高纯超细三氧化钼生产设备的制作方法

文档序号:3449872阅读:245来源:国知局
专利名称:高纯超细三氧化钼生产设备的制作方法
技术领域
本实用新型涉及有色金属冶金生产设备领域,具体涉及一种高纯超细三氧化钥生产设备,主要用于钥深加工领域(主要用于钥纳米材料生产领域)。
背景技术
三氧化钥是钥冶金中最重要的中间体,大多数钥的化合物都是直接或间接以它为原料制得的,三氧化钥在催化剂、显示装置、传感器、电机电池等领域都有广泛的应用。工业上一般用锻烧钥酸铵的方法制取三氧化钥,随着材料科学与应用技术的不断发展,该方法制得的三氧化钥由于颗粒粗、呈团聚状态而不能满足特殊使用要求,如郭光华等在CN102198958中公开了一种石油加氢精制催化剂用高纯三氧化钥的制备方法,将四钥酸铵干燥、过筛后送入回转管电炉进行焙烧,一次成品率达98.5%。由于三氧化钥在较低的温度下即具有显著的蒸汽压,所以可以用升华法对三氧化钥进行净化,在升华的操作条件下,通常与之共生的杂质或不具有挥发性(如硅酸盐等)或不能冷凝而被除去。目前,工业上升华法生产纯三氧化钥的主要原料为工业氧化钥即钥焙砂,根据钥焙砂中氧化钥熔点、沸点低,在温度低于其熔点795°C时开始升华,以三聚合氧化钥的形态进入气相,三氧化钥蒸气连同空气一同进入收尘风罩中并在抽力作用下进入布袋收集,而大多数杂质化合物因熔点、沸点高很多留在固相中,升华在旋转电炉中进行,升华温度一般控制在900 1100°C,制取的三氧化钥一般纯度可达到MoO3 99.8% (张启修,赵秦生主编,《钨钥冶金》,2005年9月);南韩研究人员发明一种新型升华炉,该炉比带旋转炉底的升华炉生产能力大,能耗低(张文钲,氧化钥研发进展,《中国钥业》,2006年第I期);US4551313公开了一种含成渣成分(硅、铝及重金属)的三氧化钥的快速升华方法,第一步:通过气动悬浮流输送的氧化钥颗粒、通过喷嘴输送的燃料和含氧气体混合流进入一个封闭炉腔内,燃料气体混合物点燃产生温度在1600 士 200°C 1800°C的足以使三氧化钥升华、融化成渣成分的火焰,收集炉腔内的液态渣,第二步:将产生的包括升华的三氧化钥在内的气体和悬浮固体通过上述炉腔进入一冷凝室,冷凝室的温度(850 950°C)高于升华的三氧化钥的冷凝温度、低于挥发性金属杂质的挥发温度,然后冷凝(150 500°C)、收集固态三氧化钥,分离废气,从而实现三氧化钥和杂质的分离,结果显示,混入渣中的钥低于1%,得到产品三氧化钥纯度达MoO3 99.95%。尽管采用上述这些方法可以获得较高纯度的三氧化钥,但仍然存在下述几个问题:1、钥回收率明显低于75%,抵消了产品纯度提高带来的优势;2、由于往炉内通入大量空气流,大部分热量不是用来升华产品,而是被用来提高引入空气的温度;3、制得的产品三氧化钥平均粒度在微米级,不能满足材料科学等领域的特定要求。已有研究发现,具有各向异性的超细纳米三氧化钥,更显示出其特殊的催化性能,可广泛用作催化剂。常规升华法采用收尘风罩及布袋收集三氧化钥,因粒子聚凝仅得到微米级产品,为了制取超细三氧化钥,必须将升华的三氧化钥气体急骤冷却,防止三氧化钥粒子聚凝或团聚,从而得到纳米级产品。关于闻纯超细二氧化钥的制备工艺、设备,国内已有相关文献报道,如闻海燕等通过对离子交换法制备的棒状三氧化钥材料进行水热、高温热处理得到了三氧化钥纳米颗粒(纳米三氧化钥的制备与电化学性能研究,《南开大学学报》自然科学版,2010年第5期)、陈九菊等利用超声化学的制备方法,获得类球形的三氧化钥纳米颗粒;并在相同化学反应条件下制备出未经过超声作用的MoO3颗粒(三氧化钥纳米颗粒的制备与性能分析,《黑龙江工程学院学报》,2009年第3期)、赵鹏等以仲钥酸铵[(NH4)6Mo7O24 *4H20]饱和溶液和硝酸为原料,在水热反应釜中,利用水热反应法制备了三氧化钥纳米纤维(三氧化钥纳米纤维的水热法制备与表征,《化工新型材料》,2009年第9期)、任引哲等以(NH4)6Mo7O24 *4H20和HAc为原料,制备了纳米级MoO3微粉(纳米级MoO3微粉的制备与性质,《化学通报》,2002年第I期)、郭荣等公开了微波煅烧钥酸铵制取高纯三氧化钥的新工艺(微波混合加热制备高纯三氧化钥新工艺,《矿产综合利用》,2006年第4期)、吴晓林等公开一种用低品位钥精矿制备高纯三氧化钥的生产工艺,讨论了温度、气氛装舟量和推舟速度等工艺因素对高纯三氧化钥性能、粒度大小、形态的影响(热分解法制备高纯三氧化钥工艺研究,《合肥工业大学学报》自然科学版,1998年第6期);CN1075754公开一种炼钥及其综合利用方法,采用钥精矿熔炼炉,用氧气(或空气)将钥精矿喷入炉内,反应方程为MoS2+3.502 = Mo03+2S02+266200卡,利用反应自己产生的热量,或用煤气等补充热量,最终造成的摄氏1500度以上的高温,使MoO3升华而被收集;CN101092249公开了一种制备三氧化钥纳米结构及其薄膜的方法,采用红外烧结炉,在大气环境下通过加热钥蒸发源并使其蒸发,所蒸发的钥和大气中的氧气反应形成氧化钥,并沉积在衬底基板上形成三氧化钥纳米结构及其薄膜。上述这些公开文献的工艺技术多局限于理论报道,很少用于工业实践大批量生产过程,而且未披露相关的升华炉、红外烧结炉等生产设备的具体结构信息。US6468497公开了一种纳米三氧化钥的生产方法,将工业氧化钥采用升华-骤冷法生产出纳米三氧化钥,生产工艺如下:将粒度大约24 260 m的工业氧化钥粉体经可控螺旋运输机送入升华炉中,经入口鼓入空气使二氧化钥氧化为三氧化钥,升华炉用电力加热,用热电偶检测炉内温度,当炉温达到1100°C时,三氧化钥开始升华并沉积在似膜状进料管中;已升华的纳米三氧化钥用液氮流骤冷,进入料斗,然后流入过滤器,经风机吸出冷气,纳米三氧化钥产品经漏斗排出,反应升华温度为1093 1260°C,升华炉的作业时间为120min,可产出约长100 nm、宽25 nm、高20 nm的呈条状纳米级三氧化钥。赵秦生等提出一种氧化钥等离子物理气相沉积法制取高纯三氧化钥的方法,以空气等离子处理工业纯的氧化钥(即钥焙砂),利用三氧化钥沸点比大多数杂质低的特点,令其在空气等离子焰中迅速挥发,然后在等离子焰外引入大量冷空气使气态三氧化钥骤冷,获得超细高纯三氧化钥粉末。因为采用等离子方法,预计生产时间可大大缩短,但该方法:
1、为保证在等离子体条件下三氧化钥的迅速挥发,等离子焰必须保持较高温度(2000°C以上),致使原料钥焙砂中的大多数杂质也挥发进入气相,最终冷凝并伴随三氧化钥进入产品中,影响产品纯度;2、该方法仅仅只是一个设想,无工业应用,甚至无实验装置(张启修,赵秦生主编,《钨钥冶金》,2005年9月)。对生产高纯又超细的三氧化钥产品的生产设备而言,有两个问题是必须要同时考虑或关注的:一、工艺环境的高洁净度;二、超细粉末的产生与收集条件。
实用新型内容本实用新型提供了一种高纯超细三氧化钥生产设备,为三氧化钥的生产提供一个高洁净的工艺环境及超细粉末的收集条件,以氧化钥或钥粉为原料,先经氧化升华获得高纯气态三氧化钥,然后骤冷并收集,获得超细高纯三氧化钥粉末。本实用新型为实现上述发明目的采用的技术方案为:一种高纯超细三氧化钥生产设备,包括按生产流程依次设置并连通的三氧化钥升华炉、气态三氧化钥冷凝器、不锈钢过滤收集器和抽真空系统;所述三氧化钥升华炉设有PLC可编程序控温系统,炉体设置有保温层和发热元件,在炉体内安装高纯石英管内胆,内胆两端与炉体之间通过可拆卸的水冷法兰固定、橡胶密封垫密封,内胆前端的氧源入口设置气体过滤滤芯I,操作状态下内胆内相配有盛放物料的石英舟;所述气态三氧化钥冷凝器包括冷凝管及设于冷凝管上的骤冷介质入口,冷凝管前端与三氧化钥升华炉内胆出口连通,冷凝管后端与所述不锈钢过滤收集器入口相连通;所述不锈钢过滤收集器设有固态三氧化钥出口,不锈钢过滤收集器的管道及容器内表面喷涂有聚四氟乙烯涂层;所述抽真空系统通过 真空管道与不锈钢过滤收集器连通。本实用新型的高纯超细三氧化钥生产设备,三氧化钥升华炉采用PLC可编程序控温系统,控温系统安装于控制柜内,在控温系统中编制与生产过程配套的程序,对升华装置内的温度、真空度、电气部分进行自动化控制,以生产高纯三氧化钥。在操作状态下,三氧化钥升华炉中相配有f 3个盛放物料的石英舟,工作时装料后依次用推杆推至内胆内,置于内胆中最端部的两个石英舟的外端面可进行喷砂处理,以降低高温区对内胆两端的辐射热,节约能量。三氧化钥升华炉炉体内安装的高纯石英管内胆(SiO2 ^ 99.90 99.99%),第一可保证升华炉反应内腔的高洁净度,第二高纯石英的良好热振性可使升华炉的升降温速度加快,提高产能,并可避免传统陶瓷管内胆的掉渣问题及陶瓷管内胆制造口径大小受限的问题,第三石英管内胆可使炉腔达到并持久保持高温。三氧化钥升华炉内胆两端与炉体之间通过可拆卸的水冷法兰固定、橡胶密封垫密封,可使升华炉内空气与外部空间完全隔离,保证升华环境的洁净度,水冷法兰设进、出水通道,设备工作时不断通水冷却可保持法兰常温,保证密封性能,从而保证长时间高温生产条件下升华环境不受外部空间干扰。在不锈钢过滤收集器的管道及容器内表面喷涂的聚四氟乙烯涂层,可使超细三氧化钥产品不会粘结在管道或容器内造成团聚,保证了产品的粒径在纳米级。不锈钢过滤收集器的滤芯可采用不锈钢烧结丝网通过特殊叠层压制及真空烧结制成,采用脉冲间歇反吹,利于长期反复过滤并收集超细三氧化钥粉末。抽真空系统的真空泵可设置变频控制,变频控制可自由控制真空度、抽气量和功率。一种高纯超细三氧化钥生产设备,所述保温层为氧化锆护衬体中间填充氧化铝纤维保温棉或者氧化铝含锆纤维棉。设置的保温层可减少热量损失,降低能耗。一种高纯超细三氧化钥生产设备,所述发热元件为硅碳棒、硅钥棒、电阻丝或者电阻带。发热元件在炉体内可沿水平方向或竖直方向对称均布。一种高纯超细三氧化钥生产设备,所述骤冷介质入口设有与大气直接连通的气体过滤滤芯II,气体过滤滤芯II上设有碟阀,使气态三氧化钥与引入冷凝管中的常温空气接触实现快速冷却。气体过滤滤芯能有效阻挡氧源即常温空气中夹带的颗粒杂质,使进入升华炉内的空气保持洁净,碟阀用以控制空气的流量。一种高纯超细三氧化钥生产设备,所述骤冷介质入口设有与深冷氮气源或低温空气源连通的L形弯管,所述L形弯管下部出口朝向不锈钢过滤收集器方向,使气态三氧化钥与引入冷凝管中的深冷氮气或低温空气接触实现快速冷却。本实用新型的高纯超细三氧化钥生产设备,在骤冷介质入口下游可设置热电偶,以测定气态三氧化钥骤冷温度,一般在骤冷介质入口下游150 350mm处设置热电偶测温。一种高纯超细三氧化钥生产设备,所述不锈钢过滤收集器的过滤收集器壳体设有水冷夹层,可降低收集器腔内温度,使收集的三氧化钥粉末更细。一种高纯超细三氧化钥生产设备,所述抽真空系统的真空泵设有气体密封,充分保证不锈钢过滤收集器腔体内高度洁净。本实用新型中,在三氧化钥升华炉中氧化钥或钥粉原料与氧源接触氧化产生高纯气态三氧化钥,进入气态三氧化钥冷凝器中,气态三氧化钥在骤冷介质作用下快速冷却为超细三氧化钥,在不锈钢过滤收集器中超细三氧化钥被收集成为成品。采用本实用新型的高纯超细三氧化钥生产设备,至少具有以下有益效果:1、提供一个高洁净度的工艺环境,使生产的三氧化钥产品的纯度可达99.995%通过在三氧化钥升华炉中采用高纯石英管内胆创造一个高洁净的升华环境、在三氧化钥升华炉采用水冷法兰密封使升华炉腔内气体与外部气体隔离、在氧源入口处及骤冷气体入口处设置气体过滤滤芯保证引入气体的绝对纯净、真空泵采用气体密封等措施,给高纯超细三氧化钥的生产提供了高洁净的生产环境,生产的三氧化钥纯度高,在99.95%以上,最高可达99.995% ;2、创造超细三氧化钥的产生与收取条件,使生产的三氧化钥产品的粒度可达IOOnm通过气态三氧化钥冷凝器的冷凝管及其上的骤冷介质入口,使升华的气态三氧化钥与低温空气或液氮等骤冷介质接触实现快速冷凝,从而获得纳米级细粉;通过在不锈钢过滤收集器中设置防粘结的聚四氟乙烯涂层,减少和避免骤冷获得的三氧化钥细粉在收取时团聚,最终获得超细的纳米级三氧化钥产品,生产的三氧化钥产品粒度细,粒度可达IOOnm0

图1为本实用新型的氧化升华设备示意图。附图中:1、三氧化钥升华炉;I1、气态三氧化钥冷凝器;111、不锈钢过滤收集器;IV、抽真空系统;1、炉体;2、内胆;3、石英舟;4、水冷法兰;5、炉门;6、气体过滤滤芯I ;7、冷凝管;8、氧源入口 ;9、内胆出口 ;10、冷凝管前端;11、冷凝管后端;12、气体过滤滤芯II ;13、热电偶;14、过滤收集器壳体;15、过滤器滤芯;16、脉冲反吹装置;17、真空泵;18、真空管道,19、三氧化钥产品出口。
具体实施方式
[0035]
以下结合附图1及具体实施例对本实用新型作进一步阐述。如图1所示:高纯超细三氧化钥生产设备,主要由按生产流程依次设置并连通的三氧化钥升华炉1、气态三氧化钥冷凝器I1、不锈钢过滤收集器III和抽真空系统IV组成,氧化钥或钥粉原料首先在三氧化钥升华炉I中氧化升华为气态三氧化钥;三氧化钥升华炉采用PLC可编程序控温系统,控温系统安装于控制柜内,在控温系统中编制与生产过程配套的程序,对升华装置内的温度、真空度、电气部分进行自动化控制;三氧化钥升华炉I的炉体I设置的保温层为氧化锆护衬体中间填充氧化铝纤维保温棉或者氧化铝含锆纤维棉,该实施例中采用氧化铝含锆纤维棉;发热元件为硅碳棒、硅钥棒、电阻丝或电阻带,该实施例中采用硅钥棒;炉体内安装SiO2 99.94%的高纯石英管内胆2 ;工作状态下内胆2内配套设置有两个石英舟3,用来盛放反应原料,内胆2前后两端穿出炉体1,其前端设置有炉门5和氧源入口 8,升华后的气态三氧化钥自内胆出口 9引出;内胆2两端与炉体I之间通过可拆卸的水冷法兰4固定,橡胶密封件密封,保证长时间高温生产条件下升华环境不受外部空间干扰,水冷法兰4配备的冷却系统采用所属领域的常规设备;炉门5方便操作人员开闭炉门进行生产操作;氧源入口 8设置有气体过滤滤芯I 6,有效阻挡空气中夹带的颗粒杂质;自内胆出口 9引出的气态三氧化钥进入气态三氧化钥冷凝器II的冷凝管7内骤冷成为固态三氧化钥;冷凝管前端10与内胆出口 9相连通,冷凝管后端11与不锈钢过滤收集器III入口连通,冷凝管7上设置有骤冷介质入口,骤冷介质入口设有与大气直接连通的气体过滤滤芯II 12,气体过滤滤芯II 12上设有碟阀,工作时引入空气作为骤冷介质;在气体过滤滤芯II 12下游200mm处设置有热电偶13以测定气态三氧化钥骤冷温度;经气态三氧化钥冷凝器II冷却的固态三氧化钥进入不锈钢收集器III收集,过滤收集器壳体14底部设有三氧化钥产品出口 19,过滤收集器壳体14内设有过滤器滤芯15、间歇脉冲反吹装置16及能降低腔内温度的水冷夹层,在不锈钢过滤收集器III的管道及过滤收集器壳体14内表面均喷涂有聚四氟乙烯涂层;抽真空系统IV的真空泵17采用干式无油真空泵,真空泵17通过真空管道18与不锈钢过滤收集器III顶部连通。需要说明的是:本说明书中所提及但未详述的设备均采用所述领域的现有设备,只要能实现本实用新型中所述的功能即可。
权利要求1.一种高纯超细三氧化钥生产设备,包括按生产流程依次设置并连通的三氧化钥升华炉(I )、气态三氧化钥冷凝器(II)、不锈钢过滤收集器(III)和抽真空系统(IV);其特征在于: 所述三氧化钥升华炉(I )设有PLC可编程序控温系统,炉体(I)设置有保温层和发热元件,在炉体(I)内安装高纯石英管内胆(2),内胆(2)两端与炉体(I)之间通过可拆卸的水冷法兰(4)固定、橡胶密封垫密封,内胆(2)前端的氧源入口(8)设置气体过滤滤芯I (6),操作状态下内胆(2)内相配有盛放物料的石英舟(3); 所述气态三氧化钥冷凝器(II)包括冷凝管(7)及设于冷凝管(7)上的骤冷介质入口,冷凝管前端(10)与三氧化钥升华炉内胆出口(9)连通,冷凝管后端(11)与所述不锈钢过滤收集器(14)入口相连通; 所述不锈钢过滤收集器(III)设有固态三氧化钥出口( 19),不锈钢过滤收集器的管道及容器内表面喷涂有聚四氟乙烯涂层; 所述抽真空系统(IV)通过真空管道(18)与不锈钢过滤收集器(III)连通。
2.根据权利要求1所述的高纯超细三氧化钥生产设备,其特征在于:所述发热元件为硅碳棒、硅钥棒、电阻丝或者电阻带。
3.根据权利要求1所述的高纯超细三氧化钥生产设备,其特征在于:所述骤冷介质入口设有与大气直接连通的气体过滤滤芯II (12),气体过滤滤芯II (12)上设有碟阀。
4.根据权利要求1所述的高纯超细三氧化钥生产设备,其特征在于:所述骤冷介质入口设有与深冷氮气源或低温空气源连通的L形弯管,所述L形弯管下部出口朝向不锈钢过滤收集器(III)方向。
5.根据权利要求1所述的高纯超细三氧化钥生产设备,其特征在于:所述不锈钢过滤收集器(III)的过滤收集器壳体(14)设有水冷夹层。
6.根据权利要求1所述的高纯超细三氧化钥生产设备,其特征在于:所述抽真空系统(IV)的真空泵(17)设有气体密封。
专利摘要一种高纯超细三氧化钼生产设备,涉及有色金属冶金生产设备领域,所提出的高纯超细三氧化钼生产设备,包括按生产流程依次设置并连通的三氧化钼升华炉、气态三氧化钼冷凝器、不锈钢过滤收集器和抽真空系统,三氧化钼升华炉设有PLC可编程序控温系统,炉体内安装高纯石英管内胆,内胆两端与炉体之间通过可拆卸的水冷法兰固定、橡胶密封垫密封,内胆前端氧源入口处设置气体过滤滤芯Ⅰ;抽真空系统通过真空管道与不锈钢过滤收集器连通。本实用新型通过提供高洁净度的工艺环境,使生产的三氧化钼产品的纯度可达99.995%;通过创造超细三氧化钼的产生与收取条件,使生产的三氧化钼产品的粒度可达100nm。
文档编号C01G39/02GK202988768SQ20122052158
公开日2013年6月12日 申请日期2012年10月12日 优先权日2012年10月12日
发明者赵维根, 赵龙飞, 杨园丁 申请人:嵩县开拓者钼业有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1