纳米磁性微粉填充螺旋碳纤维的复合材料的制备方法

文档序号:3470503阅读:392来源:国知局
专利名称:纳米磁性微粉填充螺旋碳纤维的复合材料的制备方法
技术领域
本发明涉及纳米磁性微粉(纳米铁氧体或者纳米铁粉)填充螺旋碳纤维的复合材
料的制备方法。
背景技术
螺旋碳纤维(CMC)又叫微碳巻,是由纳米级的碳纤维形成的微米级直径的螺旋,长度可达毫米量级,是一种集合微观与宏观结构为一体的新型碳材料。在ZL200410034061. 6中,我们详细介绍了螺旋碳纤维的制备方法和用途。利用该专利中的制备方法,我们已经实现了公斤级的生产并对其应用进行了更深入的研究。
在作为微波吸收材料使用方面,由于螺旋碳纤维具有重量轻,面密度小,吸波效果好等优势,特别是在低频段的吸收突出性能使其具有潜在的应用前景。根据电磁波吸收材料阻抗匹配的原理,吸波材料在电磁参数和磁导率相等时,阻抗最小。但是,由于螺旋碳纤维是有电无磁的材料,吸波性能受到一定的局限。利用具有磁性的铁氧体填充螺旋碳纤维,
可以增加材料的磁导率降低介电常数,最终达到复合材料的磁导率和介电常数相近或相等。 为了进一步拓宽其吸收微波的频段范围,调变其吸收峰的位置,进一步改善其微波吸收性能,我们使用具有磁性的铁氧体,铁粉等纳米磁性粉末对螺旋碳纤维进行了填充,制备出纳米铁氧体或者纳米铁粉填充螺旋碳纤维复合材料。 从目前已公开的文献来看,还未见对螺旋碳纤维进行填充纳米磁性微粉的制备方法的报道。

发明内容
本发明的目的是提供一种纳米磁性微粉(纳米铁氧体或者纳米铁粉)填充螺旋碳纤维的复合材料的制备方法。 本发明的纳米磁性微粉填充螺旋碳纤维的复合材料的制备方法包括以下步骤
1)在搅拌状态下,将粒径为5 200纳米的铁氧体粉末或粒径为5 200纳米的铁粉均匀分散到乙醇中; 2)向步骤1)得到的含有纳米铁氧体粉末或纳米铁粉的乙醇溶液中加入螺旋直径在2 30微米的螺旋碳纤维,搅拌,超声波震荡,然后蒸发乙醇至干; 3)向步骤2)得到的产物中加入少量乙醇,搅拌均匀后,用砂芯漏斗抽滤,用乙醇洗涤滤饼,除去没有填充到螺旋碳纤维管内的纳米铁氧体粉末或纳米铁粉,得到在螺旋碳纤维管内填充有纳米铁氧体粉末或纳米铁粉的复合材料。 为在螺旋碳纤维管内充分填充纳米铁氧体粉末或纳米铁粉,可重复进行步骤1) 步骤3)( —般为3 10次或更多),使螺旋碳纤维管内充分填充纳米铁氧体粉末或纳米铁粉;每次重复进行步骤1) 步骤3)时,步骤l)所用的螺旋直径在2 30微米的螺旋碳纤维是上一次步骤3)得到的已填充有纳米铁氧体粉末或纳米铁粉的螺旋碳纤维。
所述的向含有纳米铁氧体粉末或纳米铁粉的乙醇溶液中加入螺旋直径在2 30
微米的螺旋碳纤维,其纳米铁氧体粉末或纳米铁粉与螺旋碳纤维的质量比为io : i。 所述的搅拌时间是10 60分钟。 所述的超声波震荡时间是30 90分钟。 所述的砂芯漏斗选自标号为G1 G3的砂芯漏斗中的一种。 所述的纳米铁氧体是具有良好磁性能的纳米磁性吸波材料,包括钡铁氧体,钡铁稀土氧体,锌锰铁氧体中的一种。 本发明通过机械搅拌、超声波振荡等方法实现了纳米磁性微粉对螺旋碳纤维材料的填充。经过纳米铁氧体粉末或纳米铁粉填充后的螺旋碳纤维磁性复合材料的磁性能有很大的提高,磁导率的最大值实部由原来的1可达到6,虚部由原来的0可达到5。这将有助于改善螺旋碳纤维的吸波性能。


图1.本发明实施例1得到的纳米钡铁氧体填充的螺旋碳纤维复合材料的电镜图片。
具体实施方式
实施例1 通过机械搅拌10分钟后将10克粒径为5纳米左右的钡铁氧体粉末均匀分散到50毫升乙醇中。加入1克螺旋直径为2微米的螺旋碳纤维,机械搅拌10分钟,超声波震荡30分钟,蒸发乙醇至干。加入10毫升乙醇,搅拌10分钟后,利用G3砂芯漏斗抽滤、乙醇洗涤滤饼除去多余的纳米钡铁氧体粉末。重复以上步骤3次,得到纳米钡铁氧体填充的螺旋碳纤维复合材料。该复合材料的磁导率的最大值实部可达到6,虚部可达到5。
实施例2 通过机械搅拌60分钟后将10克粒径为200纳米左右的铁粉均匀分散到50毫升乙醇中。加入1克螺旋直径为30微米的螺旋碳纤维,机械搅拌60分钟,超声波震荡90分钟,蒸发乙醇至干。加入10毫升乙醇,搅拌10分钟后,利用Gl砂芯漏斗抽滤、乙醇洗涤滤饼除去多余的纳米铁粉。重复以上步骤10次,得到纳米铁粉填充的螺旋碳纤维复合材料。该复合材料的磁导率的最大值实部可达到6,虚部可达到5。
实施例3 通过机械搅拌30分钟后将10克粒径为100纳米左右的锌锰铁氧体粉末均匀分散到50毫升乙醇中。加入1克螺旋直径为15微米的螺旋碳纤维,机械搅拌30分钟,超声波震荡60分钟,蒸发乙醇至干。加入10毫升乙醇,搅拌10分钟后,利用G2砂芯漏斗抽滤、乙醇洗涤滤饼除去多余的纳米锌锰铁氧体粉末。重复以上步骤6次,得到纳米锌锰铁氧体粉末填充的螺旋碳纤维复合材料。该复合材料的磁导率的最大值实部可达到6,虚部可达到5。
权利要求
一种纳米磁性微粉填充螺旋碳纤维的复合材料的制备方法,其特征是,该方法包括以下步骤1)在搅拌状态下,将粒径为5~200纳米的铁氧体粉末或粒径为5~200纳米的铁粉均匀分散到乙醇中;2)向步骤1)得到的含有纳米铁氧体粉末或纳米铁粉的乙醇溶液中加入螺旋直径在2~30微米的螺旋碳纤维,搅拌,超声波震荡,然后蒸发乙醇至干;3)向步骤2)得到的产物中加入乙醇,搅拌均匀后,用砂芯漏斗抽滤,用乙醇洗涤滤饼,除去没有填充到螺旋碳纤维管内的纳米铁氧体粉末或纳米铁粉,得到在螺旋碳纤维管内填充有纳米铁氧体粉末或纳米铁粉的复合材料。
2. 根据权利要求1所述的方法,其特征是重复进行步骤1) 步骤3),使螺旋碳纤维管内充分填充纳米铁氧体粉末或纳米铁粉,每次步骤1)所用的螺旋直径在2 30微米的螺旋碳纤维是上一次步骤3)得到的已填充有纳米铁氧体粉末或纳米铁粉的螺旋碳纤维。
3. 根据权利要求1或2所述的方法,其特征是向含有纳米铁氧体粉末或纳米铁粉的乙醇溶液中加入螺旋直径在2 30微米的螺旋碳纤维,其纳米铁氧体粉末或纳米铁粉与螺旋碳纤维的质量比为10 : 1。
4. 根据权利要求1或2所述的方法,其特征是所述的纳米铁氧体是钡铁氧体,钡铁稀土氧体,锌锰铁氧体中的一种。
5. 根据权利要求3所述的方法,其特征是所述的纳米铁氧体是钡铁氧体,钡铁稀土氧体,锌锰铁氧体中的一种。
6. 根据权利要求1所述的方法,其特征是所述的搅拌时间是10 60分钟。
7. 根据权利要求1所述的方法,其特征是所述的超声波震荡时间是30 90分钟。
8. 根据权利要求1所述的方法,其特征是所述的砂芯漏斗选自标号为Gl G3的砂芯漏斗中的一种。
全文摘要
本发明涉及纳米磁性微粉填充螺旋碳纤维的复合材料的制备方法。将粒径为5~200纳米的铁氧体粉末或铁粉均匀分散到乙醇中;然后加入螺旋直径在2~30微米的螺旋碳纤维,搅拌,超声波震荡,然后蒸发乙醇至干;向得到的产物中加入少量乙醇,用砂芯漏斗抽滤,用乙醇洗涤滤饼,除去没有填充到螺旋碳纤维管内的纳米铁氧体粉末或纳米铁粉,得到在螺旋碳纤维管内填充有纳米铁氧体粉末或纳米铁粉的复合材料。本发明通过机械搅拌、超声波振荡等方法实现了纳米磁性微粉对螺旋碳纤维材料的填充。经过纳米铁氧体粉末或纳米铁粉填充后的螺旋碳纤维磁性复合材料的磁性能有很大的提高,磁导率的最大值实部由原来的1可达到6,虚部由原来的0可达到5。
文档编号C01B31/02GK101774564SQ200910076629
公开日2010年7月14日 申请日期2009年1月12日 优先权日2009年1月12日
发明者张兵, 徐海涛, 郭燕川, 陈丽娟 申请人:中国科学院理化技术研究所
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1