一种三元化合物基柔性多孔陶瓷复合材料的制备方法与流程

文档序号:14328559阅读:183来源:国知局

本发明涉及一种陶瓷材料的制备方法,具体涉及一种三元硼化物增强的三元化合物基柔性多孔陶瓷复合材料的制备方法。



背景技术:

多孔材料是可持续发展和促进环境友好型工业发展的重要支撑之一。多孔材料由于具有一定孔径范围分布的孔隙,较大的比表面积,吸附容量和许多特殊的性能,可实现过滤、分离、节流、催化反应、隔音,隔热,抗震、吸附多种功能,广泛应用于医药、化工、冶金、海水淡化以及环境保护各个领域。目前国内外能够工业应用的多孔过滤材料主要有高分子材料和无机材料(包括陶瓷材料和金属材料)。这些传统的多孔过滤材料已广泛应用于冶金、水处理、食品、医药、生物和废液废气处理领域。

高分子多孔材料存在抗高温高压性能差,不耐有机溶剂,抗环境腐蚀性能不足以及力学性能不足缺陷,限制了这类材料只能局限于环境较为友好的水处理和生物领域的应用。金属多孔材料,如Ti基合金、Ni基合金、以及316L不锈钢,耐酸碱腐蚀性能较差、抗硬质颗粒的磨损性能不足以及抗高温氧化性能差,限制了此类材料广泛应用。多孔陶瓷材料,如Al2O3、SiO2、SiC、TiO2、ZrO2,弥补了高分子多孔材料和金属多孔材料性能的不足,具有耐高温、耐高压和耐环境腐蚀性能;但是,陶瓷材料差的抗热冲击性、脆性和难以机加工缺陷,制约着其应用领域的扩展。

Ti3MC2(M包括Si或Al)三元化合物陶瓷,具有良好的导热导电性和耐腐蚀性能。与传统陶瓷材料不同的是,Ti3SiC2或Ti3AlC2陶瓷具有良好的韧性和可加工性能,以及抗热冲击性能。然而,这种材料相对较低的硬度和固有的层状结构,使其在受到硬质颗粒的磨削力时较易磨损,降低了材料的使用寿命。

Mo2NiB2三元硼化物具有高熔点、高硬度及良好的抗腐蚀性能和耐磨性,但是,硼化物的强度及断裂韧性低,单独用作结构材料还存在很多问题,因此,如何将Mo2NiB2的优点与Ti3MC2的优点结合在一起就是目的亟待解决的问题。



技术实现要素:

本发明的目的在于提供一种三元硼化物增强的三元化合物基柔性多孔陶瓷复合材料的制作方法,从而将Mo2NiB2的优点与Ti3MC2的优点结合,获得良好的增强效果,将可以使得复合材料同时获得良好的抗腐蚀性能和强度性能。

为了实现上述目的,本发明采用的技术方案是:

一种三元化合物基柔性多孔陶瓷复合材料的制备方法,将Mo2NiB2粉末、Ti3MC2粉末和碳酸盐粉按如下原子百分比at.%混料,Mo2NiB2:15%-25%,Ti3MC2:50%-60%,碳酸盐:15%-35%;将配好的物料放入球磨机进行混合,球磨气氛为真空或惰性气体保护,球料比为1:1-3:1,球磨时间6-8小时;将混合好的粉末采用冷压成形设备液压机进行压制,压制压力控制在350-400MPa;将压制成型的冷压坯放入真空炉中进行反应烧结,反应温度为1200-1400℃,反应烧结时间为120-180分钟,真空度控制在10-3-10-2Pa,反应完成后随炉冷却。

进一步地,所述将成型的冷压坯放入真空炉中进行反应烧结时,其升温速率控制在15-20℃/min。

进一步地,所述的Mo2NiB2粉末是由如下步骤合成的,采用MoO3,NiO,B4C和石墨C粉为原料,如下原子百分比at.%混料,MoO3:15%-25%,NiO:6%-15%,B4C:4%-10%,C:50%-75%。将配好的物料放入球磨机进行混合,球磨气氛为真空或惰性气体保护,球料比为1:1-3:1,球磨时间6-8小时;将混合好的粉末采用冷压成形设备液压机进行压制,压制压力控制在350-400MPa;将压制成型的冷压坯放入真空炉中进行反应烧结,反应温度为1000-1300℃,升温速率控制在15-20℃/min,反应烧结时间为60-120分钟,真空度控制在10-3-10-2Pa;反应完成后,快速降温,将烧结坯进行二次球磨破碎,球磨气氛为真空或惰性气体保护,球料比为1:1-3:1,球磨时间6-8小时。

进一步地,所述的Ti3MC2粉末是由如下步骤合成的,采用TiH2粉,M粉,C粉为原料,按如下原子百分比at.%混料,TiH2:45-55%,M:15%-20%,C:30-35%;采用行星式球磨机进行高能球磨,球磨气氛为真空或惰性气体保护,球料比为15:1-20:1,球磨转速250-300rpm,球磨时间24-36小时。

本发明的有益效果是:

1、本发明提出的Mo2NiB2/Ti3MC2三元化合物基柔性多孔陶瓷材料,这种无机多孔材料集中了柔性陶瓷和硬脆陶瓷材料的性能优点,具有良好的抗腐蚀性能,抗高温氧化性能和抗热冲击性能,同时具有良好的可加工性。

2、本发明制备的Mo2NiB2/Ti3MC2复合多孔材料具有良好的孔结构稳定性和微观结构均匀性。Mo2NiB2中的元素与Ti元素具有良好的反应亲和力,Ti-M与M-C在Mo2NiB2周围反应生成Ti3MC2,保证了基体和增强相之间的冶金结合。这种化合物在合成过程中,元素Ni和B均可与Ti发生反应,Mo在高温下可以连续固溶于Ti中。因此,在Ti3MC2化合物的合成原料中,加入Mo2NiB2化合物的合成原料,在合成Ti3MC2化合物的过程中,同时合成的Mo2NiB2化合物可以与Ti3MC2产生良好的冶金结合,从而获得良好的增强效果,将可以使得复合材料同时获得良好的抗腐蚀性能和强度性能。

3、本发明在制备Mo2NiB2时,采用MoO3,NiO,B4C和石墨C粉为原料,在反应生成Mo2NiB2的同时,将产生大量气体,有利于生成多孔状Mo2NiB2,以有利于后续破碎,得到细小的原料粉末,从而有利于合成Mo2NiB2/Ti3MC2复合多孔材料。

具体实施方式

实施例一

1、Mo2NiB2粉末的合成:采用MoO3,NiO,B4C和石墨C粉为原料,如下原子百分比at.%混料,MoO3:17%,NiO:9%,B4C:8%,C:66%。将配好的物料放入球磨机进行混合,球磨气氛为真空保护,球料比为3:1,球磨时间8小时;将混合好的粉末采用冷压成形设备液压机进行压制,压制压力控制在400MPa;将压制成型的冷压坯放入真空炉中进行反应烧结,反应温度为1300℃,升温速率控制在15℃/min,反应烧结时间为120分钟,真空度控制在10-3-10-2Pa范围;在此阶段,进行如下反应:

4MoO3+2NiO+B4C+13C→2Mo2NiB2+14CO↑

反应完成后,快速降温,将烧结坯进行二次球磨破碎,球磨气氛为真空保护,球料比为3:1,球磨时间8小时。

2、Ti3SiC2粉末的合成:采用TiH2粉,Si粉,C粉为原料,按如下原子百分比at.%混料,TiH2:45%,Si:20%,C:35%;采用行星式球磨机进行高能球磨,球磨气氛为真空保护,球料比为20:1,球磨转速250rpm,球磨时间36小时。在此阶段,进行如下反应:

TiH2+Si→Ti-Si+H2

Si+C→Si-C

3、Mo2NiB2三元硼化物增强Ti3SiC2三元碳化物的高温反应烧结:将Mo2NiB2粉末、Ti3SiC2粉末和碳酸镁粉按如下原子百分比at.%混料,Mo2NiB2:15%,Ti3SiC2:60%,碳酸镁:25%;将配好的物料放入球磨机进行混合,球磨气氛为真空保护,球料比为3:1,球磨时间8小时;将混合好的粉末采用冷压成形设备液压机进行压制,压制压力控制在400MPa;将压制成型的冷压坯放入真空炉中进行反应烧结,反应温度为1400℃,升温速率控制在15℃/min,反应烧结时间为180分钟,真空度控制在10-3-10-2Pa范围,在此阶段,进行如下反应:

MgCO3→MgO+CO2

MgHCO3→MgO+H2O↑+CO2

Mo2NiB2+Ti-M+M-C→Mo2NiB2/Ti3SiC2

反应完成后随炉冷却。从而制备出Mo2NiB2/Ti3SiC2多孔陶瓷复合材料。

实施例二

1、Mo2NiB2粉末的合成:采用MoO3,NiO,B4C和石墨C粉为原料,如下原子百分比at.%混料,MoO3:25%,NiO:15%,B4C:4%,C:56%。将配好的物料放入球磨机进行混合,球磨气氛为惰性气体保护,球料比为1:1,球磨时间6小时;将混合好的粉末采用冷压成形设备液压机进行压制,压制压力控制在350MPa;将压制成型的冷压坯放入真空炉中进行反应烧结,反应温度为1000℃,升温速率控制在20℃/min,反应烧结时间为60分钟,真空度控制在10-3-10-2Pa范围;在此阶段,进行如下反应:

4MoO3+2NiO+B4C+13C→2Mo2NiB2+14CO↑

反应完成后,快速降温,将烧结坯进行二次球磨破碎,球磨气氛为惰性气体保护,球料比为1:1,球磨时间6小时。

2、Ti3AlC2粉末的合成:采用TiH2粉,Al粉,C粉为原料,按如下原子百分比at.%混料,TiH2:55%,Al:15%,C:30%;采用行星式球磨机进行高能球磨,球磨气氛为惰性气体保护,球料比为15:1,球磨转速300rpm,球磨时间24小时。在此阶段,进行如下反应:

TiH2+Al→Ti-Al+H2

Al+C→Al-C

3、Mo2NiB2三元硼化物增强Ti3AlC2三元碳化物的高温反应烧结:将Mo2NiB2粉末、Ti3AlC2粉末和碳酸盐粉按如下原子百分比at.%混料,Mo2NiB2:25%,Ti3AlC2:40%,碳酸钙:35%;将配好的物料放入球磨机进行混合,球磨气氛为惰性气体保护,球料比为1:1,球磨时间6小时;将混合好的粉末采用冷压成形设备液压机进行压制,压制压力控制在350MPa;将压制成型的冷压坯放入真空炉中进行反应烧结,反应温度为1200℃,升温速率控制在20℃/min,反应烧结时间为120分钟,真空度控制在10-3-10-2Pa范围,在此阶段,进行如下反应:

CaCO3→CaO+CO2

CaHCO3→CaO+H2O↑+CO2

Mo2NiB2+Ti-Al+Al-C→Mo2NiB2/Ti3AlC2

反应完成后随炉冷却。从而制备出Mo2NiB2/Ti3AlC2多孔陶瓷复合材料。

实施例三

1、Mo2NiB2粉末的合成:采用MoO3,NiO,B4C和石墨C粉为原料,如下原子百分比at.%混料,MoO3:15%,NiO:6%,B4C:10%,C:69%。将配好的物料放入球磨机进行混合,球磨气氛为惰性气体保护,球料比为2:1,球磨时间7小时;将混合好的粉末采用冷压成形设备液压机进行压制,压制压力控制在370MPa;将压制成型的冷压坯放入真空炉中进行反应烧结,反应温度为1200℃,升温速率控制在17℃/min,反应烧结时间为90分钟,真空度控制在10-3-10-2Pa范围;在此阶段,进行如下反应:

4MoO3+2NiO+B4C+13C→2Mo2NiB2+14CO↑

反应完成后,快速降温,将烧结坯进行二次球磨破碎,球磨气氛为惰性气体保护,球料比为2:1,球磨时间7小时。

2、Ti3SiC2粉末的合成:采用TiH2粉,Si粉,C粉为原料,按如下原子百分比at.%混料,TiH2:50%,Si:17%,C:33%;采用行星式球磨机进行高能球磨,球磨气氛为惰性气体保护,球料比为17:1,球磨转速270rpm,球磨时间30小时。在此阶段,进行如下反应:

TiH2+Si→Ti-Si+H2

Si+C→Si-C

3、Mo2NiB2三元硼化物增强Ti3SiC2三元碳化物的高温反应烧结:将Mo2NiB2粉末、Ti3SiC2粉末和碳酸钠粉按如下原子百分比at.%混料,Mo2NiB2:20%,Ti3SiC2:50%,碳酸钠:30%;将配好的物料放入球磨机进行混合,球磨气氛为惰性气体保护,球料比为2:1,球磨时间7小时;将混合好的粉末采用冷压成形设备液压机进行压制,压制压力控制在370MPa;将压制成型的冷压坯放入真空炉中进行反应烧结,反应温度为1300℃,升温速率控制在17℃/min,反应烧结时间为150分钟,真空度控制在10-3-10-2Pa范围,在此阶段,进行如下反应:

Na2CO3→Na2O+CO2

Na2HCO3→Na2O+H2O↑+CO2

Mo2NiB2+Ti-M+M-C→Mo2NiB2/Ti3SiC2

反应完成后随炉冷却。从而制备出Mo2NiB2/Ti3SiC2多孔陶瓷复合材料。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1