一种钛表面氧化锆复合陶瓷膜层的制备方法

文档序号:10484099阅读:645来源:国知局
一种钛表面氧化锆复合陶瓷膜层的制备方法
【专利摘要】本发明公开了一种钛表面氧化锆复合陶瓷膜层的制备方法,该方法为:1、在钛零件表面采用真空离子镀方法制备锆膜层,通过调整镀膜工艺参数,沉积制备厚度1~50μm的锆膜层;2、将制备了锆涂层的工件进行真空热处理,钛工件表面锆膜层与基体进一步互扩散,获得一定厚度的钛、锆互扩散层;3、将表面制备了锆扩散层的钛工件进行微弧氧化处理,工件表面生成含氧化钛的复合氧化锆陶瓷膜层,陶瓷层的厚度1~100μm;氧化锆含量10%~100%。本发明采用离子镀膜与微弧氧化技术在钛及钛合金表面制备氧化锆复合陶瓷膜层,通过调节基体表面沉积膜层厚度以及扩散热处理获得不同锆含量的过渡层,最终通过微弧氧化在钛基体表面获得不同厚度和氧化锆含量的复合陶瓷膜层。
【专利说明】
一种钛表面氧化锆复合陶瓷膜层的制备方法
技术领域
[0001]本发明属于材料技术领域,涉及复合陶瓷膜层,尤其是一种钛表面氧化锆复合陶瓷膜层的制备方法。
【背景技术】
[0002]钛具有高的比强度、优良的耐蚀性,在航空、航天、原子能等领域获得日益广泛的应用,为了满足钛合金在中高温环境的使用要求,需要在钛表面制备陶瓷涂层。氧化锆涂层具有很高的熔点(2715-2850°C)、低的热导率,同时还具有很好的韧性和高温化学稳定性。因此氧化锆陶瓷涂层获得广泛的应用。例如= ZrO2-S12涂层,具有强的耐热冲击性和良好的耐药品性能,主要用于高温耐磨损零件、熔融金属接触的零件;T12-ZrO2涂层具有高的热辐射系数,用于热辐射涂层,并具有很好的高温耐蚀性能,主要用于火箭喷管、火箭发动机的燃烧室;ZrO2-MgO2涂层用于热障涂层、绝热涂层耐金属熔融金属侵蚀及高温腐蚀涂层等;ZrO2-YO2类涂层是应用最广的隔热材料。而氧化铝增强的四方多晶氧化锆(TZP)(四方氧化锆颗粒在I微米左右)陶瓷具有超高强度,其耐磨性能是纯氧化铝的8倍。氧化锆还具有生物相容性,其制备的关节已经进行动物试验。
[0003]氧化物陶瓷涂层的制备方法主要是超音速喷涂和等离子喷涂技术。超音速喷涂、等离子喷涂方法制备陶瓷涂层结合力差,一般在20MPa左右,膜层疏松多孔;并且喷涂涂层受工艺的限制,在工件内壁无法进行喷涂;喷涂涂层的成分也受到粉末种类的限制。
[0004]微弧氧化技术(又称微等离子氧化、阳极火花沉积)是最近几十年发展起来的在T1、Al、Mg、Zr等有色金属表面原位生长氧化物陶瓷膜的新技术。它是在普通阳极氧化基础上,进一步提高电压,使电压超出法拉第区,达到了金属阳极表面生长的钝化氧化膜的击穿电压,在阳极上产生弧光放电,弧光放电产生的瞬时高温高压作用,引起各种热化学反应,使得金属阳极与溶液中的阴离子发生反应,在阳极表面生成阳极金属氧化物的膜层。氧化过程中微电弧参加了反应,提供氧化膜烧结及原子热扩散所需的能量。陶瓷氧化膜的形成过程非常复杂,在局部高温、高压、强电场的作用下,氧化过程中化学氧化、电化学氧化、等离子体微弧氧化同时存在,电解质中的某些组分会从溶液中析出,和基体金属一起被烧结氧化形成一层致密的非金属陶瓷膜层。微弧氧化技术具有以下特点:(I)膜层在基体表面原位生长,与基底呈冶金结合,结合牢固,陶瓷膜致密均匀。(2)微弧氧化技术可以在细管内壁,工件盲孔中制备膜层。(3)微弧氧化技术操作工艺简单,对前处理要求低,对环境无污染。
[0005]本发明就是采用微弧氧化技术在有色金属表面制备金属氧化物陶瓷膜层,通过对基体金属表面渗入需要的金属元素和氧化溶液组分的调节获得所需要的膜层成分及含量。

【发明内容】

[0006]本发明的目的在于克服上述现有技术的缺点,提供一种钛表面氧化锆复合陶瓷膜层的制备方法。
[0007]本发明的目的是通过以下技术方案来实现的:
[0008]这种钛工件表面氧化锆复合陶瓷膜层的制备方法,包括以下步骤:
[0009]步骤一、将钛工件表面除油清洗后脱水干燥,将钛工件置于真空离子镀膜机中作为阳极,采用纯锆作为阴极靶源,在真空离子镀膜机的真空度为I X 10—1Pa?9X10—1Pa的氩气气氛保护条件下对所述钛工件进行真空等离子镀膜处理,在钛工件表面得到沉积膜层;
[0010]步骤二、将步骤一中表面具有所述沉积膜层的钛工件置于真空热处理炉中,在真空热处理炉的真空度不大于2\10—中&,温度为500°(:?650°(:的条件下保温51^11?2401^11进行真空热处理;
[0011]步骤三、将步骤二中真空热处理后的钛工件置于电解槽中,以钛工件为阳极,以不锈钢板为阴极进行微弧氧化处理,在钛工件表面得到氧化锆复合陶瓷膜层。
[0012]进一步,上述步骤一中:所述钛工件为纯钛。优选的:所述钛工件牌号为TA0、TA1或TA2。
[0013]进一步,上述步骤三的微弧氧化处理时,电压为350V?500V,频率为400?650HZ,占空比为5%?40% ;所述微弧氧化处理的时间为20min?120min。
[0014]进一步,上述步骤一中所述除油清洗的具体过程为:先采用清洗液进行超声清洗,然后采用清水冲洗;所述清洗液由碱性清洗剂和水混合而成,所述清洗液中清洗剂的质量浓度为4%?10%。
[0015]进一步,上述步骤一中所述纯错的质量纯度不低于99.8%。
[0016]进一步,上述步骤三中所述微弧氧化处理的电解液由水、氢氧化钠和硅酸钠混合而成,所述电解液中氢氧化钠的质量浓度为0.5%?1.5%,所述电解液中硅酸钠的质量浓度为5%?30%。
[0017]进一步,上述真空等离子镀膜处理的脉冲负偏压为450V?500V,靶材电流为20A?60A,时间为30min?120min。
[0018]相对于现有技术,本发明具有以下有益效果:
[0019]本发明钛表面氧化锆复合陶瓷膜层的制备方法是通过离子镀锆和热处理的方法在钛基体表面获得钛/锆扩散层,扩散层内钛/锆成分呈梯度过渡分布。然后通过微弧氧化法在此样品表面获得氧化锆/氧化钛的复合陶瓷膜层,该方法是在高电压作用下,试样作为阳极产生弧光放电,与溶液发生电化学反应,表面的钛/锆元素自身发生氧化,形成氧化物陶瓷层,由于该涂层是在基体原位生成的,所以该涂层致密,与基体具有很高的结合力,结合力大于40MPa,而常用的热喷涂陶瓷层结合力通常为20MPa左右,并且热喷涂陶瓷涂层孔隙率大。本发明制备的含氧化锆复合陶瓷涂层与基体呈冶金结合,具有良好的结合力,通过对不同制备工艺的调整,陶瓷层的厚度1?I ΟΟμπι;氧化锆含量1 %?100 %。
【附图说明】
[0020]图1为Ti表面离子镀Zr端面成分测试点分布图;
[0021 ]图2为Ti表面离子镀Zr端面成分随深度变化曲线图;
[0022]图3为Ti表面离子镀Zr并微弧氧化后端面形貌图;
[0023]图4为Ti表面离子镀Zr并微弧氧化后表面膜层物相图。
【具体实施方式】
[0024]本发明的钛工件表面氧化锆复合陶瓷膜层的制备方法,包括以下步骤:
[0025]步骤一、将钛工件表面除油清洗后脱水干燥,将钛工件置于真空离子镀膜机中作为阳极,采用纯锆作为阴极靶源,在真空离子镀膜机的真空度为I X 10—1Pa?9X10—1Pa的氩气气氛保护条件下对所述钛工件进行真空等离子镀膜处理,在钛工件表面得到沉积膜层;所述除油清洗的具体过程为:先采用清洗液进行超声清洗,然后采用清水冲洗;所述清洗液由碱性清洗剂和水混合而成,所述清洗液中清洗剂的质量浓度为4%?10%。所述纯锆的质量纯度不低于99.8%。
[0026]步骤二、将步骤一中表面具有所述沉积膜层的钛工件置于真空热处理炉中,在真空热处理炉的真空度不大于2\10—中&,温度为500°(:?650°(:的条件下保温51^11?2401^11进行真空热处理;
[0027]步骤三、将步骤二中真空热处理后的钛工件置于电解槽中,以钛工件为阳极,以不锈钢板为阴极进行微弧氧化处理,在钛工件表面得到氧化锆复合陶瓷膜层。步骤三的微弧氧化处理时,电压为350V?500V,频率为400?650HZ,占空比为5%?40%;所述微弧氧化处理的时间为20min?120min。所述微弧氧化处理的电解液由水、氢氧化钠和硅酸钠混合而成,所述电解液中氢氧化钠的质量浓度为0.5%?1.5%,所述电解液中硅酸钠的质量浓度为5%?30%。
[0028]在本发明的最佳实施例中,所述钛工件为纯钛。优选的:钛工件牌号为TA0、TA1或TA2。真空等离子镀膜处理的脉冲负偏压为450V?500V,靶材电流为20A?60A,时间为30min?120mino
[0029]下面结合实施例和附图对本发明做进一步详细描述:
[0030]实施例1
[0031]将20mmX20mm的Ti板材进行碱洗除油,并用清水反复冲洗,晾干,置于离子镀膜室,预抽真空至lX10-3Pa,加载负偏压500V进行溅射清洗lOmin,开启装有Zr靶电源进行离子镀Zr,控制镀膜时间30min,沉积得到厚度Ιμπι的锆膜层。镀Zr完成后,进行真空热处理,控制温度在800°C,处理时间120π?η,100μπι的锆扩散层。最后进行微弧氧化处理,可在样品表面获得含氧化锆为10%复合陶瓷膜层。
[0032]实施例2
[0033]将内径为Φ20πιπι的Ti管材进行碱洗除油,并用清水反复冲洗,晾干。置于离子镀膜室,预抽真空至lX10-3Pa,加载负偏压800V进行溅射清洗lOmin,开启装有Zr靶电源进行离子镀Zr,控制镀膜时间120min,沉积得到厚度50μπι的锆膜层。镀Zr完成后,进行真空热处理,控制温度在200°C,处理时间5min,ΙΟμπι的锆扩散层。最后进行微弧氧化处理,可在样品表面获得含氧化锆为100%复合陶瓷膜层。
[0034]实施例3
[0035]将20mmX20mm的Ti板材进行碱洗除油,并用清水反复冲洗,晾干,置于离子镀膜室,预抽真空至IX 10-3Pa,加载负偏压1000V进行溅射清洗lOmin,开启装有Zr靶电源进行离子镀Zr,控制镀膜时间60min,沉积得到厚度20μπι的锆膜层。镀Zr完成后,进行真空热处理,控制温度在4000C,处理时间1min,30μπι的锆扩散层。最后进行微弧氧化处理,可在样品表面获得含氧化锆为80 %复合陶瓷膜层。
[0036]实施例4
[0037]将20mmX20mm的Ti板材进行碱洗除油,并用清水反复冲洗,晾干。置于离子镀膜室,预抽真空至lX10-3Pa,加载负偏压1500V进行溅射清洗lOmin,开启装有Zr靶电源进行离子镀Zr,控制镀膜时间90min,沉积得到厚度40μπι的锆膜层。镀Zr完成后,进行真空热处理,控制温度在600 °C,处理时间10min,80μπι的锆扩散层。最后进行微弧氧化处理,可在样品表面获得含氧化锆为60 %复合陶瓷膜层。
[0038]实施例5
[0039]步骤(I):将钛工件表面除油清洗后脱水干燥,将钛工件置于真空离子镀膜机中作为阳极,采用纯锆作为阴极靶源,在真空离子镀膜机的真空度为I X 10—1Pa的氩气气氛保护条件下对所述钛工件进行真空等离子镀膜处理,在钛工件表面得到沉积膜层;本步骤中,除油清洗的具体过程为:先采用清洗液进行超声清洗,然后采用清水冲洗;所述清洗液由碱性清洗剂和水混合而成,所述清洗液中清洗剂的质量浓度为4%。所述纯锆的质量纯度不低于99.8%。
[0040]步骤(2):将步骤(I)中表面具有所述沉积膜层的钛工件置于真空热处理炉中,在真空热处理炉的真空度不大于2 X 10—3Pa,温度为500°C?650°C的条件下保温5min?240min进行真空热处理;
[0041]步骤(3):将步骤(2)中真空热处理后的钛工件置于电解槽中,以钛工件为阳极,以不锈钢板为阴极进行微弧氧化处理,在钛工件表面得到氧化锆复合陶瓷膜层。步骤(3)的微弧氧化处理时,电压为350V?500V,频率为400?650HZ,占空比为5%?40% ;所述微弧氧化处理的时间为20min?120min。所述微弧氧化处理的电解液由水、氢氧化钠和硅酸钠混合而成,所述电解液中氢氧化钠的质量浓度为0.5%,所述电解液中硅酸钠的质量浓度为30%。
[0042]实施例6
[0043]步骤(I):将钛工件表面除油清洗后脱水干燥,将钛工件置于真空离子镀膜机中作为阳极,采用纯锆作为阴极靶源,在真空离子镀膜机的真空度为9X10—1Pa的氩气气氛保护条件下对所述钛工件进行真空等离子镀膜处理,在钛工件表面得到沉积膜层;所述除油清洗的具体过程为:先采用清洗液进行超声清洗,然后采用清水冲洗;所述清洗液由碱性清洗剂和水混合而成,所述清洗液中清洗剂的质量浓度为10%。所述纯锆的质量纯度不低于99.8%。
[0044]步骤(2):将步骤(I)中表面具有所述沉积膜层的钛工件置于真空热处理炉中,在真空热处理炉的真空度不大于2 X 10—3Pa,温度为500°C?650°C的条件下保温5min?240min进行真空热处理;
[0045]步骤(3):将步骤(2)中真空热处理后的钛工件置于电解槽中,以钛工件为阳极,以不锈钢板为阴极进行微弧氧化处理,在钛工件表面得到氧化锆复合陶瓷膜层。步骤(3)的微弧氧化处理时,电压为350V?500V,频率为400?650HZ,占空比为5%?40% ;所述微弧氧化处理的时间为20min?120min。所述微弧氧化处理的电解液由水、氢氧化钠和硅酸钠混合而成,所述电解液中氢氧化钠的质量浓度为1.5%,所述电解液中硅酸钠的质量浓度为5%。
[0046]图1及图2两图表征了Ti表面离子镀Zr后,试样端面Ti和Zr两种元素随着深度增大的变化趋势,反映了Ti表面离子镀Zr的膜层厚度。图3 Ti表面离子镀Zr并微弧氧化后端面形貌,可以表征出复合膜层的厚度及形貌。图4表征了复合膜层的物相组成主要为Zr02、Ti02及少量的Si〇2。
【主权项】
1.一种钛工件表面氧化锆复合陶瓷膜层的制备方法,其特征在于,包括以下步骤: 步骤一、将钛工件表面除油清洗后脱水干燥,将钛工件置于真空离子镀膜机中作为阳极,采用纯锆作为阴极靶源,在真空离子镀膜机的真空度为I X 10—1Pa?9X 10—1Pa的氩气气氛保护条件下对所述钛工件进行真空等离子镀膜处理,在钛工件表面得到沉积膜层; 步骤二、将步骤一中表面具有所述沉积膜层的钛工件置于真空热处理炉中,在真空热处理炉的真空度不大于2 X 10—3Pa,温度为500°C?650°C的条件下保温5min?240min进行真空热处理; 步骤三、将步骤二中真空热处理后的钛工件置于电解槽中,以钛工件为阳极,以不锈钢板为阴极进行微弧氧化处理,在钛工件表面得到氧化锆复合陶瓷膜层。2.根据权利要求1所述的钛工件表面氧化锆复合陶瓷膜层的制备方法,其特征在于,步骤一中:所述钛工件为纯钛。3.根据权利要求2所述的钛工件表面氧化锆复合陶瓷膜层的制备方法,其特征在于,所述钛工件牌号为TA0、TA1或TA2。4.根据权利要求1所述的钛工件表面氧化锆复合陶瓷膜层的制备方法,其特征在于,步骤三的微弧氧化处理时,电压为350V?500V,频率为400?650HZ,占空比为5%?40%;所述微弧氧化处理的时间为20min?120min。5.根据权利要求1所述的钛工件表面氧化锆复合陶瓷膜层的制备方法,其特征在于,步骤一中所述除油清洗的具体过程为:先采用清洗液进行超声清洗,然后采用清水冲洗;所述清洗液由碱性清洗剂和水混合而成,所述清洗液中清洗剂的质量浓度为4%?10%。6.根据权利要求1所述的钛工件表面氧化锆复合陶瓷膜层的制备方法,其特征在于,步骤一中所述纯锆的质量纯度不低于99.8%。7.根据权利要求1所述的钛工件表面氧化锆复合陶瓷膜层的制备方法,其特征在于,步骤三中所述微弧氧化处理的电解液由水、氢氧化钠和硅酸钠混合而成,所述电解液中氢氧化钠的质量浓度为0.5 %?1.5 %,所述电解液中硅酸钠的质量浓度为5 %?30 %。8.根据权利要求1所述的钛工件表面氧化锆复合陶瓷膜层的制备方法,其特征在于,所述真空等离子镀膜处理的脉冲负偏压为450V?500V,靶材电流为20A?60A,时间为30min?120mino
【文档编号】C25D11/26GK105839060SQ201610221224
【公开日】2016年8月10日
【申请日】2016年4月11日
【发明人】高广睿, 王宝云, 罗小峰, 屈静, 刘晶, 郑晓晨
【申请人】西安赛福斯材料防护有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1