具有增强的滑动性质的涂层的制作方法

文档序号:3308512阅读:255来源:国知局
具有增强的滑动性质的涂层的制作方法
【专利摘要】本发明涉及具有涂层系统的涂布滑动部件,所述涂层系统允许在干燥和/或润滑条件下有更好的滑动性能。本发明的涂层系统特征在于具有最外层,该最外层在润滑条件下的滑动应用情况下,为包含氧化物的光滑层,或在干燥或润滑条件下的滑动应用情况下,为包含氮化钼的自润滑层,所述最外层是具有结构化表面的自润滑层,所述结构化表面包含大量直径为几微米或以下的基本圆形凹陷,所述凹陷随机地分布在表面上。
【专利说明】具有增强的滑动性质的涂层
[0001] 本发明涉及具有涂层系统的涂布滑动部件,所述涂层系统允许在干燥和/或润滑 条件下更好的滑动性能,特别是根据权利要求1-17。根据本发明提供的某些涂层系统特别 适合于高温应用,例如如权利要求19描述的摩擦系统。此外,本发明涉及在根据本发明的 滑动部件上实现表面处理的方法,如权利要求18所述。
[0002] 技术现状 在汽车工业中的现有开发大部分由对车辆更高燃料效率的市场需求和控制其排放的 提议立法所驱动,例如欧共体的条例715/2007号。新的技术方法不仅提供了获得更高发动 机效率,而且提供整体动力传动系统的更佳效率。这些新技术用于未来一代车辆的新概念, 且特别用于达到要求的CO 2下降。
[0003] 用于动力传动系中的运动部件的较轻材料、低摩擦润滑剂和改进的温度循环管理 与发动机的更高的操作温度组合,应该有助于改进燃料经济性。
[0004] 此外,使用新燃料特别是由生物产品产生或包含新型油添加剂的环境友好燃料, 产生了使用具有提高的化学、机械和热稳定性的材料的需要。此外,用于汽车工业的材料选 择也非常受减少成本的需求的影响。
[0005] 涂敷涂层的材料表面工程已经变成摩擦系统设计的重要方面。由金属氮化物、金 属-碳化合物和硬碳层组成的薄的PVD涂层已经成功用于涂布动力传动系的不同组件。 CrxN涂层已经发现会减少活塞环磨损并改善活塞衬里组的滑动性质。已经在包含的相、多 层结构和磨损行为方面研究了 CrxN的摩擦性质。因为它的应用重要性,已有尝试模型化该 材料系统的磨损行为。电弧蒸发CrxN涂层的合成已有描述,且这些涂层的微观结构和机械 性质经表征,并研究了电弧沉积Cr xN涂层的磨损。因此,CrxN用作与在本研究中讨论的其 它材料作对比的' '标准' '。
[0006] 金属-碳和类金刚石涂层支持汽车工业中更好的燃料效率的趋势。在传动装置表 面上的包含钨和碳(C:H:W)的涂层降低了摩擦并提高了发动机效率。在汽车的共轨柴油系 统的注射针上的类金刚石碳层帮助保持间隙紧密,用于所需的高注射压力。C:H:W涂层和类 金刚石涂层(C:H)大部分以反应溅射和等离子体活化CVD(PACVD)方法的组合产生,而四面 体无定形(无氢)碳经常通过阴极电弧蒸发制备。在PACVD中,利用气态前体导致在合成 的涂层中典型氢含量为5-30原子百分率。这将材料的稳定性限制在约300°C的温度,并且 是研究不含氢的碳涂层的摩擦性质的原因之一。不论许多现有应用,含碳涂层仍为重要的 研究领域,这在综述中充分概括。
[0007] 未来的发动机开发需要选择支持复杂摩擦系统的功能设计的新涂层材料。基于以 上讨论的对更好的燃料效率的需求,可利用PVD涂层以控制在低粘度润滑剂中的磨损,以 在高温和氧化环境中保护标准材料并适应不同材料之间的磨损。基于沉积方法的变化,类 金刚石碳涂层显示了对于润滑剂的不同摩檫行为,表明对于这些材料摩擦接触的优化必须 考虑与配方油和添加剂的化学反应。
[0008] 面对影响摩擦系统性能的所有参数,必须设计新的涂层材料以具有对于油和它们 的添加剂的改进的湿润性和更好的化学和热稳定性。MoN(有和没有Cu掺杂)是一种有希 望的材料,已对其研究并且也已经测试用于活塞环应用。然而,通过实际发动机测试预选择 新的涂层材料太昂贵。因此,材料和材料改进可能因成本问题而被忽视,且在不要求实际最 佳解决方案的情况下,可使用已经存在的涂层材料。
[0009] 发明目的 本发明的目的为提供用于滑动部件的一个或多个涂层系统,与目前技术水平相比,其 允许在干燥条件和润滑条件两者下关于摩擦和磨损行为的更好的滑动性能。
[0010] 发明描述 本发明提供用于在干燥条件以及润滑条件下应用的滑动部件的涂层系统。
[0011] 本发明的第一方面涉及用于在润滑条件下实现更好滑动性能的涂层系统。该涂层 系统包含含氧化物层,如图13a所描述。
[0012] 本发明的第二方面涉及用于在润滑和干燥两种条件下实现更好滑动性能的涂层 系统。该涂层系统包含含有氮化钥的含氮化物的磨合(running-in)层,如图13b和13c所 描述。该涂层系统另外包含至少一个含氧化物层或至少一个含氮化物层。
[0013] 本发明的第三方面涉及用于在润滑和干燥两种条件下实现更好滑动性能的涂层 系统。该涂层系统包含一个或多个结构化层,如图13d和13e所描述。结构化层呈现光滑 表面,但是具有可有利用于润滑剂储存的至少一些孔。
[0014] 本发明的优选实施方案为至少部分地涂布有涂层系统的滑动组件10(根据上述 本发明的第一方面),用于在润滑条件下实施的滑动应用。涂层系统1 (图13a)包含含氧化 物层7,它的表面为涂层系统1的最外表面。含氧化物层7的表面为光滑或经光滑化的表 面,具有减少的粗糙度峰值(术语经光滑化的表面用于本文是指经处理以使它光滑的层表 面)。在本发明的上下文中,显示基本无凸起(突起)但是可显示凹陷(凹穴)的表面称 为光滑表面。此外,在本发明的上下文中凹陷也称为沟谷或孔。考虑在本发明的上下文中 光滑表面的前述定义,预期低R pk值可与表面上的少量凸起有关。含氧化物层7由金属氧化 物组成且具有元素组成MepbO b,或主要包含金属氧化物且具有元素组成Me1^eXeO b,其中b>c 或b?c(在本发明的上下文中b?c是指b至少为c的两倍大),其中: -Me为具有Ι-b或Ι-b-c (如果适用)的原子百分率浓度的金属或不同金属的组合, -〇为具有原子百分率浓度b的氧,和 -如果适用,X为不同于〇的非金属元素,或X为不包含〇的非金属元素混合物,具有原 子百分率浓度c。
[0015] 优选含氧化物层7为电弧PVD沉积层,其表面经后处理以去除微滴并在涂层表面 产生沟谷或孔。在本发明的上下文中,术语''产生沟谷或孔''是指不一定在后处理期间在 表面主动制造凹穴。然而,可在后处理期间从涂层挖出至少一些微滴,在表面上产生空穴。 后处理可使用例如抛光或磨光方法实施。
[0016] 优选X是氮或碳或包含氮和/或碳。
[0017] 涂层系统1可在基底10和含氧化物层7之间包含以下类型的一个或多个层: -用于改进涂层附着的粘合强度层3,例如像在基底表面上或内部通过金属离子蚀刻 形成的金属层或非常薄的金属层,和/或 -含金属氮化物层5,例如像氮化铬层或氮化钥层,和/或 -具有元素组成Mei_b0b或Me ^XeOb的含氧化物层6。
[0018] 本发明的另一优选实施方案为至少部分地涂布有涂层系统的滑动组件(根据本 发明的上述第二方面),用于在干燥或润滑下实施的滑动应用。涂层系统Γ (图13b-c)包 含含有氮化钥的含氮化物的磨合层9'。
[0019] 在具有磨合层9'的本发明的优选实施方案的变化中,磨合层9'由氧氮化钥组成, 具有元素组成Mo dOeNf,其中d+e+f ^ l,f>e,和d>e,其中d、e和f分别为钥、氧和氮的原子 百分率浓度。氧氮化钥磨合层例如可设计成具有单层或多层或梯度结构。
[0020] 本发明的Mo-O-N磨合层所用的多层结构的实例为Mo-N和Mo-O层的组合。Mo-N 和Mo-O层的组合特别是在本发明的上下文中是指交替的Mo-N和Mo-O单层。在这种情况 下,Mo-N单层具有元素组成Mo mNn,其中m和η分别为钥和氮的原子百分率浓度。Mo-O单层 优选具有式MovO w的元素组成,其中V彡w且其中V和w分别是钥和氧的原子百分率浓度。 优选,单层具有小于300nm的层厚,例如5-300nm,更优选小于150nm。优选,在多层结构中 的至少一些单层具有小于IOOnm的厚度。另一实施例为Mo-和Mo-O-N层的组合。再一个 实施例是具有不同的元素组成的多个Mo-O-N单层的组合。
[0021] 优选Mo-O-N磨合层使用电弧PVD技术在反应性的氮和/或氧气氛中沉积。
[0022] 在包括磨合层9'的本发明的优选实施方案的另一变化中,磨合层9'除氮化 钥外还包含熔点低于钥熔点的至少一种元素。在这种情况下,磨合层9'具有元素组成 Moh-ZuffiNj,其中j+h+i ^ 1和j>h>i,其中j、h和i为氮、钥和熔点低于钥的元素或元素混 合物的兀素浓度。优选MO-Zuip-N层使用电弧PVD技术沉积。优选用于沉积MO-Z uip-N的电 弧PVD技术包括反应沉积过程,其中至少一种包含MO和Zuip的标靶在氮气氛中电弧蒸发。 优选Z uip是铜(Cu)。
[0023] 在具有磨合层9'的本发明的优选实施方案的再一个变化中,在基底10'和含氮化 物的磨合层9'之间,涂层系统Γ包含一个或多个含金属氮化物层5'(图13b)。所述一个 或多个含金属氮化物层5'可为例如氮化铬或氮化钥层。
[0024] 在具有磨合层9'的本发明的优选实施方案的再一个变化中,在基底10'和含氮化 物的磨合层9'之间,涂层系统Γ包含一个或多个含金属氧化物层6'(图13c)。一个或多 个含金属氧化物层6'可为例如氧化锆、铝铬碳氧化物或铝铬氧化物层。依据该变化的涂层 系统1'可特别适合用于在升高的温度下实施的滑动过程。
[0025] 如图13b所描述,包含一个或多个含金属氮化物层5'的涂层系统Γ在基底10' 和所述一个或多个含金属氮化物层5'之间可另外包含一个或多个粘合强度层3',用于改 进涂层附着。
[0026] 如图13c所描述,包含一个或多个含金属氧化物层6'的涂层系统Γ在基底10' 和所述一个或多个含金属氧化物层6'之间可另外包含一个或多个用于改进涂层附着的粘 合强度层3',和/或一个或多个含金属氮化物层4'。此外,包含一个或多个含金属氧化物 层6'的该涂层系统Γ在一个或多个含金属氧化物层6'和含氮化物的磨合层9'之间还可 包含一个或多个含金属氮化物层8'。
[0027] 本发明的另一个优选实施方案为至少部分地涂布有涂层系统的滑动组件 10''(根据本发明的上述第三个方面),用于在干燥或润滑条件下实施的滑动应用。涂层系 统1' '包含一个或多个结构化层9' '和9' '',如图13d_e所描述。所述一个或多个结构化 层的表面是光滑的(即其呈现减少的粗糙度峰值),但是具有''沟谷即具有小孔)。
[0028] 考虑根据本发明的该优选实施方案,涂层系统Γ'的一个变化在图13d中描述。涂 层系统1''包含仅一个结构化层9'',其表面为涂层系统Γ'的最外表面。优选结构化层 9''为含金属氧化物层,如果滑动过程必须在润滑条件下实施。优选结构化层为Mo-O-N或 Mo-Zuip-N层,例如Mo-Cu-N层,如果滑动过程必须在干燥条件下实施。如图13d所描述,包 含仅一个结构化层9''的涂层系统Γ'在基底10''和结构化层9''之间可另外包含一个 或多个用于改进涂层附着的粘合强度层3'',和/或一个或多个含金属氮化物层5''和/或 一个或多个含金属氧化物层6' '。
[0029] 考虑本发明的该优选实施方案,涂层系统Γ '的另一个变化在图13e中描述。涂 层系统1''包含至少两个结构化层9''和9'''。第一结构化层9''为涂层系统的最外层 且为自润滑层。自润滑层优选为Mo-O-N或Mo-Z uip-N层,例如像Mo-Cu-N层。第二结构化 层9' ''直接排列在最外层下且优选为含金属氧化物层,如果滑动过程必须在干燥条件和/ 或在高温下实施。如图13e中所描述,包含至少两个结构化层9''和9'''的涂层系统Γ' 在基底10''和结构化层9''之间可另外包含一个或多个用于改进涂层附着的粘合强度层 3' ',和/或一个或多个含金属氮化物层5' '和/或一个或多个含金属氧化物层6' '。
[0030] 在结构化层中可用的小孔特别有利于根据本发明的流体润滑剂储存(图13d)。此 夕卜,如果在一个结构化层例如结构化的含金属氧化物层上,沉积结构化的自润滑层(其应 作为磨合层),则在结构化的含金属氧化物层中的小孔可变得特别有利于自润滑层颗粒的 储存(图13e)。
[0031] 对于本发明的结构化层9''和9'''的合成,特别适合的是电弧PVD技术。为了改 进本发明的结构化电弧沉积层的表面,特别推荐抛光或磨光后处理。
[0032] 对此,应注意本发明的通过电弧PVD技术沉积的Mo-Cu-N层特别适合作为自 润滑层,用于摩擦系统,特别是在升高的温度下运行的滑动系统中。如果按一定方式形 成Mo-Cu-N层使得它的结构显示具有孔结构的涂层基质,则可获得特别更好的结果。在 Mo-Cu-N层涂层基质中的结构,更确切地说是孔的数量、形式和分布,可特别受标靶组成的 影响,以设计最适合的结构。Mo-Cu-N层还可设计成具有例如单层或多层或梯度结构。
[0033] 接着为了更好的说明本发明,将介绍预选涂层材料的研究。预选的涂层材料并非 首先在发动机测试中测试,而是使用简单测试方法以优化开发工作。利用往复磨损试验来 研究利用阴极电弧蒸发通过非常不同的材料涂布的基底表面的磨损和未涂布的钢对应部 件的磨损。分析对表面粗糙度和润滑的测试响应。
[0034] 本发明的上下文中研究的涂层材料主要使用反应阴极电弧蒸发产生。主要因为以 下两个原因选择该涂层沉积技术:(a)阴极电弧蒸发可易于在反应性气体中实施,如氮、氧 或烃,无需反应性气体的复杂控制,和(b)可利用复合标靶,这提供易于获取三元和四元化 合物。此外,反应电弧蒸发与反应溅射相比提供了较低的生产成本。然而,电弧技术的一个 缺点为微滴的形成,其通过阴极电弧在标靶表面蒸发期间产生。这些微滴在层合成期间结 合到涂层中。利用受控电弧(磁场支持的)或过滤电弧技术,微滴的数量可减少甚至避免。 然而,通过电弧沉积过程用于避免微滴形成的上述这两种技术方案对于工业规模的涂层生 产有缺点。受控电弧难以在纯氧气中稳定,而过滤电弧导致减少的沉积速率。因此,考虑到 在生产条件下常用抛光步骤,通过随机电弧产生微滴的缺点是可接受的。本文的研究旨在 强调通过反应电弧蒸发合成非常不同性质的涂层材料的简单性,以及通过简单的测试方法 (往复磨损试验)将它们对于滑动接触的摩擦和保护性质分级的可能性。
[0035] 发明实施例 涂层沉积和表征方法 涂层的沉积在OC Oerlikon Balzers AG的INNOVA生产系统中实施。基底(硬化钢的抛 光圆片和抛光的碳化钨衬垫)在沉积之前经湿化学清洁。在将过程室抽空到1〇_5毫巴以下 后,实施标准加热和蚀刻步骤以保证层良好附着于基底。利用单质或复合金属标靶,与经由 气流控制器进料到该室的适当的反应性气体组合。铬标祀由GfE Metalle und Materialien GmbH 生产,石墨标革巴由 Steinemann AG 生产,Mo, Al-Mo 和 Mo-Cu 标革巴由 PLANSEE Composite Materials GmbH生产。涂层主要沉积在CrxN界面上。利用该界面是因为其形成与钢的良 好附着层。此外,Cr xN也用作与其它合成涂层对比的标准,因为对于该材料在过去已经完成 许多研究。涂层的沉积在类似于其它地方描述的条件下实施。合成层代表多种材料:非常 硬的ta-C,软的CrN和Mo-基涂层。
[0036] 通过测量平均粗糙度深度Rz、粗糙度平均值Ra、减少的峰高R pk,减少的沟谷深度 Rvk和抛光前后的涂布样品的材料部分Mrl和Mr2 (根据EN ISO标准,利用触针设备(Mahr Perthometer Ml))来表征表面粗糙度。使用的触针的尖部半径为5Mm,评价长度设置为 ln=4mm(lr=0. 8)。由每个样品的三次单独测量计算平均表面粗糙度并对裸露的硬化钢基底 计算平均表面粗糙度。
[0037] 利用光学显微术(Olympus MX 40)研究SRV测试之后的磨损痕迹,用于识别来自 对应部件的物质转移和涂层材料的去除。对应部件的磨损体积由对应部件的磨损直径计 算。
[0038] 使用装备有检测器用于能量散射X-射线(EDX)分析(EDAX)的Zeiss LEO 1530 Gemini扫描电子显微镜(SEM)来检验层的表面形态和断裂横截面并实施材料的组成分析。
[0039] 通过卢瑟福背散射能谱法(RBS)在 Zurich 的 Federal Institue of Technology 的6MeV串联加速器下分析层组成。所述测量使用2MeV、4He射线和硅表面势垒探测器在 165°下实施。收集的数据使用RUMP程序评价。利用弹性反冲探测(ERD)以通过前散射评 估ta-C涂层的氢含量。
[0040] 压痕硬度(Hn)和压痕模量(En)在室温下通过马氏硬度测量法(Fisherscope HlOOc),遵循IS014577-1规则测定。
[0041] 研究合成层的晶体结构在本研究的范围以外。然而,提及选择结果以允许与参考 文献对比。在这种情况下,在具有GSbel-Mirror和固态点探测器的Bruker-AXS D8高级衍 射仪上使用Cu Ka辐射在Θ-2 Θ-模式下实施测量。I⑶D-数据库用于确定涂层中存在的 晶体学相。
[0042] 沉积涂层的磨损行为使用往复磨损试验机(SRV?,Optimol Instruments)研 究。该测试的详细信息和设置可在其它地方找到。球状对应体在负荷下相对于涂布的抛 光硬化钢样品振动。具有IOmm直径的硬化钢球(1.3505,25级,60-68 HRC)用作对应体 (Spheric-Trafalgar Ltd.)。在所述测试中,使用20N的负荷,5Hz的频率和Imm的冲程。 摩擦力通过在测试模块中的传感器连续记录,使得已知法向力可计算摩擦系数。该测试在 干燥和润滑滑动条件下实施,其中0W20二烷基硫代氨基甲酸钥(0W20 Mo-DTC)油用作润 滑剂。所有测试在室温下完成(23°C ±5°C)。未抛光的基底和干燥条件下的测试的总持 续时间为12. 5分钟,由2. 5分钟的磨合时间和10分钟的测试时间组成。磨合期间,负荷 从2N持续提高至20N。由于抛光试样和在润滑条件减少的磨损,选择122. 5分钟的测试 持续时间,包括相同的2. 5分钟磨合程序。人工实施抛光。在第一个步骤中,样品表面用 Scotch-Brite?处理,之后用抛光棒抛光。
[0043] 测试之后,涂布样品和对应体的磨损通过光学显微术评价。
[0044] 涂层性质 表1概括了阴极电弧沉积过程的大部分相关参数:阴极材料、利用的过程气体和沉积 (基底)温度。除了 ta-c合成以外,仅利用反应性气体而不加入惰性气体。在大多数情况 下,功能层沉积在CrxN界面上。仅对于ta-C,利用薄的Cr界面。所述界面和功能层的厚度 也在表1给出。合成涂层的组成通过RBS和ERD测量。而对于金属组成,估计有±3的误 差,氮含量可仅在±10%的误差下评估。利用EDX以再次检查在所述层中的金属组成并证 实RBS结果。对于分别由Mo htlNu(UOnm)和MouA^Oac^eOnm)的双层组成的多层结构, 可良好模拟Mo1. ^xOx涂层的RBS光谱。由复合标靶生产的涂层中的金属比率并不对于所 有样品反映所用标祀的金属比率。在合成Al a76Moa24N1.15中,与Al 8(iMo2(i的标祀组成相比,样 品C显示了显著的A1''损失''。该表也包含通过微观硬度测量获得的涂层机械性质、压痕 模量E n和压痕微观硬度H "。
[0045] 在表2中,列出了样品在抛光前后的描述表面粗糙度的参数(Rz、Ra、R pk、Rvk、Mrl 和Mr2)。通过电弧蒸发沉积的涂层的粗糙度随着由微滴的顺序结合引起的涂层厚度而增 力口。然而,合成涂层的表面粗糙度不仅取决于涂层厚度。其也受到例如标靶材料的熔点、标 靶的制造方法、标靶的组成和电弧源的磁场的影响。沉积在碳化钨基底上的涂层的断裂横 截面SEM(X-SEM)显微图显示在图1-6中,说明了涂层的典型形貌。Cr xN粘附层可由其在 SEM图像(图3-6)中较暗的颜色容易地与功能层区分开来。图1显示了样品A的X-SEM显 微图。具有3. 28 μ m的Rz的厚Cr i.A ^涂层的特征为层中的大量的微滴和开口,表明微滴 松散结合至涂层内。通过XRD (在此未显示)的晶体结构分析显示可能源自微滴的面心立 方氮化铬(IDD 03-065-2899)加上一些少量的体心立方铬(IDD 01-089-4055)。这与利用 低偏压的对电弧蒸发涂层的先前研究中获得的结果一致。对于ta-C层(图2),发现具有 仅I. 7Mm的厚度和I. 73Mm的艮值的玻璃质微观结构。Al ^6Motl24N1.15的X-SEM(图3)特征 为粗糙的微观结构和在生长层中的许多缺陷。相比而言,Mo hAtl的断裂横截面(图4)和 Mo1^NhOx (图5)涂层更致密,并表明在生长期间产生较少的微滴。这三个涂层具有约15 μ m 的厚度和3. 46 μ m-4. 31 μ m的Rz值。Mo Q.85CuQ. 15\。(样品F)的表面粗糙度也落在该粗糙度 范围(Rz=3. 75 μ m),但它的层厚度(图6a)仅为4. 6 μ m。这个相对高的表面粗糙度能通过 在样品表面上存在富Cu微滴来解释。这些微滴在沉积期间产生且在生长期间自由松散至 涂层表面(图6b)。因此,通过阴极电弧蒸发制造的六个样品显示了关于形貌和表面粗糙度 的多种特征,且可说明往复磨损试验对于涂层分级能力的用处。
[0046] 在抛光之后测量的表面粗糙度也在表2中给出。材料分级的趋势已经可通过比较 抛光前后的R pk值推出。这些值表现了对于Abott-Firestone曲线中大的R 2值,表面粗糙 度的降低。对于样品A、D和F,发现该值从0· 03到0· 04 μ m的显著降低。样品C(0. 17 μ m) 和样品E (0. 11 μ m)的值较高。对于样品B (ta-C)未观察到降低,从0. 53 μ m的初始Rpk到 甚至稍微更高于〇. 55 μ m。
[0047] 通过往复磨损测试在干燥未抛光和润滑抛光条件下研究不同的涂层材料。用于所 有测量的对应部件材料为100Cr6钢。测试提供了以下信息:关于CoF的时间相关性、涂布 基底和它的摩擦对应部件的磨损特性。由在对应部件产生的磨损冠 (wear cap)直径推出 的磨损体积可用于量化对应部件磨损。光学显微术用来研究物质转移,从对应部件至涂层 或与之相反。图7显示了对于所研究的材料,CoF作为时间的函数。对于干燥未抛光以及 润滑抛光条件,在测试末尾的CoF(CoF fin)在表3中列出。该表也列出了测量的磨损冠直径 和对应部件磨损体积。对于干燥未抛光的实施例,图7中的CoF曲线表不了三种材料:在 ta-C涂布的样品上观察到具有进一步降低的倾向的最低摩擦系数。然而,曲线显示了可能 由涂层的硬微滴引起的突起。对于CiY tlNhci和Al U6Moa24Nuja察到最高摩擦,对此获得约 0. 8和以上的CoF值。MoN基涂层,虽然具有与样品A和C相似的表面粗糙度,但具有较低 的摩擦系数并共有相似的摩擦系数(〇. 60-0. 65),导致中等摩擦范围。通过光学显微术测试 之后的磨损研究显示在图8a和b。该图比较了测试之后所有样品的涂层表面(上)和对 应部件的磨损冠(下)。Ci yciNu(样品A)显示了从对应部件到磨损痕迹的显著物质转移。 这对于样品B(ta-C)不同。该磨损痕迹平坦,在测试之后没有明显物质转移。相反,对应部 件从涂层接收碳。样品C的显微图表示两者的组合,并表明不明确的摩擦情况,它的非恒定 CoF行为也支持该假设(图7)。对于Mo-N基涂层材料,从对应部件到涂布样品不可见显著 的物质转移。然而,从涂层到对应部件有物质转移。对应部件的磨损在这些样品之间是不 同的。对于Mo lqNlq的磨损体积(1.83*10 7μηι3)是最高的且对于Moa85Cuai5N htl是最低的 (1. 36*106 μ m3)。对于未抛光的表面和干燥滑动条件,后者显示了对应部件的最低磨损。
[0048] 在图9中描述了对于抛光试样在润滑条件下的CoF的时间相关性,对此,测试持续 时间增加至122. 5分钟。ta-C的CoFfin减少至0. 10。不论Mo-DTC润滑,曲线的特征为尖 峰。这符合已经讨论过的不充分抛光,其没有从无定形ta-C基质去除强附着的微滴。在 ta-C的石墨化(这通过对应部件的覆盖表明)期间,微滴的逐步释放可产生这些尖峰。样品 C (Ala ^oa24N1.15)具有0. 17的CoFfin最大值。与样品B的无定形形貌相比,样品C的X-SEM 显微图显示了在层内和表面上的大量颗粒和微滴。这支持裂纹发展和碎片产生。CiYtlNhci和 Mo1.Λ.〇具有〇. 〇7的最小摩擦系数,而Mo ^ΛιΟ# Mo α Juai5Nhc^有稍微更高的0. 09的 CoFfin。磨损痕迹和对应部件的显微图显示在图IOa和b中。样品A的磨损痕迹未表明任 何涂层磨损,而且对应部件给出未磨损的印痕。通过显微图显示的对应部件的冠归因于该 区域在测试期间的可逆变形而不是真正的材料去除。样品B显示了对应部件在润滑条件下 的减少的磨损(7. 29*105 μ m3)。ta-C涂层似乎是稳定的,但在约1500s时可见CoF的阶梯 形下降,这可能归因于接触面积的变化。然而,可从在测试期间释放的硬碳微滴看到一些擦 痕。Al a #〇(|.24\15也形成稳定的涂层,对此通过光学显微术可检测到没有磨损。在研究的样 品中对应部件磨损最高。已经在以上讨论过的碎片产生或尖锐尺寸的硬微滴可阻止更好的 抛光。基于磨损冠直径,样品D、E和F显示了类似于CiY tlNhci的磨损行为。对于Mo ^化^样 品,对应部件的浅褐色变色归因于油或添加剂的降解或分解,其不会测试中的涂层稳定性。 Moa85Cuai5Nhtl(样品F)还产生类似于CiYciN hci的的磨损冠 。Mo uNhO,品的情况显著。对 应部件的磨损通过光学显微术不可检测,且环形归因于对应部件的可逆变形。不论涂层的 不同压痕硬度和压痕模数,样品A、D、E和F的可见磨损冠直径的相似尺寸表明该假设。对 于样品F,其通过仅源自弹性形变的接触面积的评价得到证实。使用在表1中给出的给定的 测试参数(对应部件的直径和负荷)、CrxN界面和MohtlNhOx*层的厚度和机械常数,用于 该接触评价。硬化钢圆片(基底)和钢对应部件的Eit测得分别为231GPa和222GPa。对 于涂层和硬化钢(圆盘和对应部件)假定0. 25和0. 3的泊松比率。弹性接触区域应用分 层接触模型评价,其使用扩展的Hertzian方法。结果,获得104. 9 μ m的接触直径,其相当 完美地符合图IOb(中部)中圆的测量半径(97μπι)。对于其它三个样品的磨损直径,也发 现相似的良好一致性。
[0049] 由实验和由涂层分析的发现 反应阴极电弧蒸发为合成复杂薄膜材料的通用方法。不需要反应性气体的复杂控制以 避免标靶中毒,如在溅射技术中需要的。此外,复合标靶支持几乎可通过该方法获得的无限 制的涂层设计。在合成材料中的金属成分的化学组成与标靶材料的对比表明两种可能性: 标靶组成对于样品F(Mc) a85Cuai5N1J可保持,而对于样品C(Ala76Mo a24Nhl5)测量到Al的显 著''损失''。由于仅-40V的低基底偏离和排他利用氮且无氩气,在沉积期间不太可能从 基底位置再溅射。
[0050] 在涂层中铝损失的作用的解释需要更详细的研究。重要的是沉积层的组成通过标 靶组成可再现地控制,如我们的实验中所示。相信未来的需求指定非常特定的材料设计,除 氮化物和氧氮化物之外,其还包括纯的氧化物用于摩擦系统优化。阴极反应电弧蒸发结合 反应性气体控制的简易性与标靶设计的自由度,以响应这些需求。与非过滤阴极电弧沉积 过程有关的微滴的产生引起了关于涂层用于摩擦应用的怀疑。对于难以通过标准方法抛光 (ta-C)的材料或在润滑条件下也显示尖锐和坚硬的轮廓或产生硬碎片(Al a76Moa24Nu5)的 材料,这确实是问题。然而,微滴形成还可用于在涂层中故意产生孔或产生在抛光期间可易 于去除的微滴。图6显不了 Moa85Cuai5P^c!样品的表面。涂层的表面特征为许多微滴和孔。 在抛光期间,大微滴可容易去除,这反映在Mrl由15. 8减少到9. 1,即减少超过40%。这意 味着大的Rz值急剧减少。然而,Mr2从91. 6减少至89. 0 (小于3%的减少)仅是不重要的。 这意味着涂层的''沟谷''特征得以保持,而大的突起被去除。对于ta-C,''沟谷''也得 以保持。但是在这种情况下,这是由于抛光的困难,导致几乎不变的表面(甚至Mrl的微小 增加沟谷''可用作润滑剂贮存体和改善系统的摩擦性能。因此,促进''软''微滴 的产生的标靶设计是对于电弧沉积技术的额外潜力,所述''软''微滴仅松散地结合到较 硬的涂层基质中。
[0051] 选择往复磨损测试用于研究,因为其具有模型化发动机中的磨损行为的潜力。该 测试可在不同的滑动条件下进行且可根据对应部件材料、润滑剂、添加剂、温度和接触压力 而改变。测试结果表明所有研究的涂层在刚沉积的状态下具有过高的表面粗糙度,导致物 质转移或过高的摩擦系数。在磨合期间,物质转移或材料变形不同于测试末尾的那些,因为 更高的接触压力和连续改变的接触条件。我们限制在测试末尾的状态。对于样品A和C,可 观察到从对应部件到涂层的物质转移,这可代表类似于''磨损''的作用。对于ta-C,观察 到物质转移至对应部件,其表明硬的ta-C被石墨化,导致固体润滑的形成。该石墨化碳对 于对应部件的覆盖是在干燥条件下低摩擦系数的原因。这表明ta-C在干燥条件下用于摩 擦应用的潜力。然而ta-C表面的抛光是困难的,且可能不允许低成本应用。具有0.6-0. 65 的CoF的涂层在测试末尾不显示物质转移至涂层。这可表明在干燥或缺乏润滑下的''无磨 损''作用,这是对于发动机应用的重要需求。然而,Mo 1. C1N1. C1和Mo h JhOx导致对应部件的高 磨损,由于它们的高表面粗糙度和硬度。如果对于这两种材料存在固体润滑作用,则其仅对 涂布样品而不是对对应部件有活性。ta-C (3· 40*106 μ m3)和SSMoa85Cuai5N1.。(1· 36*106 μ m3) 引起未抛光样品中对应部件的最低磨损,但这些涂层具有高的微观硬度。即使软的Ci^ciNu 也引起稍微更高的磨损。对于样品B和F,光学显微图(图8a和b)显示源自涂布表面的材 料对于对应部件的覆盖,并减少对应部件磨损。该结果表明通过电弧蒸发沉积的涂层的后 处理是必要的或强烈推荐的。然而,对于例如活塞环(例如Cr xN)的表面修饰方法已经用 于生产数年,且也可容易应用到新涂层材料。
[0052] 对于抛光样品在润滑条件下的往复磨损测试的结果显示了对于大多数材料的性 能增加。所有涂层具有低的磨损或无磨损。仅在ta-C层中,可观察到一些刮痕图案,其再 一次表明非常硬的微滴造成的磨损。这和抛光的微小作用(仅10%的粗糙度减少)导致较 软的100Cr6钢对应部件的显著磨损。对于样品A、D、E和F,对应部件磨损可忽略。磨损冠 直径仅显现对应部件的弹性形变。
[0053] 总而言之,研究表明阴极电弧蒸发可实现多种涂层材料,其可用于优化往复式发 动机应用的摩擦系统。往复磨损测试的结果可用作实际发动机中优化的第一个步骤或预选 择涂层用于进一步或更昂贵的测试或应用。Mo基材料显示了在测试条件下有潜力的效果, 特别对于Moa 85Cua 15\ Mo h Λ-凡多层结构。对于Mo α 85Cua 15\ μ这似乎可将阴极电弧蒸 发中微滴产生的缺点转化为优点,通过由抛光去除弱附着的微滴并保持涂层中可作为润滑 油贮存体的孔。
[0054] 本发明的其它重要方面 图7显示了阻止从对应部件到涂布部件的物质转移的一些涂层材料。这是摩擦系统设 计中的重要方面,因为物质转移意味着磨损和该组件在摩擦系统中的减少的寿命。除ta-C 以外,阻止物质转移的有利涂层材料基于MoN。这是由于在滑动条件下这些材料在表面上发 生的固体润滑:ta_C的石墨化和MoN基材料的氧化。固体润滑还可由软材料获得或改进, 只要这些材料可结合入硬涂层。用Cu掺杂MoN就是这种情况,效果是不仅阻止物质转移至 涂布部件,而且减少对应部件在干燥和未抛光条件下的磨损。在这种情况下,两种效果明显 在改进滑动条件中起作用。第一种还是在高接触压力下基于液化形式的由铜所引起自润滑 效果。取决于对应部件材料,将发生对应部件被铜覆盖或部分覆盖。此外,另一种效果可在 Mo-Cu-N涂层中观察到。这是在标靶材料蒸发期间,在涂层中源自微滴的''沟谷''或孔的 产生。在该情况下,这是来自复合标靶的电弧蒸发的期望副产物。这些微滴仅松散地结合 入涂层中(与ta-C相反)且已经在抛光之前形成具有许多孔的表面。这些微滴的铜含量 与基质涂层中的Cu含量相比更高且在基质中的软微滴的机械结合仅为不充分的。这至少 部分由于基质涂层和微滴之间的硬度差异,而且还通过抛光对于Mr2的不重要的影响而反 映。表明在抛光之前已经产生了具有用于固体和/或液体特性的润滑剂的贮存体的基质涂 层。这对于涂布表面,更明显对于液体润滑,是重要的设计工具。然而,这变成对于设计不 适用普通润滑剂(由于它们的高蒸气压或不充足的化学稳定性)的高温应用所用的表面的 重要工具。对于那些应用,''沟谷''可在固体润滑涂层(Mo-Cu-N)中形成。
[0055] 然而,固体润滑涂层的利用可能不总会给出最佳解决方案。这由图9中显示的结 果说明。虽然具有''固有的''或设计的自润滑性质的MoN基涂层(Mo-Cu-N和Mo-O-N) 显示0. 09的CoFfinal,但对于Mo-N和Cr-N,该值仅为0. 07。如上讨论,所有四种涂层显示了 无磨损或仅可忽略的磨损。然而,对于纯金属氮化物涂层,滑动条件更好。认为这是润滑剂 和它的添加剂造成的金属氮化物表面的更好湿润性的结果。
[0056] 以上讨论的问题表明对于涂布表面在干燥以及润滑和抛光以及未抛光的滑动条 件下的以下技术进步: Mo-Cu-N或Mo-O-N与Cr-N或另一种金属氮化物涂层的磨合层的组合。
[0057] 在另外的实验中,通过阴极反应电弧蒸发生产的氧化物涂层通过往复磨损测试研 究它们的滑动性质。Zr-0、Al-Cr-C-0和Al-Cr-O涂层的CoF分别显示在图lla、b和c中。 涂层具有一些共同性能:对于干燥条件它们显示很高的CoF,对于未抛光和抛光表面仅有 较小的区别。这可能由于在非润滑条件中氧化物涂层碎片的形成。然而,在抛光表面的润 滑实验中,与MoN基或CrN基涂层相比可见相似的乃至减少的磨损。对于Al-Cr-O涂层,磨 损冠直径最小且仅约180 μ m。
[0058] 这表明了第二个技术进步: 自润滑涂层(Mo-Cu-N或Μ-0-Ν)与包含氧化物的涂层的组合改善氧化物涂层的磨合性 质。氧化物涂层可在自润滑涂层沉积之前抛光或该自润滑涂层必须足够厚以减少下面的氧 化物涂层的特征表面粗糙度。
[0059] 由文献已知许多氧化物涂层形成在高温下具有比普通金属氮化物涂层好得多的 机械稳定性的温度稳定的化合物。在此未显示的实验中,纯Cr-N涂层在所用的滑动条件下 在200°C下完全不稳定,而例如Al-Cr-O涂层显示无磨损。在这些测试中,使用氧化铝对应 部件。
[0060] 在温度增加到800°C的实验中(再次使用氧化铝对应部件),可观察到Al-Cr-O涂 层的CoF可在室温下由0. 6减少到0. 4 (干燥条件)。虽然这是30%的减少,但当然远不及 在润滑条件下在室温下可获得的CoF。然而,在800°C下,普通润滑不起作用。虽然,本发明 人不能解释在高温下的自润滑过程,但滑动测试显示在氧化物涂层中或在自润滑涂层中产 生''沟谷''改进了滑动条件。''沟谷''部分(Mr2)可通过氧化物涂层的抛光或自润滑 外涂层和氧化物涂层的组合而增加。
[0061] 基于以上研究,这表明了另一个技术进步: 温度稳定的固体润滑涂层与覆盖所述温度稳定的氧化物涂层的基质涂层中的孔的组 合,其还可在表面中显示孔。
[0062] 包含本发明的自润滑最外层的涂层系统可特别有利于必须在干燥条件下运行的 摩擦系统中的应用。例如,用于在在不可能使用任何润滑剂的升高的温度下运行的摩擦系 统中的应用。在滑动摩擦系统的情况下,其包含至少第一和第二滑动组件且每个滑动组件 具有至少一个滑动面暴露于摩擦接触(一个滑动面相对于另一个的相对移动)。为了避免 或减少所涉及的滑动组件的磨损,第一滑动组件的滑动面和/或第二滑动组件的滑动面应 该用根据本发明的任一实施方案的涂层系统(至少部分地)涂布,所述涂层系统包括自润 滑最外层。
[0063] 表格 表1 :涂层的最相关的沉积参数、化学组成和涂层的机械性质。
【权利要求】
1. 滑动组件(10),其具有在润滑条件下暴露于相对于另一个组件的相对移动的滑动 面,其中所述滑动组件(10)的滑动面至少部分地涂布有包含最外层(7)的涂层系统(1),其 特征在于: 所述最外层(7)为至少主要包含金属氧化物且具有式Mei_b_eXt〇b限定的元素组成的含 氧化物层,其中b〉〉c且c〉0或c=0,其中 Me为具有1-b-c的原子百分率浓度的金属或不同金属的组合,和 0为具有原子百分率浓度b的氧,和 X为不同于0的非金属元素,或X为不包含0的非金属元素混合物,具有原子百分率浓 度C, 和其中所述最外层(7)显示为光滑表面。
2. 权利要求1的滑动组件,其特征在于所述光滑表面包含大量直径为几微米或W下的 基本圆形凹陷,所述凹陷随机地分布于所述表面上。
3. 权利要求1或2的滑动组件(10),其特征在于所述光滑表面为抛光表面。
4. 权利要求1-3中任一项的滑动组件(10),其特征在于所述含氧化物层(7)为包含埋 在所述层内的微滴的电弧PVD沉积层。
5. 权利要求1-4中任一项的滑动组件(10),其特征在于: a. 包含在所述含氧化物层(7)中的所述非金属元素X为氮或碳,或 b. 包含在所述含氧化物层(7)中的非金属元素X的所述混合物包含氮和/或碳。
6. 权利要求1-5中任一项的滑动组件(10),其特征在于所述涂层系统(1)另外包含: a. 用于改进涂层附着的至少一个粘合强度层(3),和/或 b. 至少一个含金属氮化物层巧),和/或 C.排列在所述最外层(7)下的至少一个另外的含氧化物层化),所述另外的含氧化物 层做不同于所述最外层(7)。
7. 滑动组件(10'),其具有在干燥或润滑条件下暴露于相对于另一个组件的相对移动 的滑动面,其中所述滑动组件(10')的所述滑动面至少部分地涂布有涂层系统(1'),其包 含沉积作为最外层巧')的含氮化物的磨合层,其特征在于所述最外层巧')包含氮化钢。
8. 权利要求7的滑动组件(10'),其特征在于所述最外层巧')由氧氮化钢组成且优选 具有元素组成M〇d〇eNf,其中d+e+f W l,f〉e,和d〉e,其中,d、e和f分别为钢、氧和氮的原子 百分率浓度。
9. 权利要求7-8中任一项的滑动组件(10'),其特征在于所述氧氮化钢磨合层为单层 或多层或梯度层。
10. 权利要求9的滑动组件(10'),其特征在于所述氧氮化钢磨合层为多层,其具有: a. 氮化钢和氧化钢单层的组合,其中所述氧化钢单层优选具有式MOyO,的元素组成,其 中v〉w,其中V和W分别为钢和氧的原子百分率浓度,和/或 b. 沿着所述磨合层厚度具有不同的元素组成的氧氮化物单层组合。
11. 权利要求9-10中任一项的滑动组件(10'),其特征在于在所述多层结构中的所述 单层的厚度小于300nm,优选小于150nm,更优选至少一个单层的厚度至少小于lOOnm。
12. 权利要求7-11中任一项的滑动组件(10'),其特征在于所述磨合层巧')除氮化钢 外还包含烙点低于钢烙点的至少一种元素或元素混合物。
13. 权利要求7-12中任一项的滑动组件(10'),其特征在于所述涂层系统(r)另外包 含: a. 至少一个用于改进涂层附着的粘合强度层(3'),其直接沉积在基底上,和/或 b. 至少一个含金属氮化物层巧')或(4'),其直接沉积在所述基底上,或者若有粘合强 度层保),则沉积在所述粘合强度层保)上,和 C.优选至少一个含金属氧化物层化'),其沉积在所述粘合强度层(3')或所述含金属 氮化物层(4')上,和 d.优选至少一个含金属氮化物层巧'),若有含金属氧化物层化'),则其沉积在所述含 金属氧化物层化')上。
14. 权利要求7-13中任一项的滑动组件(10'),其特征在于,所述含氮化物的磨合层 巧')为包含埋入所述层内的微滴的电弧PVD沉积层。
15. 滑动组件(10' '),其具有在干燥或润滑条件下暴露于相对于另一个组件的相对移 动的滑动面,其中所述滑动组件(10'')的所述滑动面至少部分地涂布有包含最外层巧 的涂层系统(1''),其特征在于所述最外层巧为具有结构化表面的自润滑层,所述结 构化表面包含大量直径为几微米或W下的基本圆形凹陷,所述凹陷随机地分布于所述表面 上。
16. 权利要求15的滑动组件,其特征在于所述最外层为氧氮化钢层或具有元素组成 Mc^-ZuiPiNj侦层,其中j+h+i W 1且j〉h〉i,其中为烙点低于钢烙点的一种元素或元素混 合物,且j、h和i为氮、钢和Zuip的原子百分率元素浓度,优选Zuip为化。
17. 权利要求15或16的滑动组件(10' '),其特征在于所述涂层系统(1' ')另外包含: a. 直接排列在所述最外层巧下的至少一个含金属氧化物层化''),或直接排列在 所述最外层巧下的至少一个结构化含金属氧化物层巧''),和 b. 优选至少一个用于改进涂层附着的粘合强度层(3''),其直接沉积在基底上,和 C.优选至少一个含金属氮化物层巧''),其直接沉积在所述基底上或所述粘合强度层 保')上。
18. 用于生产滑动组件、特别是用于生产权利要求16-17中任一项的滑动组件(10' ') 的方法,其包含W下步骤:通过电弧PVD将层沉积,形成包含基本为Mo-Z^N的最外层,其中 为具有低于钢的烙点的元素或元素混合物,其中所述电弧PVD沉积技术包括反应沉积 过程,其中至少一个包含Mo和的标祀在氮气氛下经电弧蒸发,从而产生至少部分地不 附着于所述表面的微滴系综,导致表面具有大量直径为几微米或W下的基本圆形凹陷,所 述凹陷随机地分布于所述表面上。
19. 包含至少第一和第二滑动组件的摩擦系统,每个滑动组件分别具有至少一个滑动 面,所述至少一个滑动面暴露于摩擦接触,特别是在干燥条件下暴露于相对移动,其特征在 于所述第一滑动组件的滑动面和/或所述第二滑动组件的滑动面根据权利要求7-17中任 一项至少部分地涂布。
【文档编号】C23C14/32GK104471101SQ201380024812
【公开日】2015年3月25日 申请日期:2013年3月11日 优先权日:2012年3月12日
【发明者】拉姆 J., 赛贝特 F., 维德里希 B. 申请人:欧瑞康贸易股份公司(特吕巴赫)
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1