形成含硅绝缘膜的cvd方法和装置的制作方法

文档序号:3416035阅读:512来源:国知局
专利名称:形成含硅绝缘膜的cvd方法和装置的制作方法
技术领域
本发明涉及一种用于在被处理基板上形成含硅绝缘膜的CVD(Chemical Vapor Deposition,即化学气相淀积)方法和装置。
背景技术
作为半导体器件中的绝缘膜,采用SiO2、PSG(phospho Silicate Glass,即,磷硅玻璃)、P-SiO(用等离子体CVD法形成的SiO)、P-SiN(用等离子体CVD法形成的SiN)、SOG(Spin On Glass,即,旋涂玻璃)、Si3N4(氮化硅膜)等。作为在半导体晶片的表面上形成如上所述的氧化硅膜和氮化硅膜的方法,众所周知的有采用甲硅烷(SiH4)、二氯硅烷(DCSSiH2Cl2)、六氯乙硅烷(HCDSi2Cl6)、二叔丁基氨基硅烷(BTBASSiH2(NH(C4H9))2)等硅烷系列气体作为硅源气体、通过热CVD(化学气相淀积)成膜的方法。
具体地,例如在淀积氧化硅膜时,通过SiH4+N2O、SiH2Cl2+N2O、或TEOS(正硅酸四乙酯)+O2等的气体混合,利用热CVD形成氧化硅膜。此外,在淀积氮化硅膜时,通过SiH2Cl2+NH3、或Si2Cl6+NH3等的气体混合,利用热CVD形成氮化膜。
随着半导体器件的进一步高度微细化和高集成化,就需要使上述这样的绝缘膜进一步薄型化。由于需要维持在绝缘膜下侧已经形成的各种膜的电气特性,因此即使是所涉及的热CVD成膜处理的温度也正不断向低温化推进。关于这一点,例如通过热CVD淀积氮化硅膜时,过去是在760℃左右的高温下进行此氮化硅膜的淀积。但是,目前也存在将温度下降到600℃左右,通过热CVD进行淀积的情况。
在形成半导体器件时,将导电膜和上述绝缘膜相互层叠,进行图形蚀刻以形成多层结构。在形成绝缘膜之后,在其上形成其他薄膜时,上述绝缘膜表面有可能附着有机物和粒子等污染物。为此,按照要求,以去除此污染物为目的,进行清洗处理。此时,将半导体晶片浸泡在稀氢氟酸等清洗液中,对绝缘膜的表面进行蚀刻。由此,将绝缘膜的表面切削得非常薄,以去除污染物。
例如在760℃左右的高温下对上述绝缘膜进行CVD成膜时,明显地降低了绝缘膜清洗时的蚀刻速度。为此,清洗时不会过度地切削此绝缘膜,能在膜厚的控制性良好的状态下进行清洗处理。与此相反,例如在600℃左右的低温下对上述绝缘膜进行CVD成膜时,就明显地加快了绝缘膜清洗时的蚀刻速度。为此,清洗时就会产生过度地切削此绝缘膜的情况,清洗处理时的膜厚控制性劣化。

发明内容
本发明的目的在于提供一种形成含硅绝缘膜的方法和装置,用于即使在比较低的温度下成膜,也能够使清洗时的蚀刻速度变得比较低,能够提高清洗时膜厚的控制性。
本发明的第1观点为形成含硅绝缘膜的CVD方法,包括对容纳了被处理基板的处理室进行排气的同时向上述处理室内供给成膜气体,在上述被处理基板上通过淀积形成上述绝缘膜的工序,在此,同时供给上述成膜气体和碳氢化合物气体。
本发明的第2观点为形成一种绝缘膜的CVD方法,该绝缘膜实质上由从氧化硅膜、氮化硅膜及氧氮化硅膜所组成的组中选择出来的膜形成,包括对容纳了被处理基板的处理室同时进行加热和排气,同时向上述处理室内供给实质上由硅烷系列气体形成的第1气体、实质上由从氧化气体、氮化气体及氧化氮气体所组成的组中选择出来的气体形成的第2气体、以及实质上由碳氢化合物气体形成的第3气体,在上述被处理基板上通过淀积形成上述绝缘膜的工序,上述第3气体相对于上述第1气体的流量比为10~100。
本发明的第3观点为形成一种绝缘膜的CVD装置,该绝缘膜实质上由从氧化硅膜、氮化硅膜及氧氮化硅膜所组成的组中选择出来的膜形成,包括用于容纳被处理基板(W)的处理室;在处理室内用于支撑上述被处理基板的支撑构件;对被上述支撑构件支撑的上述被处理基板进行加热的加热器;对上述处理室内进行真空排气的排气部;向上述处理室内供给气体的供给部,
上述供给部包括供给实质上由硅烷系列气体形成的第1气体的第1供给系统,供给实质上由从氧化气体、氮化气体及氧化氮气体组成的组中选择出来的气体形成的第2气体的第2供给系统,以及,供给实质上由碳氢化合物气体形成的第3气体的第3供给系统,该CVD装置可同时供给第1、第2和第3气体。


图1是本发明第1实施方式的CVD装置的剖面图。
图2是通过实验1得出的C2H6气体的流量与氮化硅膜中碳成分浓度关系的图。
图3是通过实验2得出的C2H6气体的预加热温度和氮化硅膜中碳成分浓度关系的图。
图4是通过实验3得出的氮化硅膜中碳成分浓度和对应于稀氢氟酸(Diluted Hydrofluoric Acid)(49%HF∶H2O=1∶100)常规的蚀刻速度的关系图。
图5是表示通过实验4得出的C2H6气体的预加热温度和对应于氮化硅膜的稀氢氟酸(49%HF∶H2O=1∶100)常规的蚀刻速度的关系图。
图6是通过实验5得出的C2H6气体的流量(有/无预加热)和对应于氮化硅膜的稀氢氟酸(49%HF∶H2O=1∶100)常规的蚀刻速度的关系图。
图7是本发明第2实施方式的CVD装置的剖面图。
图8是通过实验6得出的碳氢化合物气体的流量和对应于氮化硅膜的稀氢氟酸(49%HF∶H2O=1∶100)常规的蚀刻速度的关系图。
图9是通过实验7得出的乙烯气体的流量和对应于氮化硅膜的稀氢氟酸(49%HF∶H2O=1∶100)常规的蚀刻速度的关系图。
具体实施例方式
本发明者等人在本发明的开发过程中,研究了清洗氧化硅膜、氮化硅膜及氧氮化硅膜等含硅绝缘膜时的蚀刻速度。结果,获得了所谓的通过使绝缘膜中活性地含有碳成分,就能够抑制使清洗时的蚀刻速度并使其减小的知识。
下面,参照

有关本发明的实施方式。再有,在下面的说明中,对于具有基本上相同功能和结构的组成部分赋予相同的符号,只在需要的情况下进行重复说明。
<第1实施方式>
图1表示本发明第1实施方式的CVD装置的剖面图。此CVD装置2同时供给实质上由硅烷系列气体(硅源气体)形成的第1气体、由从氧化气体、氮化气体及氧氮化气体所组成的组中选择出来的气体形成的第2气体、以及由碳氢化合物气体组成的第3气体,构成形成绝缘膜的结构,该绝缘膜从由氧化硅膜、氮化硅膜及氧氮化硅膜所组成的组中选择出来的膜。作为一个实例,例如使用Si2Cl6和NH3气体淀积氮化硅膜时,供给碳氢化合物气体,使膜中含有碳成分。
如图1所示,CVD装置2具有双重管结构的处理室8,该双重管结构由筒体状的石英制的内筒4、和在其外侧通过规定的间隙10按同心圆状配置的石英制的外筒6构成。处理室8的外侧由具有加热器等加热装置12和隔热材14的加热炉16所覆盖。在隔热材14的整个内表面上配设加热装置12。再有,在本实施方式中,处理室8的内筒4的内径为240mm左右,高度为1300mm左右,处理室8的容积为大约为110升。
处理室8的下端由例如不锈钢制的筒体状的主管18支撑。内筒4的下端由从主管18的内壁向外侧突出形成的环状支撑板18A支撑。从主管18的下方起,相对于处理室8承载/不承载石英制的晶片舟(wafer boat)20,该晶片舟20多段搭载作为被处理基板的半导体晶片W。在本实施方式的情况中,晶片舟20中按大致相等间距,可多段支撑例如大约150片左右的直径200mm的产品晶片和13片或20片伪晶片(dummy wafer)。即,在晶片舟20中整体可容纳170片晶片。
晶片舟20通过石英制的保温筒22被装载在旋转台24上。旋转台24被支撑在旋转轴28上,该旋转轴28贯通对主管18下端开口部进行开关的盖部26。在旋转轴28的贯通部中,插入设置例如磁性流体密封装置30,在气密地密封状态下,可旋转地支撑旋转轴28。此外,在盖部26的四周部分和主管18的下端部分,插入设置例如由O环等形成的密封构件32,保持处理室8内的密封性。
旋转轴28安装在例如被支撑在舟升降等升降结构34上的臂36的前端。利用升降结构34,使晶片轴20和盖部26等整体地升降。在主管18的侧部形成排气口38,用于将处理室8内的气体介质从内筒4和外筒6的间隙10的底部排出。在排气口38上,连接了插入设置有真空泵等的真空排气部39。
在主管18的侧部配置气体供给部40,用于向内筒4内供给规定的处理气体。具体地,气体供给部40包括硅烷系列气体供给系统42、氧化和/或氮化气体供给系统44、碳氢化合物气体供给系统46。各供给系统42、44、46分别具有通过贯通主管18的侧壁而设置的直线状的气体喷嘴48、50、52。
各气体喷嘴48、50、52上,分别通过如质量流量控制器那样的流量控制器54、56、58,分别连接各个气体通路60、62、64。气体通路60、62、64构成可分别进行流量控制并供给硅烷系列气体、氧化及/或氮化气体、碳氢化合物气体的结构。在此,例如采用六氯乙硅烷(Si2Cl6)作为硅烷系列气体(硅源气体),采用NH3作为氮化气体,并且采用乙烷作为碳氢化合物气体。再有,也可以采用N2O气体和O2作为氧化气体。
碳氢化合物气体用的气体通路64中插入设置预加热部66。预加热部66在石英容器内填充石英粒而构成,在该石英容器外部缠绕加热器等。预加热部66将在此流过的乙烷气体等碳氢化合物气体预加热到规定的温度。由此,使在预加热部66内流过的乙烷气体活化。
下面,说明有关采用上述结构的装置进行本发明的实施方式的CVD方法的内容。
首先,当CVD装置处于没有装载晶片的待机状态时,将处理室8维持在处理温度,例如维持在500℃左右。另一方面,将多片例如将150片产品晶片W和20片伪晶片装载到晶片舟20上。装载晶片之后,使常温的晶片舟20在处理室内从其下方升起,并装载在处理室8内。并且,用盖部26将主管18的下端开口部封闭,从而将处理室8内部密封起来。
接着,对处理室8内进行抽真空,并维持在规定的处理压力,例如维持在27Pa左右。此外,将晶片温度上升到成膜用的处理温度,例如上升到600℃左右。温度稳定后,在对规定的硅烷系列气体Si2Cl6气体、氮化气体NH3气体、碳氢化合物气体C2H6气体分别进行流量控制,同时从气体供给40的各喷嘴48、50、52进行供给。
通过在喷嘴52紧前的碳氢化合物气体通路64上插入设置的预加热部66,按供给前规定的温度,例如在500~1000℃范围内加热C2H6气体,将其活化。但,也可以不对C2H6气体进行预加热。将此未预加热或经预加热活化了的C2H6气体与从处理室8的下部供给的Si2Cl6气体、NH3气体加以混合。混合气体在处理空间S一边上升一边反应,在晶片W的表面淀积氮化硅膜。在处理空间S上升的处理气体,在处理室8内的天井部折返,并在内筒4和外筒6之间的间隙10流下来,从排气口38向外排出。
关于预加热部66中的C2H6气体的加热温度,下限值为大约500℃。没有特别地限定预加热的上限值,优选为后述氮化硅膜的蚀刻速度的饱和温度,例如优选为1000℃左右。没有特别地限定C2H6气体的流量的上限值,优选为后述氮化硅膜的蚀刻速度的饱和流量,例如优选为大约200sccm左右。此外,在本实施方式中,Si2Cl6气体的流量为大约30sccm左右,NH3气体的流量为大约900sccm左右。
如此,通过向处理室8内供给C2H6气体,使在晶片表面形成的氮化硅膜中含有碳成分。由此,即使以现有的成膜温度,例如以比760℃左右更低的温度进行成膜也没关系,对于清洗处理时使用的稀氢氟酸,也能使氮化硅膜表面的蚀刻速度降低。其结果,能防止清洗处理时过度地切削氮化硅膜,从而提高该膜厚的控制性。
特别地,一旦预加热C2H6气体,就使该气体活化,在氮化硅膜只含有相应量的碳成分。由此,能使氮化硅膜的蚀刻速度进一步降低。此时,如后所述,通过控制氮化硅膜中的碳成分的浓度,就能获得所希望的蚀刻速度。
其次,对使用图1所示的CVD装置进行的实验加以说明。在这些实验中,对应于在晶片舟20上装载150片产品晶片和20片伪晶片的状态进行处理。也如图1所示,有关晶片的位置,将处理室8(晶片舟20)内按上下方向分割成3个区域,分别为TOP(顶部)、CTR(中部)、BTM(底部)。在此,从晶片舟20的上部起,顶部区域属于第1号~第60号的晶片,中部区域属于第61号~第111号的晶片,底部区域属于第112号~第170号的晶片。
此外,关于蚀刻速度,将通过实验得出的数值相对于基准值“1”变换为比较值,将此当作常规的蚀刻速度使用。在此,不使用碳氢化合物气体,使用二氯硅烷(SiH2Cl2)气体和NH3气体,将处理温度设定为760℃(现有的成膜温度),将成膜的氮化硅膜的蚀刻速度作为基准值“1”。
(实验1)进行评价C2H6气体和氮化硅膜中含有的碳成分的浓度关系的实验。作为此实验的条件,分别固定处理温度为600℃,处理压力为27Pa,Si2Cl6气体流量为30sccm,NH3气体流量为900sccm,C2H6气体的预加热温度为1000℃。另一方面,使C2H6气体流量在0~200sccm范围内变化。
图2表示通过实验1得出的C2H6气体的流量和氮化硅膜中碳成分浓度的关系图。
如图2中所示,与从顶部到底部的晶片位置无关,若使C2H6气体的流量在0~200sccm范围内增加,根据此增加,氮化硅膜中的碳成分浓度就按近似直线状增加。因此,判明氮化硅膜中碳成分浓度随着增加C2H6气体的流量而增加。
(实验2)进行评价C2H6气体预加热温度和氮化硅膜中含有的碳成分的浓度关系的实验。作为此实验的条件,分别固定处理温度为600℃,处理压力为27Pa,Si2Cl6气体流量为30sccm,NH3气体流量为900sccm,C2H6气体流量为200sccm。另一方面,使C2H6气体预加热温度在500~1000℃范围内变化。
图3表示通过实验2得出的C2H6气体的预加热温度和氮化硅膜中碳成分浓度的关系图。
如图3中所示,可以看出C2H6气体的预加热温度在500~700℃范围内,氮化硅膜中含碳浓度,认为在误差范围内一部分有减小的趋势,但基本上是稍有增加。在预加热温度为700~900℃范围内,含碳浓度随温度升高急剧增加。在预加热温度为900~1000℃范围内,含碳浓度随温度升高而一点点地增加,但大致成为饱和状态。因此,判明进行C2H6气体的预加热并越提高其温度,就能使含碳浓度更高。
此时,为了将氮化硅膜中的碳成分浓度增加到某一程度以上,优选预加热C2H6气体,并将其温度设定在大约500℃以上。此外,由于在大约1000℃碳成分浓度基本上饱和,因此,优选将其上限值设定在大约1000℃左右。
(实验3)参照实验1、2的结果,进行评价氮化硅膜中的碳成分浓度和相对于稀氢氟酸的蚀刻速度的关系的实验。作为此实验的条件,分别固定处理温度为600℃,处理压力为27Pa,Si2Cl6气体流量为30sccm,NH3气体流量为900sccm,C2H6气体流量为200sccm。另一方面,通过改变预加热温度,使氮化硅膜中的含碳浓度在1×1018~1×1022atms/cm3范围内变化。
图4表示通过实验3得出的氮化硅膜中碳成分浓度和对应于稀氢氟酸(49%HF∶H2O=1∶100)常规的蚀刻速度的关系图。
如图4中所示,与从顶部到底部的晶片位置无关,若使氮化硅膜中含碳浓度由1×1018增加到1×1022atms/cm3,蚀刻速度就直线下降。即可以判明,如果控制含碳浓度,就可以控制其常规的蚀刻速度。特别地,在含碳浓度为1×1022atms/cm3时,常规的蚀刻速度大概变为“1”。即,可以判明即使在所谓处理温度为600℃的低温下成膜也没关系,也能与在760℃下成膜的现有的氮化硅膜具有大致相同的蚀刻速度。
(实验4)以补充完善实验3的结果为目的,进行评价C2H6气体预加热温度和相对于氮化硅膜的稀氢氟酸的蚀刻速度的关系的实验。作为此实验的条件,分别固定处理温度为600℃,处理压力为27Pa,Si2Cl6气体流量为30sccm,NH3气体流量为900sccm,C2H6气体流量为200sccm。另一方面,使C2H6气体的预加热在500~1000℃范围内变化。
图5表示通过实验4得出的C2H6气体的预加热温度和相对于氮化硅膜的稀氢氟酸(49%HF∶H2O=1∶100)常规的蚀刻速度的关系图。
如图5中所示,与从顶部到底部的晶片位置无关,预加热温度在500~700℃范围内,温度越升高,常规的蚀刻速度一点点地下降。在预加热温度为700~900℃范围内,随温度的升高,常规的蚀刻速度急剧下降。在预加热温度为900~1000℃范围内,常规的蚀刻速度仍稍有下降,预加热温度在1000℃左右,常规的蚀刻速度基本上变为“1”并饱和。因此,其结论是通过在900~1000℃范围内控制C2H6气体的预加热温度,就能在1~8范围内任意选择常规的蚀刻速度。
(实验5)以补充完善实验3的结果为目的,进行评价C2H6气体流量(有/无预加热)和对稀氢氟酸的蚀刻速度的关系的实验。作为此实验的条件,分别固定处理温度为600℃,处理压力为27Pa,Si2Cl6气体流量为30sccm,NH3气体流量为900sccm。另一方面,使C2H6气体流量在0~200sccm范围内变化,在各选择流量中,按不对C2H6气体进行预加热的情况(常温)和在1000℃进行预加热情况的两种条件加以设定。
图6表示通过实验5得出的C2H6气体的流量(有/无预加热)和相对于氮化硅膜的稀氢氟酸(49%HF∶H2O=1∶100)常规的蚀刻速度的关系图。
如图6中所示,在未进行预加热常温下供给C2H6气体情况时,与从顶部到底部的晶片位置无关,即使在0~200sccm范围内增加C2H6气体流量,其常规的蚀刻速度也仅从(6~7.5)降低到(5.5~7.0)。即,判明在无预加热情况下,伴随C2H6气体流量的增加,表现出蚀刻速度降低的效果,但其降低的程度非常小。
与此相反,对C2H6气体在1000℃进行预加热时,与从顶部到底部的晶片位置无关,在0~200sccm范围内一旦增加C2H6气体流量,其常规的蚀刻速度就发生很大的变化。即,C2H6气体流量在0~100sccm范围内,常规的蚀刻速度就从“6~8”急剧下降到“2”左右。流量在100~200sccm范围内,流量越增加,常规的蚀刻速度一点点地下降。流量为200sccm时,蚀刻速度大概变为“1”、其下降饱和。即,判明通过将C2H6气体的预加热温度维持在1000℃不变,将其流量控制在0~200sccm范围内,就能在1~8范围内任意选择常规的蚀刻速度。<第2实施方式>
第二实施方式在上述第1实施方式中,采用链烷烃的乙烷(C2H6)作为碳氢化合物气体。但,也可使用甲烷、丙烷、丁烷等其他的链烷烃系列作为碳氢化合物气体,而且,并没有进一步限定链烷烃系列,也可使用乙炔、乙烯等的乙炔系列的碳氢化合物等。
在第2实施方式中,采用乙炔(C2H4)气体作为碳氢化合物气体。使用乙炔气体作为碳氢化合物气体的优点是即使未进行预加热就向处理室8内供给,也能得到和上述效果相同的效果。即所谓能以非常小的蚀刻速度形成含硅膜的优点。再有,也可以预加热乙炔气体。
图7表示本发明的第2实施方式的CVD装置的剖面图。图7图示的CVD装置2X与图1图示的CVD装置2相比较,在将气体供给部40的碳氢化合物气体供给系统46连接到乙炔(C2H4)气体源,并且不包含预加热部66这一点上不同。图7图示的CVD装置2X的其他部分的结构与图1图示的CVD装置2基本相同。
即,在第2实施方式的CVD装置2X中,采用六氯乙硅烷(Si2Cl6)作为硅烷系列气体(硅源气体)、采用NH3作为氮化气体,并且采用乙炔(C2H4)气体作为碳氢化合物气体。不预加热作为碳氢化合物气体使用的乙炔气体,在大致室温的状态下导入处理室8内。
即使在第2实施方式的CVD装置2X中形成氮化硅膜的情况下,即使不预加热乙炔气体也没关系,也能使氮化硅膜中充分地含有碳成分。由此,即使在比较低的温度下进行成膜,也能使清洗时的蚀刻速度变得比较低,能够提高清洗时的膜厚控制性。如此,在将乙炔气体作为碳氢化合物气体使用的情况下,可不使用预加热的理由是由于考虑到乙炔的C=C(二重结合)的结合分解能量(约63kcal/mol)比乙烷的C-C的结合分解能量(约83kcal/mol)要小、这方面乙炔的反应性高(相差约20kcal/mol)。
其次,说明使用图7图示的CVD装置2X进行的实验。在这些实验中,对应于在晶片舟20上装载150片产品晶片和20片伪晶片的状态进行处理。也如图7所示,关于晶片的位置,将处理室8(晶片舟20)内按上下方向分割成3个区域,分别为TOP(顶部)、CTR(中部)、BTM(底部)。在此,从晶片舟20的上部起,顶部区域属于第1号~第60号的晶片,中部区域属于第61号~第111号的晶片,底部区域属于第112号~第170号的晶片。
此外,关于蚀刻速度,将通过实验得出的数值变换为相对于基准值“1”的比较值,将此当作常规的蚀刻速度使用。在此,不使用碳氢化合物气体,使用二氯硅烷(SiH2Cl2)气体和NH3气体,将处理温度设定为760℃(现有的成膜温度),将成膜的氮化硅膜的蚀刻速度作为基准值“1”。
(实验6)进行评价使用乙炔(C2H4)气体代替C2H6气体作为碳氢化合物气体时的效果的实验。作为此实验的条件,分别固定处理温度为600℃,处理压力为27Pa,Si2Cl6气体流量为30sccm,NH3气体流量为900sccm。另一方面,使C2H4气体流量在0~150sccm范围内变化。
图8表示通过实验6得出的碳氢化合物气体的流量和对应于氮化硅膜的稀氢氟酸(49%HF∶H2O=1∶100)常规的蚀刻速度的关系图。在此图表中,为了比较同时记录下在无预加热状态下使用乙烷时的结果。
如图8中所示,在无预加热使用C2H6气体的情况下,从顶部到底部的晶片位置间存在若干差异,即使在0~150sccm范围内使气体流量增加,常规的蚀刻速度也不会低于大约6~8的范围。即,此时,即使增加气体流量,常规的蚀刻速度也基本上固定,或只稍有下降。
与此相反,在无预加热使用乙炔气体作为碳氢化合物气体的情况下,在从顶部到底部的各晶片位置中,若使气体流量在0~150sccm范围内增加,根据此增加,常规的蚀刻速度大约从“5~6”下降到“3.2~4”。
(实验7)进一步进行评价使用乙炔(C2H4)气体流量和相对于氮化硅膜的稀氢氟酸的蚀刻速度的关系的实验。作为此实验的条件,分别固定处理温度为600℃,处理压力为27Pa,Si2Cl6气体流量为30sccm,NH3气体流量为900sccm。另一方面,使C2H4气体流量在0~900sccm范围内变化。
图9表示通过实验7得出的乙烯气体的流量和对应于氮化硅膜的稀氢氟酸(49%HF∶H2O=1∶100)常规的蚀刻速度的关系图。在此图表中,用从顶部到底部的晶片位置的平均值表示蚀刻速度。
如图9所示,若使乙炔气体流量在0~900sccm范围内增加,根据此增加,常规的蚀刻速度依次从大约6.45下降到大约1.80。此外,常规的蚀刻速度的降低在乙炔气体流量接近900sccm时基本上饱和。
根据实验6、7的结果,判断出将乙炔气体作为碳氢化合物气体使用时,即使不预加热,也能充分地降低氮化硅膜的蚀刻速度(即氮化硅膜中充分的含有碳成分)。
(实验8)以补充完善实验6、7的结果为目的,除设处理温度为450℃、乙炔气体流量为300sccm以外,按与实验6相同的条件(即无预加热)进行实验。其结果得出,即使在此情况下,常规的蚀刻速度与无乙炔气体导入的情况下相比,能够大约下降到一半。
再有,在第1和第2实施方式中,将成膜气体(由硅烷系列气体(硅源气体)形成的第1气体和由从氧化气体、氮化气体及氧氮化气体所组成的组中选择出来的气体形成的第2气体的组合)和碳氢化合物气体在各自系统独立地供给到处理室8内。但是,也可以将碳氢化合物气体混合到一种成膜气体(Si2Cl6气体或NH3气体)中的状态进行供给。
无论哪一种情况,碳氢化合物气体相对于成膜气体的流量比为0.3~3.2,优选为0.4~2.8。此外,碳氢化合物气体相对于硅烷系列气体的流量比为10~100,优选为15~85。若碳氢化合物气体的流量比低于上述范围时,含硅绝缘膜的蚀刻速度就变大。此时,清洗时此绝缘膜被过度切削,膜厚的控制性变差。另一方面,若碳氢化合物气体的流量比高于上述范围时,由于含硅绝缘膜的生长速度降低,不实用。
此外,在第1、第2实施方式中,使用六氯乙硅烷(HCD∶Si2Cl6)和NH3气体形成氮化硅膜时,与此同时供给碳氢化合物气体。但是,即使在使用其他处理气体形成氮化硅膜时,由于同时供给碳氢化合物气体,也能得到与上述效果同样的效果。例如,作为形成氮化硅膜的其他处理气体的例子,能列举出作为硅烷系列气体(硅源气体)的二氯硅烷(DCSSiH2Cl2)、四氯硅烷(SiCl4)、二叔丁基氨基硅烷(BTBASSiH2(NH(C4H9))2)、及六乙基氨基乙硅烷(HEAD)当中的一个,与作为氮化气体的NH3气体的组合。
此外,不仅是氮化硅膜,即使通过热CVD形成氧化硅膜时,由于同时供给碳氢化合物气体,也能得到与上述效果同样的效果。作为用于通过热CVD形成氧化硅膜的处理气体的例子,可以列举出甲硅烷(SiH4)与N2O的组合、二氯硅烷(DCSSiH2Cl2)与N2O的组合、TEOS(正硅酸四乙酯)与O2的组合,或六氯乙硅烷(HCDSi2Cl6)和N2O的组合。此时,将上述N2O气体和O2气体作为氧化气体使用。
而且,即使在形成氧氮化硅膜的情况下,由于同时供给成膜气体和碳氢化合物气体,也能得到与上述效果同样的效果。作为用于通过热CVD形成氧氮化硅膜的处理气体的例子,可以列举出二氯硅烷(DCSSiH2Cl2)与N2O和NH3气体的组合。再有,此时,如图1中虚线所示,作为CVD装置的氧氮化气体供给系统,增加NH3气体供给系统44,设置N2O气体供给系统45(图1中,符号57、63表示流量控制器及气体通路),优选将N2O和NH3气分别供给处理室8。
此外,在上述实施方式中,作为CVD装置例示出纵型的分批式装置。但是,本发明也适用于横型的分批式CVD装置或只处理1片被处理基板的片叶式CVD装置。此外,关于被处理基板,本发明也能适用于半导体晶片以外的玻璃基板和LCD基板。
根据形成上述实施方式的含硅绝缘膜的CVD方法和装置,能够得到如下的效果。即,由于在含硅绝缘膜成膜时同时供给碳氢化合物气体,就能够在含硅绝缘膜中含有碳成分。由此,即使在比较低的温度下进行成膜,也能使含硅绝缘膜的清洗时的蚀刻速度变得比较小,能够提高清洗时的膜厚控制性。进一步地,由于通过对供给的碳氢化合物气体预加热,使其活化,就能够使含硅绝缘膜中含有更多的碳成分。
权利要求
1.一种CVD方法,形成含有硅的绝缘膜,其特征在于,包括对容纳了被处理基板的处理室进行排气的同时向上述处理室内供给成膜气体,在上述被处理基板上通过淀积形成上述绝缘膜的工序,在此,同时供给上述成膜气体和碳氢化合物气体。
2.根据权利要求1中记载的方法,其特征在于,碳氢化合物气体为从乙炔、乙烯、甲烷、乙烷、丙烷、丁烷所组成的组中选择出来的一种或一种以上的气体。
3.根据权利要求2中记载的方法,其特征在于,上述碳氢化合物气体实质上由乙烯形成,未进行预加热就供给到上述处理室内。
4.根据权利要求1中记载的方法,其特征在于,还包括在将上述碳氢化合物气体供给到上述处理室内之前,将其预加热到规定温度的工序。
5.根据权利要求4中记载的方法,其特征在于,上述预加热温度在500~1000℃范围内。
6.根据权利要求1中记载的方法,其特征在于,上述碳氢化合物气体相对于上述成膜气体的流量比为0.3~3.2。
7.根据权利要求1中记载的方法,其特征在于,上述绝缘膜实质上由从氧化硅膜、氮化硅膜及氧氮化硅膜所组成的组中选择出来的膜形成。
8.根据权利要求7中记载的方法,其特征在于,上述成膜气体包括实质上由硅烷系列气体形成的第1气体,实质上由从氧化气体、氮化气体和氧氮化气体所组成的组中选择出来的气体形成的第2气体。
9.根据权利要求8中记载的方法,其特征在于,上述第1气体实质上由从六氯乙硅烷、六乙基氨基乙硅烷、二叔丁基氨基硅烷和二氯硅烷所组成的组中选择出来的气体形成,上述第2气体实质上由氮化气体形成,通过淀积形成上述绝缘膜的工序中的处理温度在450~600℃范围内。
10.一种CVD方法,形成一种绝缘膜,该绝缘膜实质上由从氧化硅膜、氮化硅膜及氧氮化硅膜所组成的组中选择出来的膜形成,其特征在于,包括对容纳了被处理基板的处理室内同时进行加热和排气,同时向上述处理室内供给实质上由硅烷系列气体形成的第1气体、实质上由从氧化气体、氮化气体及氧氮化气体所组成的组中选择出来的气体形成的第2气体、以及实质上由碳氢化合物气体形成的第3气体,在上述被处理基板上通过淀积形成上述绝缘膜的工序,上述第3气体相对于上述第1气体的流量比为10~100。
11.一种CVD装置,形成一种绝缘膜,该绝缘膜实质上由从氧化硅膜、氮化硅膜及氧氮化硅膜所组成的组中选择出来的膜形成,其特征在于,包括用于容纳被处理基板的处理室;在处理室内用于支撑上述被处理基板的支撑构件;对被上述支撑构件支撑的上述被处理基板进行加热的加热器;对上述处理室内进行真空排气的排气部;向上述处理室内供给气体的供给部,上述供给部包括供给实质上由硅烷系列气体形成的第1气体的第1供给系统,供给实质上由从氧化气体、氮化气体及氧氮化气体组成的组中选择出来的气体形成的第2气体的第2供给系统,以及,供给实质上由碳氢化合物气体形成的第3气体的第3供给系统,该CVD装置可同时供给第1、第2、第3气体。
12.根据权利要求11中记载的方法,其特征在于,上述供给部包括在将上述第3气体供给到上述处理室内之前,将其预加热到规定温度的预加热部。
全文摘要
CVD装置(2)形成由从氧化硅膜、氮化硅膜及氧氮化硅膜所组成的组中选择出来的膜构成的绝缘膜。该CVD装置包括用于容纳被处理基板(W)的处理室(8)、在处理室内用于支撑被处理基板的支撑构件(20)、加热支撑构件支撑的被处理基板的加热器(12)、对处理室内进行真空排气的排气部(39)和向处理室内供给气体的供给部(40)。供给部包括供给实质上由硅烷系列气体形成的第1气体的第1供给系统(42)、供给实质上由从氧化气体、氮化气体及氧氮化气体组成的组中选择出来的气体形成的第2气体的第2供给系统(44)和供给实质上由碳氢化合物气体形成的第3气体的第3供给系统(46),可同时供给第1、第2和第3气体。
文档编号C23C16/452GK1692480SQ0380228
公开日2005年11月2日 申请日期2003年1月14日 优先权日2002年1月15日
发明者熊谷武司, 加藤寿, 李镇秀, 真久真吾 申请人:东京毅力科创株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1