EUV (Extreme Ultra Violet)光,且使用根据其曝光波长(例如13. 5nm)所设计的全反射缩小光学系统及反射型光掩膜。此装置由于是使用圆弧照明同步扫描光掩膜与晶片来进行扫瞄曝光的构成,因此能将本发明非常合适地适用于上述装置。此外,本发明也适用于使用电子射线或离子光束等的带电粒子射线的曝光装置。又,上述实施方式中,虽使用于具光透射性的基板上形成既定遮光图案(或相位图案,减光图案)的光透射性光掩膜(标线片),但也可使用例如美国专利第6,778,257号说明书所揭示的电子光掩膜来代替此光掩膜,该电子光掩膜(也称为可变成形光掩膜、主动光掩膜、或影像产生器,例如包含非发光型影像显示元件(也称空间光调变器)的一种的 DMD(Digital Micro-mirror Device)等)是根据欲曝光图案的电子数据来形成透射图案、 反射图案、或发光图案。当使用上述可变成形光掩膜时,装载着晶片或玻璃板等的载台,是相对可变成形光掩膜而扫描,因此只要使用编码器来测量上述载台的位置,并对于该编码器的测量值,以同样于上述的方法而采用干涉仪的测量值来进行校正,由此,即可得到与上述实施方式相等的效果。又,本发明也能适用于,例如国际公开第2001/035168号小册子所揭示,通过将干涉纹形成于晶片上、而在晶片W上形成等间隔线图案的曝光装置(光刻系统)。进而,例如也能将本发明适用于例如日本特表2004-519850号公报(对应美国专利第6,611,316号说明书)所揭示的曝光装置,其是将两个标线片图案通过双头型投影光学系统在晶片上合成,通过一次的扫描曝光来对晶片上的一个照射区域大致同时进行双重曙光ο又,于物体上形成图案的装置并不限于前述曝光装置(光刻系统),例如也能将本发明适用于以喷墨式来将图案形成于物体上的装置。此外,上述实施方式中待形成图案的物体(能量束所照射的曝光对象的物体)并不限于晶片,也可是玻璃板、陶瓷基板、空白光掩膜、或者膜构件等其它物体。又,该物体的形状并不仅为圆形,也可为矩形等其它形状。曝光装置用途并不限定于半导体制造用的曝光装置,也可广泛适用于例如用来制造将液晶显示元件图案转印于方型玻璃板的液晶用曝光装置,或制造有机EL、薄膜磁头、摄影元件(CCD等)、微型机器及DNA芯片等的曝光装置。又,除了制造半导体元件等微型元件以外,为了制造用于光曝光装置、EUV (极远紫外线)曝光装置、X射线曝光装置及电子射线曝光装置等的标线片或光掩膜,也能将本发明适用于用以将电路图案转印至玻璃基板或硅晶片等的曝光装置。此外,本发明并不限定于曝光装置,也可广泛适用于其它的基板处理装置(例如激光修理装置、基板检查装置等其它),或其它精密机械中的试料定位装置、打线装置等具备移动载台的装置。
又,引用上述实施方式所引用的曝光装置等相关所有公报、国际公开小册子、美国专利申请公开说明书、以及美国专利说明书的揭示,作为本说明书记载的一部份。半导体元件的制造,是经由元件的功能/性能设计步骤;根据该设计步骤来制作标线片的步骤;由硅材料来制作晶片的步骤;以上述实施方式的曝光装置将形成于光掩膜的图案转印至感光物体上的光刻步骤;元件组装步骤(含切割步骤、接合步骤、封装步骤); 及检查步骤等。此时,由于在光刻步骤是使用上述实施方式的曝光装置,因而能高良率的制得高积体化的元件。又,上述实施方式的曝光装置EX (图案形成装置),是通过组装各种次系统(包含本案申请范围中所列举的各构成要素),以能保持既定的机械精度、电气精度、光学精度的方式所制造。为确保此等各种精度,于组装前后,进行对各种光学系统进行用以达成光学精度的调整、对各种机械系统进行用以达成机械精度的调整、对各种电气系统进行用以达成电气精度的调整。从各种次系统至曝光装置的组装工艺,包含机械连接、电路的配线连接、 气压回路的配管连接等。当然,从各种次系统至曝光装置的组装工艺前,是有各次系统个别的组装工艺。当各种次系统至曝光装置的组装工艺结束后,即进行综合调整,以确保曝光装置全体的各种精度。此外,曝光装置的制造最好是在温度及清洁度等皆受到管理的洁净室进行。如上述,本发明的移动体驱动方法及移动体驱动系统,能适用在高精度的驱动移动体的情形。又,本发明的图案形成方法及图案形成装置,适用在将图案形成于该物体上的情形。又,本发明的元件制造方法,适用在微元件的制造等情况。
权利要求
1.一种曝光装置,通过投影光学系统以能量束使物体曝光,其特征在于,具备移动体,能保持所述物体而在既定面内移动;编码器系统,对与所述既定面平行配置的光栅部照射光束以测量所述移动体的位置信息;测量装置,测量所述移动体的位置信息,与所述编码器系统相异;以及控制装置,能在所述物体的曝光动作中,并用从所述编码器系统取得的位置信息与从所述测量装置取得的位置信息控制所述移动体的驱动。
2.如权利要求1所述的曝光装置,其特征在于,所述控制装置,能将用于所述移动体的驱动的位置信息从所述编码器系统与所述测量装置两方切换至所述编码器系统与所述测量装置的一方。
3.如权利要求2所述的曝光装置,其特征在于,所述控制装置,能将用于所述移动体的驱动的位置信息从所述编码器系统与所述测量装置的一方切换至另一方。
4.如权利要求1所述的曝光装置,其特征在于,所述测量装置,对所述移动体照射光束以测量其位置信息。
5.如权利要求4所述的曝光装置,其特征在于,所述编码器系统通过复数个读头分别从与所述既定面交叉的方向对所述光栅部照射光束。
6.如权利要求5所述的曝光装置,其特征在于,所述编码器系统中,通过所述移动体的移动,所述复数个读头中用于所述位置信息的测量的读头切换至其他读头。
7.如权利要求6所述的曝光装置,其特征在于,所述编码器系统中,通过所述移动体的移动,所述复数个读头中与所述光栅部对向的读头数目会变化。
8.—种曝光装置,通过投影光学系统以能量束使物体曝光,其特征在于,具备移动体,能保持所述物体而在既定面内移动;编码器系统,通过复数个读头分别从与所述既定面交叉的方向对与所述既定面平行配置的光栅部照射光束,以测量所述移动体的位置信息;以及控制装置,根据所述编码器系统的测量信息控制所述移动体的驱动;所述编码器系统中,通过所述移动体的移动,所述复数个读头中与所述光栅部对向的读头数目会变化,且所述复数个读头中用于所述位置信息的测量的读头切换至其他读头。
9.如权利要求8所述的曝光装置,其特征在于,进一步具备标记检测系统,与所述投影光学系统分离配置,用以检测所述物体的标记;在所述物体的曝光动作及标记检测动作中,所述编码器系统的测量信息用于所述移动体的驱动控制。
10.如权利要求9所述的曝光装置,其特征在于,在所述移动体从所述投影光学系统下方与所述标记检测系统的下方的一方往另一方的移动中,所述编码器系统的测量信息用于所述移动体的驱动控制。
11.如权利要求6至10中任一项所述的曝光装置,其特征在于,所述切换至少在所述物体的曝光动作中进行。
12.如权利要求5至11中任一项所述的曝光装置,其特征在于,所述编码器系统,通过所述复数个读头中与所述光栅部对向的三个或四个读头测量所述位置信息。
13.如权利要求5至12中任一项所述的曝光装置,其特征在于,所述光栅部分别包含形成光栅的四个标尺;所述编码器系统,通过与所述四个标尺的至少三个分别对向的读头测量所述位置信肩、ο
14.如权利要求1至13中任一项所述的曝光装置,其特征在于,所述编码器系统测量分别保持物体的包含所述移动体的复数个移动体的位置信息。
15.如权利要求1至14中任一项所述的曝光装置,其特征在于,进一步具备与所述编码器系统不同的编码器系统,测量保持掩膜的移动体的位置信息,该掩膜具有待形成于所述物体的图案。
16.如权利要求1至14中任一项所述的曝光装置,其特征在于,所述控制装置,根据所述编码器系统的测量信息与和所述光栅部相关的修正信息控制所述移动体的驱动。
17.如权利要求16所述的曝光装置,其特征在于,所述修正信息,包含与形成于所述光栅部的光栅间距与变形的至少一方相关的信息。
18.如权利要求16或17所述的曝光装置,其特征在于,所述修正信息,包含与形成于所述光栅部的光栅的排列相关的信息。
19.如权利要求1至18中任一项所述的曝光装置,其特征在于,所述控制装置,修正因所述光栅部产生的所述编码器系统的测量误差。
20.如权利要求1至19中任一项所述的曝光装置,其特征在于,所述控制装置,根据所述编码器系统的测量信息与和所述读头相关的修正信息控制所述移动体的驱动。
21.如权利要求20所述的曝光装置,其特征在于,所述修正信息包含与所述读头的倾倒与光学特性的至少一方相关的信息。
22.如权利要求1至21中任一项所述的曝光装置,其特征在于,所述控制装置,修正因所述读头产生的所述编码器系统的测量误差。
23.如权利要求1至22中任一项所述的曝光装置,其特征在于,进一步具备嘴构件,配置于所述投影光学系统周围,将液体供应至所述投影光学系统下;所述物体,通过所述投影光学系统与所述液体被以所述能量束曝光。
24.如权利要求23所述的曝光装置,其特征在于,所述编码器系统的一部分相对所述投影光学系统配置于所述嘴构件的外侧。
25.—种曝光方法,通过投影光学系统以能量束使物体曝光,其特征在于,包含通过对与既定面平行配置的光栅部照射光束的编码器系统,以测量能保持所述物体而在所述既定面内移动的移动体的位置信息的动作;通过与所述编码器系统相异的测量装置测量所述移动体的位置信息的动作;以及在所述物体的曝光动作中,并用从所述编码器系统取得的位置信息与从所述测量装置取得的位置信息控制所述移动体的驱动。
26.如权利要求25所述的曝光方法,其特征在于,能将用于所述移动体的驱动的位置信息从所述编码器系统与所述测量装置两方切换至所述编码器系统与所述测量装置的一方。
27.如权利要求沈所述的曝光方法,其特征在于,能将用于所述移动体的驱动的位置信息从所述编码器系统与所述测量装置的一方切换至另一方。
28.如权利要求25所述的曝光方法,其特征在于,所述测量装置,对所述移动体照射光束以测量其位置信息。
29.如权利要求观所述的曝光方法,其特征在于,所述编码器系统通过复数个读头分别从与所述既定面交叉的方向对所述光栅部照射光束。
30.如权利要求四所述的曝光方法,其特征在于,通过所述移动体的移动,所述复数个读头中用于所述位置信息的测量的读头切换至其他读头。
31.如权利要求30所述的曝光方法,其特征在于,通过所述移动体的移动,所述复数个读头中与所述光栅部对向的读头数目会变化。
32.—种曝光方法,通过投影光学系统以能量束使物体曝光,其特征在于,包含通过通过复数个读头分别从与所述既定面交叉的方向对与所述既定面平行配置的光栅部照射光束的编码器系统,以测量能保持所述物体而在所述既定面内移动的移动体的位置信息的动作;以及根据所述编码器系统的测量信息控制所述移动体的驱动;通过所述移动体的移动,所述复数个读头中与所述光栅部对向的数目会变化,且所述复数个读头中用于所述位置信息的测量的读头切换至其他读头。
33.如权利要求32所述的曝光方法,其特征在于,在所述物体的曝光动作、及与所述投影光学系统分离配置的标记检测系统对所述物体的标记检测动作中,所述编码器系统的测量信息用于所述移动体的驱动控制。
34.如权利要求33所述的曝光方法,其特征在于,在所述移动体从所述投影光学系统下方与所述标记检测系统的下方的一方往另一方的移动中,所述编码器系统的测量信息用于所述移动体的驱动控制。
35.如权利要求30至34中任一项所述的曝光方法,其特征在于,所述切换至少在所述物体的曝光动作中进行。
36.如权利要求四至35中任一项所述的曝光方法,其特征在于,通过所述复数个读头中与所述光栅部对向的三个或四个读头测量所述移动体的位置信息。
37.如权利要求四至36中任一项所述的曝光方法,其特征在于,所述光栅部分别包含形成光栅的四个标尺;通过与所述四个标尺的至少三个分别对向的读头测量所述移动体的位置信息。
38.如权利要求25至37中任一项所述的曝光方法,其特征在于,通过所述编码器系统测量分别保持物体的包含所述移动体的复数个移动体的位置信息。
39.如权利要求25至38中任一项所述的曝光方法,其特征在于,通过与所述编码器系统不同的编码器系统,测量保持掩膜的移动体的位置信息,该掩膜具有待形成于所述物体的图案。
40.如权利要求25至39中任一项所述的曝光方法,其特征在于,根据所述编码器系统的测量信息与和所述光栅部相关的修正信息控制所述移动体的驱动。
41.如权利要求40所述的曝光方法,其特征在于,所述修正信息,包含与形成于所述光栅部的光栅间距与变形的至少一方相关的信息。
42.如权利要求40或41所述的曝光方法,其特征在于,所述修正信息,包含与形成于所述光栅部的光栅的排列相关的信息。
43.如权利要求25至42中任一项所述的曝光方法,其特征在于,修正因所述光栅部产生的所述编码器系统的测量误差。
44.如权利要求25至43中任一项所述的曝光方法,其特征在于,根据所述编码器系统的测量信息与和所述读头相关的修正信息控制所述移动体的驱动。
45.如权利要求44所述的曝光方法,其特征在于,所述修正信息包含与所述读头的倾倒与光学特性的至少一方相关的信息。
46.如权利要求25至45中任一项所述的曝光方法,其特征在于,修正因所述读头产生的所述编码器系统的测量误差。
47.如权利要求25至46中任一项所述的曝光方法,其特征在于,通过配置于所述投影光学系统周围的嘴构件,将液体供应至所述投影光学系统下;所述物体,通过所述投影光学系统与所述液体被以所述能量束曝光。
48.如权利要求47所述的曝光方法,其特征在于,通过其一部分相对所述投影光学系统配置于所述嘴构件的外侧的所述编码器系统,测量所述移动体的位置信息。
49.一种元件制造方法,其特征在于包含微影步骤,使用权利要求1至M中任一项所述的曝光装置将图案转印至感光物体。
50.一种元件制造方法,其特征在于包含微影步骤,使用权利要求25至48中任一项所述的曝光方法将图案转印至感光物体。
全文摘要
本发明提供一种曝光方法、曝光装置及元件制造方法,使用干涉仪(16y)、与测量值的短期稳定性优于该干涉仪的编码器((24A,26A1)(24B,26B1)),来测量移动体(RST)在Y轴方向的位置信息,并根据该测量结果来执行既定的校正动作,以取得对编码器的测量值进行修正的修正信息。由此,能使用干涉仪的测量值来取得修正信息,该修正信息用以修正测量值的短期稳定性优于该干涉仪的编码器的测量值。又,可根据编码器的测量值与该修正信息,来以良好精度将移动体驱动于Y轴方向。
文档编号G03F7/20GK102566317SQ201210030348
公开日2012年7月11日 申请日期2007年1月19日 优先权日2006年1月19日
发明者柴崎佑一 申请人:株式会社尼康
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1