一种高强致密钛合金‑陶瓷生物复合材料的制备方法与流程

文档序号:13198132阅读:395来源:国知局

本发明属于金属-陶瓷复合材料技术领域,涉及一种高强致密钛合金-陶瓷生物复合材料的制备方法。



背景技术:

伴随着人口老龄化现象的加剧与科学水平的进步,人类对医疗健康的要求与期望不断提高。据统计,当今世界伤残患者超过4亿,受牙齿病痛折磨的病人超过九成。面对如此严峻的挑战,世界各国纷纷加大研究、投入力度。根据预测,未来10~15年内,生物植入材料相关产业将会成为世界的主要支柱之一。生产制造一种无毒、低弹性模量、高强度和生物相容性好的材料是当前生物材料技术的主要目标之一。

目前。钛合金、不锈钢以及co-cr基合金等金属生物材料由于其优异的机械性能已经广泛应用在外科手术的组织修复中。钛合金更是因为具有密度低、机械性能好、弹性模量低、生物相容性好以及耐腐蚀性好等众多优点成为医用金属材料的首选。然而这类金属材料在与自身或其他金属接触摩擦时会产生过度的磨损,磨损和持续的骨质溶解是膝部和臀部等长期外科植入材料造成无菌松动的主要原因。研究发现,从钛基合金中释放的磨损颗粒会对人体的健康造成不利影响,引发组织黑化及金属沉着病等一些列问题。因此钛合金在膝盖和臀部等磨损部位较大的区域应用受到了限制。

为了克服这一缺点,利用复合材料可以实现结合两种不同材料的优点。金属-陶瓷复合材料可以实现在一种材料中结合金属和陶瓷两者优点的效果。一些生物陶瓷,例如al2o3、zro2等,由于他们自身的高硬度、低摩擦系数和磨损率等优点在应用时几乎不会造成磨损颗粒和骨质溶解。此外,陶瓷材料通过与高韧性、高强度的钛结合,会减少部分植入金属和脆性陶瓷的离子释放,从而提高在体内的耐腐蚀性和稳定性。

目前最新的第三代生物医用钛合金,因为其中加入了nb、zr、ta等元素被称为β型钛合金。与目前最流行的ti-6al-4v医用钛合金相比,不仅弹性模量更低,还不会引入有毒元素,增加了植入材料的安全性,因此第三代医用钛合金有着广阔的市场前景。但新加入的这些元素熔点高、塑性差,加工变形困难,不仅使钛合金化过程变得更加困难,且增加了冶炼成本。今年来兴起的放电等离子烧结(sps)因升温速度快、保温时间短,可制备晶粒细小、致密度高的烧结体等优点,在陶瓷材料、金属材料以及复合材料已经有了广泛应用,探索一种新型钛合金的加工制备方式势在必行。



技术实现要素:

为了解决医用钛合金磨损性差、制备困难等缺陷,本发明提供了一种高强致密钛合金-陶瓷生物复合材料的制备方法。通过给钛合金粉末添加一定量的氧化物陶瓷粉末(氧化铝、氧化锆、羟基磷灰石等),采用sps成功烧结制备了钛合金-陶瓷生物复合材料。其中,氧化物陶瓷能提高钛合金材料的耐磨性、强度等性能,而且作为生物材料,氧化物陶瓷相能有效改善材料的生物相容性。

一种高强致密钛合金-陶瓷生物复合材料的制备方法,包括混料和烧结两个过程,具体步骤如下:

(1)混料。按95~80∶5~20质量比混合钛合金粉和氧化物陶瓷粉,加入酒精进行球磨,获得钛合金-陶瓷相混合均匀的粉料。

(2)烧结。将混匀的粉料干燥,随后放入石墨模具中压制,粉料周围使用碳纸包裹,防止模具和材料粘连。烧结采用放电等离子烧结炉(sps),烧结过程中,其烧结压力、真空度、烧结速度、烧结温度和保温时间均可调。随炉冷却后得到高强致密钛合金-陶瓷生物复合材料。

所述的放电等离子烧结(sps)时,通常采用的烧结压力、真空度、烧结速度、烧结温度和保温时间如下:压力调至≥50mpa,真空度降低至≤10pa,烧结速度为50~150℃·min-1,烧结温度为1050~1250℃,保温5~20min。

所述钛合金为常用的医用钛合金,如ti-6al-4v、ti-13nb-13zr、ti-35nb-7zr-5ta、ti-24nb-4zr-8sn等,一般要求粒度≤50μm。

所述氧化物陶瓷为常用的生物陶瓷类,如zro2、al2o3、羟基磷灰石(ha)等。一般要求纯度≥99.99%,粒度≤50μm。

所述球磨设备为行星式球磨机,转速设定为300r·min-1,单向运行,球磨时间为8~10h。

本发明的制备方法,具备工业化可能性,可大范围推广应用在生物材料领域。与现有技术相比,一方面是制备方法简单快捷,制备的样品成分均匀、致密;另一方面是所制钛合金-陶瓷生物复合材料与纯钛合金相比,其机械性能提升显著,生物相容性也得到了改善。

附图说明

图1是本发明的高强致密钛合金-陶瓷生物复合材料制备方法工艺流程图。

具体实施方式

下面通过实施例对本发明的技术方案进行清晰完整地描述,但是,本发明并不局限于以下实施例,所述只是适用本发明的部分实例。

实施例中所用药品,除特殊说明皆为市购。

实施例1

(1)将ti2448(ti-24nb-4zr-8sn、中科院金属所购入)和纳米zro2按95∶5质量比混合配料,然后把混匀的料与氧化锆磨球按质量比1∶2加入球磨罐,加酒精至球磨罐三分之二处。混合料在行星式球磨机300r·min-1中球磨10h。将球磨完毕的原料在120℃干燥箱恒温干燥。

(2)将干燥完成的复合粉末放入的石墨模具,周围、上下皆用碳纸包裹。

(3)将模具放入sps炉内,抽真空至真空度降至10pa以下,炉子压力增至50mpa,烧结速率设为100℃·min-1,烧结温度定为1150℃,保温10min。结束后随炉冷却。根据检测,试样的致密度达94.55%,压缩屈服强度为1434mpa,显微硬度达430hv,在人工模拟体液(hank’s液)中放置10天无明显腐蚀痕。

实施例2

(1)将ti2448(ti-24nb-4zr-8sn、中科院金属所购入)和微米y2o3稳定zro2(ysz)按95∶5质量比混合配料,然后把混匀的料与氧化锆磨球按质量比1∶2放入球磨罐,加酒精至球磨罐三分之二处。混合料在行星式球磨机300r·min-1中球磨10h。将球磨完毕的原料在120℃干燥箱恒温干燥。

(2)将干燥完成的复合粉末放入的石墨模具,周围、上下皆用碳纸包裹。

(3)将模具放入sps炉内,抽真空至真空度下降到10pa以下,炉子压力增至50mpa,烧结速率设为100℃·min-1,烧结温度定为1150℃,保温10min。结束后随炉冷却。根据检测,试样的致密度达94.44%,压缩屈服强度为1548mpa,显微硬度达450hv,在人工模拟体液(hank’s液)中放置10天无明显腐蚀痕。

实施例3

(1)将ti2448(ti-24nb-4zr-8sn、中科院金属所购入)和纳米zro2按90∶10质量比混合配料,然后把混匀的料与氧化锆磨球按质量比1∶2加入球磨罐,加酒精至球磨罐三分之二处。混合料在行星式球磨机300r·min-1中球磨10h。将球磨完毕的原料在120℃干燥箱恒温干燥。

(2)将干燥完成的复合粉末放入的石墨模具,周围、上下皆用碳纸包裹。

(3)将模具放入sps炉内,抽真空至真空度下降到10pa以下,炉子压力增至50mpa,烧结速率设为100℃·min-1,烧结温度定为1150℃,保温10min。结束后随炉冷却。根据检测,试样的致密度达96.33%,压缩屈服强度为2053mpa,显微硬度达553hv,在人工模拟体液(hank’s液)中放置15天无明显腐蚀痕。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1