单晶陶瓷粉末的制备方法、单晶陶瓷粉末及其复合材料、电子部件的制作方法

文档序号:3469047阅读:396来源:国知局
专利名称:单晶陶瓷粉末的制备方法、单晶陶瓷粉末及其复合材料、电子部件的制作方法
技术领域
本发明涉及单晶陶瓷粉末及其制备方法。
将陶瓷粉末作为瓷电容器用的材料使用时,希望其介电常数高、损失小。此外,当作为磁性铁素体材料使用时,希望其损失小、导磁率平缓地向高频区域延伸。这些特性依赖于陶瓷粉末的形状、粒径、纯度、反应性等物性。例如,如果陶瓷粉末为多结晶或不定形的粉末时,容易引起局部的异常颗粒成长,容易产生组成的不均匀,导致磁特性和电气特性的劣化。因此,陶瓷粉末优选不含有结晶粒界或不纯物,为单相或单晶。此外,为了获得更加优异的特性,陶瓷粉末优选为2种或大于2种的金属与氧的化合物。
但是,制备具有优异特性的陶瓷粉末是困难的。例如,在固相反应法中,通过在空气或惰性气体中对与最终生成物的组成相对应的金属氧化物的混合粉末进行烧结,能够制备得到作为2种以上的金属与氧的化合物的金属氧化物电介质,但制备得到单相的粉末是困难的。此外,在共沉淀法等液相法中,通过从金属盐的水溶液或有机溶剂溶液中制备水合物等形式的金属氧化物的前体物(1次粒子),将该前体物在空气或惰性气体中进行烧结制备得到陶瓷粉末。但是,难于制得具有优异结晶性的电介质粉末,而且由于金属氧化物的前驱体具有很强的结合,最终得到的是大块物质,因此为了得到电介质粉末必须对烧结后的电介质进行粉碎。这样得到的粉末中,每个粒子的形状为不定形的,粒度分布也宽,而且不纯物混入的可能性高。
因此,提出了改善粉末中粒子形状及粒度分布的水热合成法和气相反应法等,但在生产性和成本方面,这些方法均难于在工业上高效制备。此外,特开平7-33579号公报中公开了通过对于将原料溶解于溶液中所形成的物质进行加水分解或共沉淀的方法等,形成氧化物的微粉末,通过对微粉末进行热处理而使其结晶并使粒子成长,进而将制得的物质中含有的玻璃溶解去除,制备得到粒径相同的单晶粉末的方法。但是,该方法工序复杂,工业上批量生产困难。
此外,特开平9-263496号公报中公开了将平均粒径为10μm或小于10μm的钛酸钡在1200~1618℃下进行烧结,制备得到单晶钛酸钡的方法。在该方法中,在比钛酸钡的熔点低的温度下,在烧结时产生温度梯度,产生异常粒生长,从而形成单晶的钛酸钡。但是,在该方法中,制得的钛酸钡的粒径大,为500μm左右,因此没有制得微粒子。此外,由于单晶是在含于多晶体中的状态下制得的,因此为了取出单晶,需要有将多晶体浸渍于浓盐酸中,将多晶部分破坏的工序。
陶瓷粉末,有时只将粉末作为单体使用,有时将其分散于树脂材料中作为复合材料使用。对于作为复合材料使用的陶瓷粉末,要求其对树脂材料具有分散性、填充性。确保其对树脂材料的分散性、填充性的要素之一为构成粉末的微粒子的粒径。
但是,用上述共沉淀法制得的陶瓷粉末,其粒径过于微细,无法确保其对树脂材料的分散性、填充性。此外,用上述液相法制得的陶瓷粉末,由于为通过粉碎而制备的物质,粉末的形态为不定形的,因此无法确保其对树脂材料的分散性、填充性。此外,在上述特开平9-263496号公报中记载的单晶钛酸钡,由于其粒径大,因此难于获得高填充性。
本发明的目的在于提供一种制备具有优异特性的球状单晶陶瓷粉末的方法及单晶陶瓷粉末。
本发明以上述发现为基础,提供了一种单晶陶瓷粉末的制备方法,其特征在于,在粉体供给工序中,由陶瓷成分组成的粉体与载气一起被供给到加热处理区域中,在加热处理工序中,将供给到加热处理区域中的粉体加热到单晶化所必需的温度,具体而言是加热到该粉体的熔点以上,在冷却工序中,经结晶化工序将在加热处理工序中制得的生成物冷却,从而制备得到单晶陶瓷粉末。
采用该制备方法,可以制备得到球形度为0.9或大于0.9的单晶陶瓷粉末。
在该制备方法的加热处理工序中,由于将由陶瓷成分组成的粉体熔融,形成熔融物后,在冷却工序中使其结晶化,因此能够制备球形度高、结晶性优异的单晶陶瓷粉末。在加热处理工序中经过熔融处理后,通过在接下来的冷却工序中进行结晶化,可以用少的能量制备单晶粉末。此时,加热处理工序优选在电气管状炉中进行。由于在电气管状炉中进行,温度及温度范围的控制变得容易,因此在制造上是优选的。
由陶瓷成分组成的粉体,如果是由50μm或小于50μm的粒子形成的,则能够制备粒径为30μm或小于30μm的单晶陶瓷粉末。
此外,由陶瓷成分组成的粉体,如果为由平均粒径是1μm或小于1μm的1次粒子形成的颗粒,则能够制备粒径小的单晶陶瓷粉末,因此是优选的。
如果用其它观点来诠释本发明所涉及的单晶陶瓷粉末的制造方法,可以捕捉到该制备方法的特征,即、边使由陶瓷成分组成的粉体浮游,边使其在加热炉中移动,通过冷却制得的生成物,可制备得到球形度为0.9或大于0.9的单晶陶瓷粉末。由于这样边使由陶瓷成分组成的粉体浮游边进行加热,因此能够制备球形度高的单晶陶瓷粉末。
根据本发明所制备得到的单晶陶瓷粉末,其为平均粒径为0.1~30μm、且球形度为0.9或大于0.9的单晶陶瓷粉末。由于该单晶陶瓷粉末粒径小,且球形度高,因此具有优异的特性,特别是对树脂等的填充性高。
该单晶陶瓷粉末,由例如氧化物磁性材料或氧化物电介质材料构成,成为显示出优异的磁特性、电气特性的物质。
如果该单晶陶瓷粉末的平均粒径为1~20μm,则成为具有更为优异填充性的物质。
本发明适用于由磁性体或电介质材料组成的单晶球状氧化物粉末与分散并保持上述球状氧化物粉末的结合材料组成的复合材料。而且,在该复合材料中,其特征在于,球状氧化物粉末的平均粒径为0.1~30μm,球形度为0.9或大于0.9。通过使用球形度高的微细粉末,能够提高其在与树脂材料的复合材料中的填充性,并且能够有效发挥粉末所具有的特性。
在以上的复合材料中,可以用树脂作为结合材料。此时,优选球状氧化物粉末的含量在30~98重量%的范围内。
此外,在以上的复合材料中,可以由电介质材料构成球状氧化物粉末。而且,在本发明中,可以由比构成球状氧化物粉末的电介质材料熔点低的电介质材料构成结合材料。此时,优选球状氧化物粉末的含量在30~70体积%的范围内。
此外,在以上的复合材料中,可以由磁性体材料构成球状氧化物粉末。而且,在本发明中,可以由比构成球状氧化物粉末的磁性体材料熔点低的磁性体材料构成结合材料。此时,优选球状氧化物粉末的含量在30~70体积%的范围内。
本发明提供了一种使用以上复合材料的电子部件。该电子部件的特征在于,在电介质层中配置有内部金属电极,电介质层为由电介质材料组成的球状氧化物粉末与分散并保持该球状氧化物粉末的结合材料组成的复合材料组成,球状氧化物粉末的平均粒径为0.1~30μm,球形度为0.9或大于0.9。此外,本发明提供了一种电子部件,其特征在于,在磁性体层中配置有内部金属电极,磁性体层为由磁性材料组成的球状氧化物粉末与分散并保持该球状氧化物粉末的结合材料组成的复合材料组成,球状氧化物粉末的平均粒径为0.1~30μm,球形度为0.9或大于0.9。
图2表示实施例1制备的陶瓷粉末的X射线衍射结果的图谱。
图3表示实施例1制备的陶瓷粉末的SEM像的照片。
图4表示实施例1制备的陶瓷粉末的电子射线衍射像的照片。
图5表示比较例1制备的陶瓷粉末的SEM像的照片。
图6表示比较例1制备的陶瓷粉末的电子射线衍射像的照片。
图7表示实施例4制备的陶瓷粉末的SEM像的照片。
图8表示实施例4制备的陶瓷粉末的磁特性的曲线图。
图9表示比较例2制备的陶瓷粉末的磁特性的曲线图。


图10表示用实施例4及比较例2制得的陶瓷粉末所形成的基板的导磁率的曲线图。
图11表示本发明所适用的高频模块的透视斜视图。
图12表示本发明所适用的触点线圈的透视斜视图。
图13表示实施例6制备的复合磁性材料的感应系数值L的变化率的曲线图。
图14表示比较例4制备的复合磁性材料的感应系数值L的变化率的曲线图。
结合图1对本发明所涉及的单晶陶瓷粉末的制备工序的简要实施例进行说明。如图1所示,本发明的制备方法由将原料粉碎而制备1次粒子的1次粒子形成工序、由1次粒子形成颗粒的颗粒形成工序、供给由颗粒组成的粉体的粉体供给工序、将供给的粉体加热到所定温度的加热处理工序、将由加热处理制备的生成物冷却的冷却工序以及后处理工序构成。
首先,在1次粒子形成工序中,由陶瓷成分组成的原料形成1次粒子。在1次粒子形成工序中,将由陶瓷成分组成的原料粉碎,优选地调整使平均粒径达到1μm或小于1μm。该粒径不仅决定了最终制备的单晶陶瓷粉末的粒径,而且通过使用具有这样粒径的1次粒子,可以使单晶陶瓷粉末的品质优化。粉碎的方法没有特别的限定,例如可以使用球磨机等。
本发明中所谓的陶瓷成分,包含被认为是陶瓷的氧化物、氮化物、碳化物等化合物。此外,不仅包含单一的陶瓷,还包含多个陶瓷的混合物、复合氧化物、复合氮化物等复合化合物。陶瓷成分的具体例为电介质材料、磁性材料。
电介质材料可以包括,例如钛酸钡-钕系陶瓷、钛酸钡-锡系陶瓷、铅-钙系陶瓷、二氧化钛陶瓷、钛酸钡系陶瓷、钛酸铅系陶瓷、钛酸锶系陶瓷、钛酸钙系陶瓷、钛酸铋系陶瓷、钛酸镁系陶瓷等,以及CaWO4系陶瓷、Ba(Mg、Nb)O3系陶瓷、Ba(Mg、Ta)O3系陶瓷、Ba(Co、Mg、Nb)O3系陶瓷、Ba(Co、Mg、Ta)O3系陶瓷等。这些物质可以单独或2种以上混合使用。作为二氧化钛系陶瓷,是指其在组成上只含有二氧化钛的体系,或在二氧化钛中还含有其它少量添加物的体系,但保持着作为主成分的二氧化钛的结晶构造。对于其它体系的陶瓷也是一样的。此外,二氧化钛为用TiO2表示的物质,且具有各种结晶构造,但作为电介质陶瓷使用的为具有金红石构造的物质。
作为磁性材料,使用具有磁性的氧化物。可以使用,例如Mn-Zn系铁素体、Ni-Zn系铁素体、Mn-Mg-Zn系铁素体、Ni-Cu-Zn系铁素体等。此外,也可以使用Fe2O3、Fe3O4等氧化铁。
这些陶瓷成分也可以使用市场上出售的陶瓷,此外,可以通过烧结用于形成陶瓷成分的组合物、材料来制备陶瓷成分。例如,将氧化钡和钛酸混合,制得颗粒状的复合氧化物,将该复合氧化物粉碎成的适当大小的物质,然后进行烧结反应,由此制备得到钛酸钡等的陶瓷成分。
随后,在颗粒形成工序中,使上述制备的1次粒子形成颗粒。具体而言,制备用于将1次粒子从喷嘴进行喷雾的生料。生料可以通过在将1次粒子适量添加到溶剂中后,用球磨机等混合机进行混合而制备。溶剂可以使用水或乙醇,为了提高1次粒子的分散性,推荐添加分散剂。分散剂的添加量为,例如1次粒子重量的1%左右。也可以添加用于1次粒子间机械结合的结合剂,例如PVA(聚乙烯醇)。制得的生料通过喷嘴进行喷雾,从而形成液滴。
这里,喷嘴是指用于对上述生料和压缩气体进行喷雾的装置,可以使用2流体喷嘴或4流体喷嘴等。与压缩气体(例如空气、氮气等)一起从喷嘴喷出的生料被颗粒化并形成喷雾。喷雾中液滴的粒径可以通过生料与压缩气体的比率进行控制。通过控制液滴的粒径,可以控制最终制得的单晶陶瓷粉末的粒径。通过喷嘴进行的喷雾工序在所定的腔室内进行。适宜使用在加热下兼有干燥的喷雾干燥法制备颗粒。使用喷雾干燥法,由于几乎没有如粉碎粉末那样巨大的粉末混入,因此可以确保最终制得的制品品质的可靠性。
这样,通过使用喷嘴,可以制备适于本发明中使用的粒径小的颗粒粉,例如,可以制备1~20μm左右的微细颗粒粉。该粒径决定最终制得的单晶陶瓷粉末的粒径。如上所述,粒径可以通过生料与压缩气体的比率进行控制,此外,通过使生料间发生碰撞,也可制得小液滴。于是,这样制得的颗粒被输送到粉体供给工序。
在粉体供给工序中,将在颗粒形成工序中制备的颗粒作为由陶瓷成分组成的粉体与载气一起供给到加热区域。作为实施粉体供给工序的具体构成,图1记载了由不同的途径准备载气和颗粒,通过喷嘴N,将颗粒与载气一同供给加热处理工序的形态。载气可以使用各种气体,例如空气、氮气、Ar气及Ne气等。对于需要加热到1300℃以上的材料,考虑到在加热处理工序中产生NOX,因此优选使用Ar气、Ne气。
在粉体供给工序中,将由陶瓷成分组成的粉体供给到加热处理工序的方法不限于图1所记载的方式。例如,可以采用对由陶瓷成分组成的粉体吹送含有载气的压缩气体,从而将其供给到加热处理工序的方法。此外,也可以利用分散机供给,利用分级机和粉碎机的输出供给,也就是由于分级或粉碎,将从输出侧制备的粉末供给到加热处理工序。
在本发明的形态中,由陶瓷成分组成的粉体的喷雾可以为干燥状态,也可以为含有水分等的湿润状态。
随后,在加热处理工序中,将从粉体供给工序用喷嘴供给的、由陶瓷成分组成的粉体在加热区域进行烧结处理,从而制得单晶的陶瓷粉末。
加热处理工序在加热炉中进行。作为加热方式,可以采用电加热、利用气体的燃烧热进行加热及高频加热等已知的方式。特别地,与燃烧气体的方法相比,使用电气管状炉易于对炉内氛围气进行控制。由陶瓷成分组成的粉体在炉内与形成气流的载气一同在浮游于加热炉内,在此状态下进行单晶化及球状化。由陶瓷成分组成的粉体的流速根据收集效率、热分解温度进行适当的确定,大致在0.05~10m/s的范围内,特别优选1~5m/s。粉末的流速可以通过控制载气的流速进行改变。此时,优选控制使陶瓷成分组成的粉体在加热炉内的滞留时间为1~10秒。但是,优选至少要比陶瓷粉末不成为非晶质的临界冷却速度慢。临界冷却速度依物质的不同而不同,例如,当为钛酸钡时,临界冷却速度为1.3×106(k/sec)。如果比该速度快,制得的陶瓷粉末为玻璃(非晶)。单晶化所需的时间依赖于粒径,粒径越小则该时间越短。
加热的条件,特别是温度及时间要根据陶瓷的组成进行适当的确定。作为加热的条件,加热炉内的氛围气可以根据例如电介质材料、磁性材料等、作为目的的最终生成物的单晶陶瓷粉末的种类,选择氧化性氛围气、还原性氛围气或非活性氛围气。可以根据所选择的氛围气选择载气,或将必要的气体供给到加热炉内。
作为加热温度,可以设定为由陶瓷成分组成的粉体进行单晶化的温度。具体而言,设定为由陶瓷成分组成的粉体的熔点以上。通过加热到熔点以上,陶瓷成分的粉体熔融,从而得到单晶。此外,陶瓷成分的粉末一旦熔融,由于表面张力的原因,制得的陶瓷粉末的形状更接近真球。
如本实施形态那样,在干燥状态下将固相陶瓷成分的粉体供给加热炉,与将固相的陶瓷成分的粉体分散于液体中再供给的喷雾热分解法相比,由于不存在由于液体的存在而导致热量减少,因此可以用更少的能量进行制备。此时,例如,在颗粒形成工序中形成的颗粒不需保持、保管,可以直接与载气一起供给到加热处理工序的加热炉中。
在加热处理工序中制备的生成物被转移到冷却工序。具体而言,在加热炉中设有冷却区,或与载气一同从加热炉中排出到大气中而将生成物冷却。该冷却可以为放冷,也可以用冷却介质进行强制冷却。经过该冷却工序,制备得到所需的单晶陶瓷粉末。通过对生成物进行比较迅速的冷却,生成物能够保持球状。此外,在冷却工序中,由于被加热的粉体直接被冷却,因此可以得到粒径为0.1~30μm、具有小粒径的单晶陶瓷粉末。更优选地,制备得到1~20μm左右的物质。
在冷却工序之后,一方面用例如旋风分离器或袋滤器对粉末进行收集,另一方面对载气进行适当的排气处理后进行排放。
制备得到的单晶陶瓷粉末为单晶,且为球状。这里所谓的球状是指除表面光滑的完全的球状外,还包含非常接近真球的多面体。具体而言,包含如Wulff模型所示的由稳定的结晶面围成的、等方的、具有对称性的,且球形度接近1的多面体粒子。这里所谓的球形度是指Wadell的实用球形度,即、具有与粒子的投影面积相等的圆的直径的粒子的投影相外切的最小圆的直径比。在本实施例的形态中,球形度优选0.9~1,更优选为0.95~1。球形度如果为0.9或大于0.9,将结晶陶瓷粉末分散于树脂材料中以复合材料使用时,单晶陶瓷粉末易于均匀地分散于树脂材料中,进而在烧结时,不产生由于不均匀性而引起的龟裂。
这样,根据本实施形态制得的单晶陶瓷粉末不含有结晶粒界以及不纯物,为单相,且为单晶。因此,该单晶陶瓷粉末在用作电介质材料、磁性材料时,能够使磁性或介电特性提高,显示出优异的特性。
此外,用根据本实施形态中记载的方法形成的单晶陶瓷粉末,由于没有使用以往方法中所使用的酸以及有机溶剂,因此不产生有害的气体等,而且,能够用较便宜的设备进行制备。在本实施形态中,粉体供给工序中所供给的由陶瓷成分组成的粉体,包含粉末、颗粒粉、粉碎粉等、由不局限于该形态的粒子构成的各种形态。因此,在粉体供给工序中供给的粉体不限于如上述实施形态那样的颗粒,也可以为例如将陶瓷成分粉碎的粉体。此时,由于使用具有较大粒径的粉体,因此可以形成较大的单晶陶瓷粉末。具体而言,如果使用50μm或小于50μm的粒子,则可以形成30μm或小于30μm的单晶陶瓷粉末。
进而,在本实施形态中,可以制备粒径小且为球状的单晶陶瓷粉末。这样的单晶陶瓷粉末,其凝集性低,分散性和填充性优异。因此,可以将制得的单晶陶瓷粉末与分散并保持该单晶陶瓷粉末的结合材料混合,形成复合材料。
结合材料可以使用树脂。此时,复合材料中单晶陶瓷粉末的含量优选在30~98重量%的范围内。此外,该树脂可以使用热塑性树脂、热固性树脂两类,具体而言,可以使用的树脂包括含有环氧树脂、酚醛树脂、聚烯烃系树脂、聚酰亚胺树脂、聚酯树脂、聚苯醚树脂、三聚氰胺树脂、氰酸酯系树脂、邻苯二甲酸二烯丙基酯树脂、聚苯乙烯醚化合物树脂、液晶聚合物、氟系树脂、聚乙烯醇缩丁醛树脂、聚乙烯醇树脂、乙基纤维素树脂、硝酸纤维素树脂、丙烯酸树脂中至少一种以上的树脂等。
当单晶陶瓷粉末由电介质材料构成时,作为结合材料,可以使用比上述电介质材料具有更低熔点的电介质材料。一方面使在更低的温度下烧结制备复合电介质材料成为可能,另一方面,通过在这样的低温下烧结,能够获得原本在高温下进行烧结才能得到的特性。构成复合材料的低熔点电介质材料,优选使用比单晶陶瓷粉末具有更小粒径的粉末供给烧结。原因在于,通过在单晶陶瓷粉末的间隙填埋小粒径的粉末,能够使单晶陶瓷粉末均匀地分散。
以上的观点也适用于单晶陶瓷粉末由磁性材料构成的场合。也就是说,可以制备得到在相对低熔点的磁性材料中分散并保持由相对高熔点的磁性材料构成的单晶陶瓷粉末而形成的复合磁性材料。
在本发明中,可以将以上的复合材料适用于各种电子部件。其中1个实施例示于图11及图12。图11为表示作为电子部件的1个实施例的高频模块的斜视图。该高频模块在复合电介质层4的表面上装有二极管6、晶体三极管7及触点电阻8。此外,高频模块在复合电介质层5的里面及内部配置有接地电极1。进而,高频模块在其内部配置有通孔导体2、电容器形成电极3。而且以上说明的复合电介质材料适用于该复合电介质层4。此外,图12为表示作为电子部件的1个实施例的触点线圈的斜视图。该触点线圈在复合磁性体层14的内部配置有线圈形成导体13和通孔导体12。并且该触点线圈在复合磁性体层14的侧面形成有外部端子电极11。而且上述复合磁性材料适用于该复合磁性体层14。以上为电子部件的部分例示,本发明的复合磁性材料还适用于基板等其它电子部件。
第1生料经喷雾干燥机干燥,进行颗粒化。此时的喷雾、干燥条件没有特别的限定,最好设定的条件使颗粒粉的粒径达到200μm或小于200μm。
所得到的颗粒粉在1250℃的温度下烧结1小时,从而制备得到作为复合氧化物烧结体的钛酸钡。在该烧结体中添加水,并按相对于烧结体重量1%的比例添加分散剂(东亚合成社制A-30SL)后,用球磨机进行48小时的粉碎,从而制成含有作为1次粒子的平均粒径为0.3μm的粉末的生料(第2生料)。相对于粉末的总重量,向该第2生料中添加2重量%的稀释为10重量%浓度的PVA(聚乙烯醇),进而进行调整以使第2生料中的粉末含量达到40重量%。
对第2生料使用喷雾干燥法,制成颗粒粉。所使用的喷雾干燥机为藤崎电机(株)制的MDL-050,采用4流体方式的喷嘴,使送液量为40cc/min,喷嘴气量为160NL/min,给气温度为190℃。所得到的颗粒粉的平均粒径为9.7μm。
并且认识到,改变制备1次粒子时球磨机的条件,除了使用平均粒径为1.5μm的粉末作为1次粒子外,其它与上述相同地制备颗粒粉,颗粒粉的平均粒径达到58μm,难于使平均粒径达到30μm或小于30μm。
以氮气作为载气,将制得的颗粒粉供给到由陶瓷管构成的、以电为加热源的加热炉中。炉内温度(加热处理温度)为1650℃。此外,进行调节以使载气的流量达到1 L/min,颗粒粉在陶瓷管中的滞留时间达到1~10秒左右。
对于通过陶瓷管的粉末,通过荧光X射线分析装置的X射线衍射,对组织进行观察。X射线衍射的结果示于图2。如图2所示,由于只观察到钛酸钡(BaTiO3)的峰,因此确认所制备得到的粉末为由钛酸钡(BaTiO3)单相构成的陶瓷粉末。钛酸钡(BaTiO3)的熔点为1637℃。
此外,对制备得到的钛酸钡粉末用SEM(扫描电子显微镜)进行观察。其结果确认,该粉末的粒径为0.1~10μm左右,非常接近真球状,而且这些粉末没有凝集。进而判明所测定的平均粒径为2.5μm左右,且球形度约为1。进而,将通过SEM获得的粉末扩大照片示于图3中,对每个粒子进行详细的观察,发现在整个粒子表面存在具有对称性的结晶面的小平面(ファセツト),为在粒子内不含粒界的单晶粒子。
此外,通过TEM(透射电子显微镜)对制备得到的粉末进行观察。电子射线的衍射像示于图4中,可以确认其具有粉末单晶特有的规则性。比较例1除了将加热温度变为1400℃外,其余与实施例1相同地制备得到钛酸钡粉末。制备得到的粉末通过SEM获得的粉末的放大照片示于图5中。从图5可以观察到,在钛酸钡粒子的表面存在着粒界。进而,将电子射线衍射像示于图6中,从该电子射线解析像的结果可以确认其不为单晶。
构成所得粉末的粒子的平均粒径为2.5μm,其为形状非常接近真球状的微粒子。此外,观察到整个粒子表面存在具有对称性的结晶面的小平面,为在粒子内不含粒界的单晶粒子。
对制备得到的粒子进行观察,可以确认其生成了与实施例2基本相同的单晶粒子。
第1生料经喷雾干燥机干燥,进行颗粒化。此时的喷雾、干燥条件没有特别的限定,最好设定的条件使颗粒粉的粒径达到200μm或小于200μm。
所得到的颗粒粉在1000℃的温度下烧结1小时,从而制备得到复合氧化物烧结体。在该烧结体中添加水,并按相对于烧结体重量1%的比例添加分散剂(东亚合成社制A-30SL)后,用球磨机进行48小时的粉碎,从而制成含有作为1次粒子的平均粒径为0.3μm的粉末的生料(第2生料)。相对于粉末的总重量,向该第2生料中添加2重量%的稀释为10重量%浓度的PVA(聚乙烯醇)溶液,进而进行调整以使第2生料中的粉末含量达到60重量%。
对第2生料使用喷雾干燥法,制成颗粒粉。所使用的喷雾干燥机为藤崎电机(株)制的MDL-050,采用4流体方式的喷嘴,使送液量为40cc/min,喷嘴气量为160NL/min,给气温度为190℃。所得到的颗粒粉的平均粒径为8.9μm。
以氮气作为载气,将制得的颗粒粉供给到由陶瓷管构成的、以电为加热源的加热炉中。炉内温度(加热处理温度)为1500℃。此外,进行调节以使载气的流量达到0.8L/min,颗粒粉在陶瓷管中的滞留时间达到1~10秒左右。这样,由颗粒粉制备得到陶瓷粉末(磁性铁素体材料)。
对于制备得到的陶瓷粉末,通过荧光X射线分析装置的X射线衍射,对组织进行观察。其结果没有观察到Fe2O3、Fe3O4、FeO、NiFe2O4、ZnFe2O4、CuFe2O4的峰,因此确认所制备得到的粉末为由Ni-Cu-Zn铁素体单相构成的陶瓷粉末。
此外,对制备得到的Ni-Cu-Zn铁素体粉末用SEM进行观察。其结果确认,该粉末的粒径为0.1~10μm左右,非常接近真球状,而且这些粉末没有凝集。进而测定其平均粒径为2.5μm左右,且球形度约为1。进而,将通过SEM获得的粉末扩大照片示于图7中,对每个粒子进行详细的观察,发现在整个粒子表面存在具有对称性的结晶面的小平面,为在粒子内不含粒界的单晶粒子。
此外,用振动磁力计对单晶陶瓷粉末的磁特性进行测定。结果示于表1和图8。该磁特性在后面介绍。
进而,将制备得到的单晶陶瓷粉末混合到环氧树脂中,其含有率为40体积%,制备得到生料(以下称为第3生料)。此时,作为环氧树脂,其主成分含有作为多官能环氧树脂的エピビス型环氧树脂(油化シエル环氧社制エピコ一ト1001及エピコ一ト1007),平均含量为26.9重量%;双酚A型高分子环氧树脂(油化シエル环氧社制エピコ一ト1225),含量为23.1重量%;作为含有特殊骨架的环氧树脂的四苯酚基乙烷型环氧树脂(油化シエル环氧社制エピコ一ト1031S),含量为23.1重量%。添加作为固化剂的双酚A型酚醛清漆树脂(油化シエル环氧社制YLH129B65),作为固化促进剂的咪唑化合物(四国化成工业社制2E4MZ),并将上述物质溶解于甲苯及甲乙酮中。向其中添加铁素体单晶粒子,用球磨机进行分散、混合。
将这样得到的第3生料涂覆于玻璃布上,制作半固化状态的聚酯胶片(プリプレグ),作为基板的原材料。使聚酯胶片成为半固化状态的热处理条件为100℃、加热2小时。此外,玻璃布为H玻璃、E玻璃、D玻璃等,无特别的限定,可以根据不同的要求特性分别使用,但在这里使用E玻璃。此外,玻璃的厚度可以根据要求使用所需的适宜厚度,在这里使用的厚度为100μm。按规定片数重叠制备得到的半固化状态的聚酯胶片,在加压、加热的条件下制成厚度约为0.4mm的复合磁性材料。测定该基板的频率特性—导磁率。结果示于图10。比较例2向按摩尔比为45.3∶47.1∶7.6称量的氧化铁(Fe2O3)粉末、氧化镍(NiO2)粉末及氧化锌(ZnO)粉末中加入水,用球磨机混合12小时,制备得到生料(以下称为第1生料)。混合前,按相对于粉末重量1%的比例添加分散剂(东亚合成社制A-30SL)。
第1生料经喷雾干燥机干燥,进行颗粒化。
所得到的颗粒粉在1000℃的温度下烧结1小时,从而制备得到复合氧化物烧结体。用球磨机对该烧结体进行12小时的粉碎,从而制得平均粒径为3μm的粉末。与实施例4相同地对该粉末进行磁特性的测定。其结果示于表1及图9。
除了使用制备得到的粉末外,其余与实施例4相同地制备复合磁性材料,并测定其频率特性—导磁率。结果示于图10。
表1

实施例4及比较例2中测定的磁特性从表1中可以看到,与比较例2中制备的粉末相比,实施例4中制备得到的铁素体粉末,其饱和磁通量密度提高。此外,实施例4及比较例2中制得的粉末的磁滞曲线示于图8及图9中,通过比较实施例4和比较例2的结果,可以看到,实施例4的磁滞损失降低,作为磁性铁素体材料,其为低损失物质。此外,如图10所示,通过比较实施例4和比较例2中的频率特性—导磁率,可以看到,实施例4中的复合磁性材料超过1000MHz的区域高达20%。实施例5首先向按1∶1的摩尔比分别称量的氧化镁(MgO)粉末、氧化钛(TiO2)粉末中添加水,用球磨机混合12小时,由此制得生料(第1生料)。混合时按相对于粉末总重量1%的比例添加分散剂(东亚合成社制A-30SL)。
该第1生料经喷雾干燥机进行干燥、颗粒化,制得复合氧化物颗粒。此时的干燥喷雾条件没有限定,可以设定条件使颗粒径达到200μm或小于200μm。
该颗粒在1250℃的温度下烧结1小时,使复合氧化物反应并烧结。其后,向该复合氧化物中添加水及分散剂(东亚合成社制A-30SL),再次用球磨机粉碎48小时,制得由平均粒径为0.5μm的微粉末构成的生料(第2生料)。相对于粉末的总重量,向该第2生料中添加2重量%的浓度稀释为10重量%的PVA(聚乙烯醇)溶液,进一步调整使第2生料中粉末的重量比达到40重量%。
对第2生料使用喷雾干燥法,制得颗粒粉。使用的喷雾干燥机为藤崎电机(株)制的MDL-050,采用4流体方式的喷嘴,送液量为40cc/min,喷嘴气量为160NL/min,给气温度为190℃。制备的颗粒粉的平均粒径为9.7μm。
随后,以氮气和氧气的混合气体作为载气,将上述制得的颗粒粉供给到加热至1600℃的陶瓷管中。通过调节载气的流量,使生成粉末的滞留时间达到1~10秒左右。
对于通过陶瓷管的粉末,从用荧光X射线分析装置得到的X射线衍射的结果可以看到钛酸镁的单相。此外,对制得的钛酸镁粉末用SEM进行观察,可以确认该粉末没有凝集。此外,可以看到,各粉末的粒径为0.1~10μm左右,由非常接近真球状的微粒子组成,平均粒径约为1.5μm,球形度约为1。对每个粒子进行仔细的观察,可以发现整个粒子表面存在具有对称性的结晶面的小平面,为在粒子内不含有界面的单晶粒子。
称量与上述单晶粉末烧结温度不同的玻璃材料(日本电气硝子制MgO·B2O3·SiO2系玻璃GA-60、平均粒径0.15μm),使上述单晶粉末含量达到65体积%,将聚乙烯醇缩丁醛(积水化学エスレツクBH-3)溶解于甲苯和乙醇的混合溶剂中,然后混入生料中,制备得到电介质生料。
混合使用球磨机,能够使混合分散均匀。将其用刮匀涂装法成型为厚度约为200μm的生膜。其后,将生膜积层成约1300μm的厚度,在900℃下保持2小时的条件下进行烧结,制得烧结体。进而,将该烧结体制成长8mm、宽1mm、厚1mm的带状试料,测定其介电常数及品质系数Q(=1/tanδ)。作为比较例3,在900℃下保持2小时的条件下只对上述玻璃材料进行烧结,测定烧结体的特性,结果示于表2中。
实施例5虽然在900℃的低温下烧结,但与玻璃单体相比,能够制备得到具有大Q的复合材料。此外,实施例5由于使用单晶钛酸镁粉末,在烧结工序中,钛酸镁粉末与玻璃的反应被控制在表面,因此能够将钛酸镁所具有的Q的降低控制在最小的限度内。其结果是制备得到了具有高Q值的复合材料。
表2

测定频率2GHz实施例6准备好实施例4中制备得到的单晶铁素体粉末。另一方面,准备好氧化铁(Fe2O3)、氧化镍(NiO2)、氧化铜(CuO)及氧化锌(ZnO)按摩尔比45.3∶47.1∶5.0∶7.6组成的,通过固相反应法(烧结法)制备的,平均粒径为0.07μm的多晶铁素体粉末。称量单晶铁素体粉末及多晶铁素体粉末,使上述单晶铁素体粉末的含量达到65体积%,进行混合。将该混合粉末成型为回旋形状后,在900℃的温度下保持1小时,从而制得烧结体。为了使感应系数值L达到1μH,对该烧结体进行卷线,制得评价用的试料。对该试料进行直流重叠特性的评价。作为比较例4,对于只由上述多晶铁素体粉末组成的烧结体进行同样的评价。结果示于图13(实施例6)及图14(比较例4)中,可以看到,对于单晶铁素体粉末与多晶铁素体粉末混合的实施例6,其感应系数值L的变化小,可以在高电流下使用。
如以上说明所述,根据本发明能够制备得到球状且为单晶的单晶陶瓷粉末。
权利要求
1.一种单晶陶瓷粉末的制备方法,其特征在于,其包括将由陶瓷成分组成的粉体与载气一起供给到加热处理区域的粉体供给工序、将供给到上述加热处理区域中的上述粉体加热到该粉体的熔点以上的加热处理工序、以及通过冷却在上述加热处理工序中制得的生成物而制备得到单晶陶瓷粉末的冷却工序。
2.根据权利要求1记载的单晶陶瓷粉末的制备方法,其特征在于,上述单晶陶瓷粉末的球形度为0.9或大于0.9。
3.根据权利要求1记载的单晶陶瓷粉末的制备方法,其特征在于,在上述加热处理工序中,将上述由陶瓷成分组成的粉体熔融而形成熔融物。
4.根据权利要求3记载的单晶陶瓷粉末的制备方法,其特征在于,上述加热处理工序是在电气管状炉中进行的。
5.根据权利要求1记载的单晶陶瓷粉末的制备方法,其特征在于,上述由陶瓷成分组成的粉体是由50μm或小于50μm的粒子形成的。
6.根据权利要求1记载的单晶陶瓷粉末的制备方法,其特征在于,上述由陶瓷成分组成的粉体为由平均粒径是1μm或小于1μm的1次粒子形成的颗粒。
7.一种单晶陶瓷粉末的制备方法,其特征在于,通过边使由陶瓷成分组成的粉体浮游,边使其在加热炉中移动,然后冷却所制得的生成物,从而制备得到球形度为0.9或大于0.9的单晶陶瓷粉末。
8.一种单晶陶瓷粉末,其特征在于,平均粒径为0.1~30μm,且具有0.9或大于0.9的球形度。
9.根据权利8记载的单晶陶瓷粉末,其特征在于,上述单晶陶瓷粉末由氧化物磁性材料构成。
10.根据权利要求8记载单晶陶瓷粉末,其特征在于,上述单晶陶瓷粉末由氧化物电介质材料构成。
11.根据权利要求8记载的单晶陶瓷粉末,其特征在于,上述单晶陶瓷粉末的平均粒径为1~20μm。
12.一种复合材料,其特征在于,其为由磁性体材料或电介质材料组成的单晶球状氧化物粉末与分散并保持上述球状氧化物粉末的结合材料组成的复合材料,上述单晶球状氧化物粉末的平均粒径为0.1~30μm、球形度为0.9或大于0.9。
13.根据权利要求12记载的复合材料,其特征在于,上述结合材料由树脂构成。
14.根据权利要求13记载的复合材料,其特征在于,上述球状氧化物粉末的含量在30~98重量%的范围内。
15.根据权利要求12记载的复合材料,其特征在于,上述球状氧化物粉末由电介质材料构成,上述结合材料由比构成上述球状氧化物粉末的电介质材料的熔点低的电介质材料构成。
16.根据权利要求12记载的复合材料,其特征在于,上述球状氧化物粉末的量为30~70体积%。
17.根据权利要求12记载的复合材料,其特征在于,上述球状氧化物粉末由磁性体材料构成,上述结合材料由比构成上述球状氧化物粉末的磁性体材料熔点低的磁性体材料构成。
18.根据权利要求17记载的复合材料,其特征在于,上述球状氧化物粉末的量为30~70体积%。
19.一种电子部件,其为在电介质层中配置有内部金属电极的电子部件,其特征在于,上述电介质层为由电介质材料组成的单晶球状氧化物粉末与分散并保持上述球状氧化物粉末的结合材料组成的复合材料构成,上述球状氧化物粉末的平均粒径为0.1~30μm,球形度为0.9或大于0.9。
20.一种电子部件,其为在磁性层中配置有内部金属电极的电子部件,其特征在于,上述磁性体层为由磁性体材料组成的单晶球状氧化物粉末与分散并保持上述球状氧化物粉末的结合材料组成的复合材料构成,上述球状氧化物粉末的平均粒径为0.1~30μm,球形度为0.9或大于0.9。
全文摘要
本发明提供了一种陶瓷粉末的制备方法,其包含:将由陶瓷成分组成的粉体与载气一起供给到加热处理区域的粉体供给工序、将被供给到上述加热处理区域中的上述粉体加热到单晶化所必需温度的加热处理工序、以及通过将在上述加热处理工序中制得的生成物冷却而制备得到单晶陶瓷粉末的冷却工序。根据该制备方法,能够制备得到球形度为0.9或大于0.9、且粒径小的陶瓷粉末。
文档编号C01B13/14GK1389433SQ02121729
公开日2003年1月8日 申请日期2002年5月28日 优先权日2001年5月31日
发明者稔高谷, 义昭赤地, 博幸上松, 恒小更 申请人:Tdk株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1