一种陶瓷复合粉体的合成方法及陶瓷复合粉体与流程

文档序号:12089364阅读:1068来源:国知局
一种陶瓷复合粉体的合成方法及陶瓷复合粉体与流程

本发明实施例涉及无机非金属材料技术领域,特别涉及一种陶瓷复合粉体的合成方法及陶瓷复合粉体。



背景技术:

目前,大多数功能陶瓷和功能涂层所使用的陶瓷粉体都是多组元复合粉体,其工业化生产中最广泛采用的是固相反应法合成。固相反应不同于气、液反应,它包括化学反应和物质向反应区迁移两个过程,属于非均相反应。原料中的原子、离子必须通过靠近接触和缓慢扩散才能完成反应。因此参与反应的固相颗粒相互接触是反应物间发生化学作用和物质传输的先决条件。固相法合成多组元粉体的反应历程是在各原料颗粒表面接触处开始进行,生成新相产物,随后发生产物层的结构调整和晶体生长,当产物层达到一定厚度后,各原料扩散通过产物层继续进行直至全部形成新相结构。在实际生产中,一般是将所需组元的粉体原料经湿法球磨混合、干燥,然后经煅烧发生固相反应合成为具有一定晶体结构的多组元陶瓷复合粉体。

固相反应法与液相法或气相法相比,具有对工艺条件无特殊要求、操作简便、原料来源广泛、生产成本低、效率高、环境污染小的优点。特别是在原料成分确定的情况下,可以比较准确地控制其组元组成,因此普适性强,适于工业化生产。目前仍然被大量应用于一般多组元陶瓷粉体的工业化生产中,在实验室研究中也经常采用。

但是,这种方法的缺点也是显而易见的。在湿法混磨均匀的料浆脱水干燥过程中,各组元粉体原料因比重、悬浮性的不同,容易出现组元沉降,集合状态不均匀。一般通过压滤、喷雾或冷冻法干燥来减少此过程造成的成分不均匀性,这必然增加设备投资和提高工艺成本;在煅烧合成粉体时,若以自然堆积方式进行,多组元粉体之间接触不好,质点扩散距离较远、反应速度缓慢、效率低且造成易挥发成分的散失。为促进反应,可使原始粉料粒度尽量细化(如1μm或更小)、适当增加反应物接触的表面、提高反应物的混合均匀性或提高煅烧温度。但是提高煅烧温度不仅提高了成本而且致使粉体中容易出现硬团聚,粉体粒度较大,粒径分布较宽;若压块成形后再煅烧虽可提高反应效率,但由于压块各部位致密度不均匀容易造成局部烧结结块难破碎。总之,传统的固相反应合成法生产复合粉体存在着各组元成分难以混合均匀,合成温度高,粉体粒径粗大等缺点,而且常常得不到所需的相组成,影响合成粉体的质量。

近年来,液相法合成陶瓷粉体技术的发展为多组元复合超细粉体的制备提供了很好的选择,由于液相中可实现各组元分子、原子水平上的均匀混合,合成粉体具有很好的性能,因而成为实验室和生产上较为广泛应用的新技术。在多组元复合陶瓷粉体的液相法合成技术中,共沉淀法和溶胶-凝胶法被较多采用。共沉淀法必须采用水溶性原料,易于制备多组元体系粉体,目前已获得许多实际应用,但其聚沉过程和多次过滤清洗过程相当废时繁锁,而且对于多组元复合体系,因溶液中不同金属离子生成沉淀的条件不同,让组成材料的多种离子同时沉淀几乎是不可能的,同时,不同沉淀物的溶解度积也有所不同,水洗过程中可能会发生部分组元的流失,造成成分的不准确,影响合成粉体的性能;溶胶-凝胶法利用胶体离子良好的分散性,配合适当的脱水、干燥工艺,可以获得纳米超细粉体,但这种工艺通常都以价格昂贵的金属醇盐为原料,成本高、周期长,而且溶胶的凝胶过程控制也较困难,若脱水方法不当时容易出现缩聚、结块现象,造成颗粒的硬团聚,因此工业化生产受到一定限制。

针对传统的固相反应法和现有液相法合成复合陶瓷粉体存在的问题,出现了一种新的粉体合成工艺。该方法是传统的固相反应制粉工艺与陶瓷注凝技术相结合而产生的一种新型粉体制备工艺。该技术的基本过程为将含有各组元的原料按一定比例混合配制成水料浆,加入有机单体丙烯酰胺和交联剂亚甲基双丙烯酰胺,在一定条件下使有机单体与交联剂发生聚合反应,形成水基高分子凝胶体,其三维网络骨架把各种原料固定到其中,该凝胶体脱水干燥后先在一定温度下烧除有机物,再经煅烧即可合成得到需要的陶瓷粉体。该工艺原料料浆在混合均匀后通过控制外部条件发生快速凝胶化反应,其干燥过程是在发生凝胶化反应及各原料粒子已被固定无法相对运动后进行,因此,与常规固相法相比,它可在相当程度上避免因沉降带来的组分不均匀的问题,同时凝胶体中原料粉体在干燥后能够保持较紧密堆积的状态,互相紧密接触,有利于煅烧时的固相反应,因而煅烧合成温度明显低于常规的固相法。

但是,上述方法需采用丙烯酰胺作为凝胶材料,属于有毒品,对人体有一定危害。另外,加上配制料浆时加入的分散剂、pH值调节剂、引发剂和催化剂等,其有机物加入总量通常会达到原料粉体重量的3%以上,凝胶体干燥后煅烧过程中需在200℃~600℃范围内缓慢升温或保温以彻底烧除有机物的残碳,则延长了煅烧时间,对节能不利。



技术实现要素:

本发明实施例的目的是提供一种各组元分散均匀,且合成温度低的多组元陶瓷复合粉体的合成方法及利用该方法合成所得的陶瓷复合粉体。

根据本发明实施例的一个方面,提供一种陶瓷复合粉体的合成方法,该方法包括:配制陶瓷原料的水性料浆,所述水性料浆包括陶瓷原料、水和低聚合度有机共聚物,所述陶瓷原料为包括至少两种组元的原料;在所述水性料浆中加入交联促凝剂,得到凝胶体;将所述凝胶体进行脱水和干燥处理,得到干燥后凝胶体;将所述干燥后凝胶体加热到陶瓷复合粉体的合成温度并保温,得到陶瓷复合粉体或陶瓷复合基粉;对陶瓷复合基粉进行二次掺杂,得到陶瓷复合粉体。

进一步,所述陶瓷原料包括碳酸盐、草酸盐、醋酸盐、氢氧化物、氧化物和/或微量添加元素,所述微量添加元素包括水溶性盐类物质。

进一步,所述陶瓷原料、水和低聚合度有机共聚物的重量比为100:20~100:0.3~0.8。

进一步,所述交联促凝剂为浓度为5%~20%的聚乙烯亚胺水溶液,所述交联促凝剂的加入量为低聚合度有机共聚物重量的2%~10%。

进一步,对所述陶瓷复合基粉进行二次掺杂,得到陶瓷复合粉体的步骤包括:将所述陶瓷复合基粉进行粗碎;在进行粗碎后的所述陶瓷复合基粉中添加二次掺杂原料,得到掺杂后粉体,所述二次掺杂原料包括:Sb2O3、MnCO3、SiO2、Al2O3和Li2CO3粉;配制所述掺杂后粉体的水性料浆,所述掺杂后粉体的水性料浆包括:掺杂后粉体、水和低聚合度有机共聚物;在所述掺杂后粉体的水性料浆中加入交联促凝剂,得到掺杂凝胶体;将所述掺杂凝胶体进行脱水和干燥处理,得到干燥后掺杂凝胶体;将所述干燥后掺杂凝胶体进行粉碎,得到陶瓷复合粉体。

进一步,所述低聚合度有机共聚物为分子量为104~105的共聚物,优选的为分子量为104~105的异丁烯-马来酸酐有机共聚物酰胺-铵盐。

进一步,在所述水性料浆中加入交联促凝剂的步骤包括:加入所述交联促凝剂的同时搅拌所述水性料浆至大致均匀;静置3min~10min,得到所述凝胶体。

进一步,配制陶瓷原料的水性料浆的步骤包括:将陶瓷原料、水和低聚合度有机共聚物进行混磨1h~30h,得到陶瓷原料的水性料浆。

进一步,所述将所述凝胶体进行脱水和干燥处理包括自然脱水干燥、加热脱水干燥、红外加热或微波加热干燥;所述将所述干燥后凝胶体加热包括煅烧加热。

根据本发明实施例的另一个方面,提供一种由上述任一种合成方法合成的陶瓷复合粉体或掺杂陶瓷复合粉体。

本发明实施例提供的多组元陶瓷复合粉体及其合成方法,采用低聚合度有机共聚物,尤其是异丁烯-马来酸酐有机共聚物酰胺-铵盐作为分散剂,能够配制出高固相含量、流动性良好、悬浮稳定的多组元陶瓷原料的水性料浆,异丁烯-马来酸酐有机共聚物酰胺-铵盐能够使得多组元陶瓷原料中的各组元分散均匀,同时具有快速凝胶功能;分散剂的重量为多组元陶瓷原料的1%以下,分散剂量比较小,因此,在加热过程中可完全烧除,能够达到无毒无害的效果,同时解决了传统固相反应法合成陶瓷复合粉体易出现各组元分散不均匀、煅烧合成温度高,常用液相法存在的多次洗涤过滤繁锁操作、组分易流失不准确和成本高,以及已有凝胶固相反应法丙烯酰胺有毒、有机物总用量较多等问题。

附图说明

图1是本发明实施例一的一种二组元尖晶石型锌铁氧体粉体的合成方法的流程示意图;

图2是本发明实施例二的一种三组元尖晶石型锰锌铁氧体粉体的合成方法的流程示意图;

图3是本发明实施例三的一种三组元尖晶石型镍锌铁氧体粉体的合成方法的流程示意图;

图4是本发明实施例四的一种多组元压电陶瓷PZT粉体的合成方法的流程示意图;

图5是本发明实施例五的一种多组元热敏陶瓷PTC粉体的合成方法的流程示意图;

图6是本发明实施例一的合成方法合成的二组元尖晶石型锌铁氧体粉体的XRD谱图;

图7是本发明实施例二在1050℃温度下合成的三组元尖晶石型锌锰铁氧体粉体的XRD谱图;

图8是本发明实施例二在1050℃温度下合成的三组元尖晶石型锌锰铁氧体粉体的SEM微观形貌图;

图9是采用传统的固相反应法在1050℃温度下合成的三组元尖晶石型锌锰铁氧体粉体的XRD谱图;

图10是采用传统的固相反应法在1050℃温度下合成的三组元尖晶石型锌锰铁氧体粉体的SEM微观形貌图;

图11是本发明实施例合成三组元尖晶石型镍锌铁氧体粉体的XRD谱图。

具体实施方式

为使本发明的目的、技术方案和优点更加清楚明了,下面结合具体实施方式并参照附图,对本发明进一步详细说明。应该理解,这些描述只是示例性的,而并非要限制本发明的范围。此外,在以下说明中,省略了对公知结构和技术的描述,以避免不必要地混淆本发明的概念。

本发明实施例的陶瓷复合粉体的合成方法,首先配制陶瓷原料的水性料浆;其中,水性料浆包括陶瓷原料、水和低聚合度有机共聚物,三者重量比为100:20~100:0.3~0.8,陶瓷原料为包括至少两种组元的原料;其陶瓷原料包括碳酸盐、草酸盐、醋酸盐、氢氧化物、氧化物和/或微量添加元素,微量添加元素可以选用水溶性盐类物质。然后在水性料浆中加入浓度为5%~20%的交联促凝剂,得到凝胶体,交联促凝剂的加入量为低聚合度有机共聚物重量的2%~10%,交联促凝剂选用浓度为5%~20%的聚乙烯亚胺水溶液;再将凝胶体进行脱水和干燥处理,得到干燥后凝胶体,在一种可选的实施例中,脱水和干燥处理可以是将凝胶体进行通风自然脱水干燥或加热脱水干燥,也可以是将凝胶体切成小块,采用红外加热或微波炉加热进行脱水干燥;最后将干燥后凝胶体加热到陶瓷复合粉体的合成温度并保温,将干燥后凝胶体加热包括煅烧加热,得到陶瓷复合粉体,合成的温度和保温时间因不同陶瓷复合粉体的原料的不同而不同。

优选地,低聚合度有机共聚物为分子量为104~105的有机共聚物,更为优选地,为分子量为104~105的异丁烯-马来酸酐有机共聚物酰胺-铵盐,异丁烯-马来酸酐有机共聚物是一种具有两性的聚合物,结构中异丁烯段具有强烈的亲油性,马来酸酐段具有较好的亲水性,所以在铵盐化后可用作水性泥浆的分散剂,如果交联可做为高吸水性树脂,还可作为钻井液、水泥浆的降粘剂以及水处理剂等。其性质与异丁烯和马来酸酐的共聚比例、两种单体在高分子链中的分布以及分子量等有强烈关系,ISOBAMTM-104是一种低聚合度(分子量为104~105)异丁烯-马来酸有机共聚物酰胺-铵盐类规格。它是通过将ISOBAM的标准规格氨化处理而制备,具有标准规格的特性且可溶于水。因此在水性陶瓷粉体料浆中加入适量低分子量ISOBAMTM-104,有利于配制高固相含量、流动性良好、悬浮稳定的水性料浆,异丁烯-马来酸酐有机共聚物酰胺-铵盐无毒无害,兼作水性料浆分散剂和凝胶剂,用量少,在煅烧过程中可完全烧除。

其中,在陶瓷复合粉体的合成方法中,所用原材料与一般固相反应法基本相同,但在不增加或少增加原料成本的条件下,尽量选择所需组元的碳酸盐、草酸盐、醋酸盐、氢氧化物等代替金属氧化物原料,一方面利用其分解产物活性高而降低煅烧合成温度,另一方面分解时仅产生H2O、CO2等气体而不产生HCl、Cl2、NOx、SOx等腐蚀性或有毒有害气体。涉及到微量元素的添加时,微量元素选择水溶性盐类物质,水溶性盐类物质能够使得原料混合更加均匀,且通过球磨能够使陶瓷原料细化以及与水和低聚合度有机共聚物混合更加均匀,水的加入量为陶瓷原料重量的20%~100%,球料比(磨机各仓内研磨体与物料量的质量之比)在1:1~5:1之间选取,球磨时间为1h~30h。

具体地,通过以下几个实施例进行说明。

实施例一

图1显示了本发明实施例一的一种二组元尖晶石型锌铁氧体粉体的合成方法的流程示意图。

如图1所示,该合成方法包括:

S11,配制二组元尖晶石型锌铁氧体原料的水性料浆;二组元尖晶石型锌铁氧体原料的水性料浆包括二组元尖晶石型锌铁氧体原料、水和低聚合度有机共聚物,低聚合度有机共聚物为分子量为104~105的共聚物,优选的为分子量为104~105的异丁烯-马来酸酐有机共聚物酰胺-铵盐;

其中,二组元尖晶石型锌铁氧体原料包括草酸锌(ZnC2O4·2H2O)和草酸亚铁(FeC2O4),草酸锌和草酸亚铁按照摩尔比为Zn:Fe=1:2配料,然后加入相对于二组元尖晶石型锌铁氧体原料重量为20%~100%的去离子水和0.3%~0.8%的异丁烯-马来酸酐有机共聚物酰胺-铵盐,在球磨机中(球料比为1~5:1)混磨1h~30h制得二组元尖晶石型锌铁氧体原料的水性料浆。其中,优选地,去离子水的重量为二组元尖晶石型锌铁氧体原料重量的20%、25%、28%、31%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或100%,最为优选地,去离子水的重量为二组元尖晶石型锌铁氧体原料重量的30%;优选地,异丁烯-马来酸酐有机共聚物酰胺-铵盐的重量为二组元尖晶石型锌铁氧体原料重量的0.3%、0.4%、0.5%、0.6%、0.7%或0.8%,最为优选地,异丁烯-马来酸酐有机共聚物酰胺-铵盐的重量为二组元尖晶石型锌铁氧体重量的0.6%,混磨时间优选为4h;球磨机中研磨体与加入的二组元尖晶石型锌铁氧体原料、水和低聚合度有机共聚物的质量比优选为3:1。

S12,在二组元尖晶石型锌铁氧体原料的水性料浆中加入交联促凝剂,得到二组元尖晶石型锌铁氧体原料凝胶体;

具体地,是将从球磨机中经过研磨的水性料浆置于容器中,然后边搅拌二组元尖晶石型锌铁氧体原料的水性料浆边加入浓度为5%~20%的聚乙烯亚胺水溶液,加入聚乙烯亚胺水溶液的重量为异丁烯-马来酸酐有机共聚物酰胺-铵盐(ISOBAMTM-104)重量的2%~10%,待搅拌均匀后放置约3min~10min,使得加入交联促凝剂的二组元尖晶石型锌铁氧体原料的水性料浆凝胶固化,形成二组元尖晶石型锌铁氧体原料凝胶体。其中,优选地,聚乙烯亚胺水溶液的浓度优选为5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%或20%,最为优选地,聚乙烯亚胺水溶液的浓度选择10%,聚乙烯亚胺水溶液的加入量优选为2%、3%、4%、5%、6%、7%、8%、9%或10%,最为优选地,聚乙烯亚胺水溶液的加入量为5%,放置时间优选为5min。

S13,将二组元尖晶石型锌铁氧体原料凝胶体进行干燥处理,得到干燥后二组元尖晶石型锌铁氧体原料凝胶体;

将二组元尖晶石型锌铁氧体原料凝胶体切割成厚度约为10mm的薄片,自然脱水干燥脱水干燥至恒重。

S14,将干燥后二组元尖晶石型锌铁氧体原料凝胶体加热到二组元尖晶石型锌铁氧体的合成温度并保温,得到二组元尖晶石型锌铁氧体粉体。

具体地,是将干燥后二组元尖晶石型锌铁氧体原料凝胶体放入坩埚并在马弗炉中直接升温至800℃保温3h,即得到单一尖晶石相结构的ZnFe2O4粉体,所制备的ZnFe2O4粉体的XRD谱如图6所示,本发明实施例一采用的合成方法比传统固相反应法的合成温度低很多,几乎与化学共沉淀法合成温度相当。

实施例二

图2显示了本发明实施例二的一种三组元尖晶石型锰锌铁氧体粉体的合成方法的流程示意图。

如图2所示,该合成方法包括:

S21,配制三组元尖晶石型锰锌铁氧体原料的水性料浆;三组元尖晶石型锰锌铁氧体原料的水性料浆包括三组元尖晶石型锰锌铁氧体原料、水和低聚合度有机共聚物,低聚合度有机共聚物为分子量为104~105的共聚物,优选的为分子量为104~105的异丁烯-马来酸酐有机共聚物酰胺-铵盐;

其中,三组元尖晶石型锌锰铁氧体原料包括水溶性醋酸锌、非水溶性碳酸锰和草酸亚铁,三组元尖晶石型锌锰铁氧体中锰:锌:铁=0.6:0.4:2(摩尔比),然后加入相对于三组元尖晶石型锌锰铁氧体原料的重量为20%~100%的去离子水和0.3%~0.8%的异丁烯-马来酸酐有机共聚物酰胺-铵盐,去离子水的重量优选为三组元尖晶石型锌锰铁氧体原料重量的20%、25%、28%、31%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或100%,最为优选地,去离子水的重量为三组元尖晶石型锌锰铁氧体原料重量的50%;优选地,异丁烯-马来酸酐有机共聚物酰胺-铵盐的重量为三组元尖晶石型锌锰铁氧体原料重量的0.3%、0.4%、0.5%、0.6%、0.7%或0.8%,最为优选地,异丁烯-马来酸酐有机共聚物酰胺-铵盐的重量为三组元尖晶石型锌锰铁氧体原料重量的0.3%,并在球磨机中,球料比(研磨物体与三组元尖晶石型锰锌铁氧体原料、水和低聚合度有机共聚物的质量比)为1~5:1混磨20h制得三组元尖晶石型锌锰铁氧体原料的水性料浆;优选地,球料比为1:1。

S22,在三组元尖晶石型锌锰铁氧体原料的水性料浆中加入交联促凝剂,得到三组元尖晶石型锌锰铁氧体原料凝胶体;交联促凝剂优选为浓度为5%~20%的聚乙烯亚胺水溶液。

具体地,是在步骤S21制得的水性料浆从球磨机中出料后,边搅拌边加入浓度为5%~20%的聚乙烯亚胺水溶液,聚乙烯亚胺水溶液的重量为异丁烯-马来酸酐有机共聚物酰胺-铵盐重量的2%~10%,待搅拌均匀后放置约3min~10min,使得加入交联促凝剂的三组元尖晶石型锌锰铁氧体原料的水性料浆凝胶固化,得到三组元尖晶石型锌锰铁氧体原料的凝胶体。优选地,聚乙烯亚胺水溶液的浓度优选为5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%或20%,最为优选地,聚乙烯亚胺水溶液的浓度选择20%,聚乙烯亚胺水溶液的加入量优选为2%、3%、4%、5%、6%、7%、8%、9%或10%,最为优选地,聚乙烯亚胺水溶液的加入量为3%,放置时间优选为8min。

S23,将三组元尖晶石型锌锰铁氧体原料的凝胶体进行干燥处理,得到干燥后三组元尖晶石型锌锰铁氧体原料凝胶体。

具体地,是将三组元尖晶石型锌锰铁氧体原料凝胶体切割成厚度约为5mm的薄片,自然脱水干燥或在微波炉中脱水干燥至恒重。

S24,将干燥后三组元尖晶石型锌锰铁氧体原料凝胶体加热到三组元尖晶石型锌锰铁氧体粉体的合成温度并保温,得到三组元尖晶石型锌锰铁氧体粉体。

具体地,是将干燥后三组元尖晶石型锌锰铁氧体原料凝胶体放入坩埚在马弗炉中加热待温度达到1050℃时保温3h,即得到单一尖晶石相结构的Mn0.6Zn0.4Fe2O4铁氧体粉体。合成的三组元尖晶石型锌锰铁氧体粉体的XRD谱如图7所示。

实施例三

图3显示了本发明实施例三的一种三组元尖晶石型镍锌铁氧体粉体的合成方法的流程示意图。

如图3所示,该合成方法包括:

S31,配制三组元尖晶石型镍锌铁氧体原料的水性料浆;三组元尖晶石型镍锌铁氧体原料的水性料浆包括三组元尖晶石型镍锌铁氧体原料、水和低聚合度有机共聚物,低聚合度有机共聚物为分子量为104~105的共聚物,优选的为分子量为104~105的异丁烯-马来酸酐有机共聚物酰胺-铵盐;

其中,三组元尖晶石型镍锌铁氧体原料包括碱式碳酸镍(NiCO3·2Ni(OH)2·4H2O)、纳米氧化锌(ZnO)和草酸亚铁(FeC2O4),三组元尖晶石型镍锌铁氧体原料中镍:锌:铁=0.35:0.65:2(摩尔比),然后加入相对于三组元尖晶石型镍锌铁氧体原料的重量为0.3%~0.8%的异丁烯-马来酸酐有机共聚物酰胺-铵盐,并在球磨机中(球料比为1~5:1)混磨1h~30h制得三组元尖晶石型镍锌铁氧体粉体原料料浆。优选地,异丁烯-马来酸酐有机共聚物酰胺-铵盐的重量为三组元尖晶石型镍锌铁氧体原料重量的0.3%、0.4%、0.5%、0.6%、0.7%或0.8%,最为优选地,异丁烯-马来酸酐有机共聚物酰胺-铵盐的重量为三组元尖晶石型镍锌铁氧体原料重量的0.8%,混磨时间优选为8h;优选地,球料比(研磨物体与三组元尖晶石型镍锌铁氧体原料、水和低聚合度有机共聚物的质量比)为5:1。

S32,在三组元尖晶石型镍锌铁氧体原料的水性料浆中加入交联促凝剂,得到三组元尖晶石型镍锌铁氧体原料的凝胶体。

具体地,是在步骤S31制得的水性料浆从球磨机中出料后,边搅拌边加入浓度为5%~20%的聚乙烯亚胺水溶液,聚乙烯亚胺水溶液的重量为异丁烯-马来酸酐有机共聚物酰胺-铵盐重量的2%~10%,搅拌均匀后放置约3min~10min,使得加入交联促凝剂的三组元尖晶石型镍锌铁氧体原料的水性料浆凝胶固化,得到三组元尖晶石型镍锌铁氧体原料凝胶体。其中,优选地,聚乙烯亚胺水溶液的浓度优选为5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%或20%,最为优选地,聚乙烯亚胺水溶液的浓度选择10%,聚乙烯亚胺水溶液的加入量优选为2%、3%、4%、5%、6%、7%、8%、9%或10%,最为优选地,聚乙烯亚胺水溶液的加入量为8%,放置时间优选为6min。

S33,将三组元尖晶石型镍锌铁氧体原料的凝胶体进行干燥处理,得到干燥后三组元尖晶石型镍锌铁氧体原料凝胶体;

将三组元尖晶石型镍锌铁氧体原料凝胶体切割成厚度约为5mm的薄片,在100℃的温度下在烘箱中脱水干燥或自然脱水干燥或在微波炉中进行脱水干燥至恒重。

S34,将干燥后三组元尖晶石型镍锌铁氧体原料凝胶体加热到三组元尖晶石型镍锌铁氧体粉体的合成温度并保温,得到三组元尖晶石型镍锌铁氧体粉体。

具体地,是将干燥后三组元尖晶石型镍锌铁氧体原料凝胶体放入坩埚在马弗炉中加热待温度达到1000℃时保温3h,即得到单一尖晶石相结构的Ni0.35Zn0.65Fe2O4铁氧体粉体,采用本发明实施例合成方法合成的三组元复合粉体相比传统固相反应法的合成温度降低了约50℃~100℃。所合成的Ni0.35Zn0.65Fe2O4铁氧体粉体XRD谱如图11所示。

实施例四

图4显示了本发明实施例四的一种多组元PZT压电陶瓷的合成方法的流程示意图。

如图4所示,该合成方法包括:

S41,配制多组元PZT(锆钛酸铅压电陶瓷)原料的水性料浆;其中,所述水性料浆包括多组元PZT原料、水和低聚合度有机共聚物,低聚合度有机共聚物为分子量为104~105的共聚物,优选的为分子量为104~105的异丁烯-马来酸酐有机共聚物酰胺-铵盐;

其中,多组元PZT原料包括非水溶性Pb3O4、ZrO2、TiO2、La2O3、Nb2O5、MnCO3的粉体,其中,PZT中各元素的摩尔比为Pb:Zr:Ti=1:0.53:0.47,然后另外加入0.01摩尔La、0.012摩尔Nb、0.002摩尔Mn的微量元素,再加入相对于多组元PZT原料总重量为20%~100%的去离子水和0.3%~0.8%的异丁烯-马来酸酐有机共聚物酰胺-铵盐,并在球磨机中,球料比(研磨物体与多组元PZT原料、水和低聚合度有机共聚物的质量比)为1~5:1,混磨1h~30h制得多组元PZT原料的水性料浆。其中,优选地,去离子水的重量为多组元压电陶瓷PZT原料粉体重量的20%、26%、28%、30%、31%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或100%,最为优选地,去离子水的重量为多组元PZT原料重量的25%;优选地,异丁烯-马来酸酐有机共聚物酰胺-铵盐的重量为多组元PZT原料重量的0.3%、0.4%、0.45%、0.6%、0.7%或0.8%,最为优选地,异丁烯-马来酸酐有机共聚物酰胺-铵盐的重量为多组元PZT原料重量的0.5%,混磨时间优选为16h;优选地,球料比为2:1。

S42,在多组元PZT原料的水性料浆中加入交联促凝剂,得到多组元PZT原料凝胶体;

具体地,是在步骤S41制得的水性料浆从球磨机中出料后,边搅拌边加入浓度为5%~20%的聚乙烯亚胺水溶液,聚乙烯亚胺水溶液的重量为异丁烯-马来酸酐有机共聚物酰胺-铵盐重量的2%~10%,搅拌均匀后放置约3min~10min,使得加入交联促凝剂的多组元压电陶瓷PZT原料的水性料浆凝胶固化,得到多组元PZT原料凝胶体。其中,优选地,聚乙烯亚胺水溶液的浓度优选为5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、14.5%、16%、17%、18%、19%或20%,最为优选地,聚乙烯亚胺水溶液的浓度选择15%,聚乙烯亚胺水溶液的加入量优选为2%、3%、4%、5%、6%、7%、8%、9%或10%,最为优选地,聚乙烯亚胺水溶液的加入量为5%,放置时间优选为6min。

S43,将多组元PZT原料的凝胶体进行干燥处理,得到干燥后多组元PZT原料的凝胶体;

具体地,是将多组元PZT原料凝胶体切割成约1cm3的小块放于坩埚中,在100℃烘箱中脱水干燥至恒重。

S44,将干燥后多组元PZT原料的凝胶体加热到多组元PZT粉体的合成温度并保温,得到多组元PZT粉体。

具体地,是将干燥后多组元PZT原料凝胶体放入坩埚在马弗炉中加热待温度达到850℃时保温2h,即得到的单一相结构的多组元PZT粉体。取其上、中、下部位试样进行XRD结构分析和化学成分分析,各部位物相结构和化学成分均完全相同,与以往用丙烯酰胺体系凝胶固相合成结果一致,但其不需要进一步在600℃长时间加热去除有机粘结剂即可制得杂相少的多组元PZT粉体,其工艺过程更简单,合成成本也有所降低。

实施例五

图5显示了本发明实施例五的一种多组元热敏陶瓷PTC粉体的合成方法的流程示意图。

如图5所示,该合成方法包括:

S501,配制多组元热敏陶瓷PTC原料的水性料浆;其中,所述水性料浆包括多组元热敏陶瓷PTC原料、水和低聚合度有机共聚物,低聚合度有机共聚物为分子量为104~105的共聚物,优选的为分子量为104~105的异丁烯-马来酸酐有机共聚物酰胺-铵盐;

多组元热敏陶瓷PTC原料包括非水溶性BaCO3、Pb3O4、CaCO3、TiO2粉体和水溶性YCl3,多组元热敏陶瓷PTC粉体中Ba:Pb:Ca:Ti:Y=0.93:0.03:0.04:1.01:0.011(摩尔比),然后加入相对于多组元热敏陶瓷PTC原料重量为20%~100%的去离子水以及0.3%~0.8%的异丁烯-马来酸酐有机共聚物酰胺-铵盐,并在球磨机中,球料比(研磨物体与多组元热敏陶瓷PTC原料、水和低聚合度有机共聚物的质量比)为1~5:1混磨1h~30h制得多组元热敏陶瓷PTC原料的水性料浆。其中,优选地,去离子水的重量为多组元热敏陶瓷PTC原料重量的20%、25%、28%、31%、34%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或100%,最为优选地,去离子水的重量为多组元热敏陶瓷PTC原料重量的35%;优选地,异丁烯-马来酸酐有机共聚物酰胺-铵盐的重量为多组元热敏陶瓷PTC原料重量的0.3%、0.4%、0.5%、0.6%、0.7%或0.8%,最为优选地,异丁烯-马来酸酐有机共聚物酰胺-铵盐的重量为多组元热敏陶瓷PTC原料重量的0.6%,混磨时间优选为20h;优选地,球料比为2:1。

S502,在多组元热敏陶瓷PTC原料的水性料浆中加入交联促凝剂,得到多组元热敏陶瓷PTC原料的凝胶体。

具体地,是在步骤S51制得的水性料浆中从球磨机中出料后,边搅拌边加入浓度为5%~20%的聚乙烯亚胺水溶液,聚乙烯亚胺水溶液的重量为异丁烯-马来酸酐有机共聚物酰胺-铵盐重量的2%~10%,搅拌均匀后放置约3min~10min,使得加入交联促凝剂的多组元热敏陶瓷PTC原料的水性料浆凝胶固化,得到多组元热敏陶瓷PTC原料的凝胶体。其中,聚乙烯亚胺水溶液的浓度优选地为10%,聚乙烯亚胺水溶液的加入量优选为异丁烯-马来酸酐有机共聚物酰胺-铵盐重量的10%,放置时间优选为10min。

S503,将多组元热敏陶瓷PTC原料的凝胶体进行干燥处理,得到干燥后多组元热敏陶瓷PTC原料的凝胶体。

具体地,是将多组元热敏陶瓷PTC原料凝胶体切割成1cm3的小块,放于坩埚中,在微波炉中脱水干燥至恒重;

具体地,是将多组元热敏陶瓷PTC原料凝胶体切割成1cm3的小块,自然脱水干燥或在微波炉中脱水干燥至恒重。

S504,将干燥后多组元热敏陶瓷PTC原料凝胶体加热到多组元热敏陶瓷PTC粉体的合成温度并保温,得到多组元热敏陶瓷PTC粉体;

具体地,是给坩埚加盖放于马弗炉中直接升温至1180℃保温2h,得到多组元热敏陶瓷PTC粉体;

S505,将多组元热敏陶瓷PTC粉体进行粗碎;

具体地,是采用0.5mm的筛子进行粗碎。

S506,在进行粗碎后的陶瓷复合粉体中添加二次掺杂原料,得到掺杂后粉体,二次掺杂原料包括:Sb2O3、MnCO3、SiO2、Al2O3和Li2CO3粉;按规定用量与多组元热敏陶瓷PTC粉体混合;

S507,配制掺杂后粉体的水性料浆,掺杂后粉体的水性料浆包括:掺杂后粉体、水和低聚合度有机共聚物;低聚合度有机共聚物为分子量为104~105的共聚物,优选的为分子量为104~105的异丁烯-马来酸酐有机共聚物酰胺-铵盐;

具体地,加入原料(PTC粉体与二次掺杂原料)总重量35%的去离子水和0.6%的异丁烯-马来酸有机共聚物酰胺-铵盐粉,在球磨机中,球料比(研磨物体与多组元热敏陶瓷PTC粉体和二次掺杂原料的质量比)为2:1,混磨4h制得水性料浆;

S508,在掺杂后粉体的水性料浆中加入交联促凝剂,得到掺杂凝胶体;

具体地,掺杂后粉体的水性料浆从球磨机中出料后边搅拌边加入10%浓度的聚乙烯亚胺水溶液,加入量为异丁烯-马来酸有机共聚物酰胺-铵盐重量的10%,搅拌均匀后放置约10min,使掺杂后粉体的水性料浆凝胶固化。

S509,将掺杂凝胶体进行脱水和干燥处理,得到干燥后掺杂凝胶体;

将干燥后掺杂凝胶体从容器中取出切割成约1cm3的小块放于坩埚中,在微波炉中脱水干燥至恒重,即得到干燥后掺杂凝胶体。

S510,将干燥后掺杂凝胶体进行粉碎,得到掺杂陶瓷复合粉体。

粉碎后即得到经过掺杂且成分均匀的多组元掺杂热敏陶瓷PTC粉体,与以往用丙烯酰胺体系凝胶固相合成结果一致,但其工艺过程更简单,甚至省去了600℃烧除有机物的过程,成本明显降低。

图6为本发明实施例一的合成方法合成的二组元尖晶石型锌铁氧体粉体的XRD谱图。

图7为本发明实施例二在1050℃温度下合成的三组元尖晶石型锌锰铁氧体粉体的XRD谱图。

图8为本发明实施例二在1050℃温度下合成的三组元尖晶石型锌锰铁氧体粉体的SEM微观形貌图。

图9为采用传统的固相反应法在1050℃温度下合成的三组元尖晶石型锌锰铁氧体粉体的XRD谱图。

图10为采用传统的固相反应法在1050℃温度下合成的三组元尖晶石型锌锰铁氧体粉体的SEM微观形貌图。

图11为本发明实施例合成三组元尖晶石型镍锌铁氧体粉体的XRD谱图。

通过图7与图9的对比,图8与图10的对比,可以看到,传统固相反应法用同样原料和同样的湿法混磨后进行脱水干燥,并在1050℃温度下保温3h,杂相还很多,结晶发育也不好,需要进一步加热至1150℃温度才能消除杂相,但此时晶粒尺寸又有所增大,由此可见,本发明实施例的方法能够比传统的固相反应法降低合成温度约100℃,效果更好。

本发明还涉及一种由前述任一合成方法合成的陶瓷复合粉体。

本发明旨在保护一种多组元陶瓷复合粉体的合成方法,其采用异丁烯-马来酸酐有机共聚物酰胺-铵盐作为分散剂,可配置出高固相含量、流动性良好、悬浮稳定的水性料浆,出料后加入聚乙烯亚胺水溶液作为交联促凝剂,搅拌均匀放置后可在短时间内快速凝胶固化形成凝胶体,从而保持各组元原料成分的均匀性,聚乙烯亚胺水溶液的重量为多组元陶瓷原料的1%以下,无毒无害,且合成的多组元陶瓷复合粉体杂相少,结晶发育好,不需要进一步加热消除杂相,另外,合成时的温度相比传统的合成方法有所降低。且制得的陶瓷粉体易破碎、质量好,陶瓷原料来源方便,生产成本低,效率高,各组元组分易精确控制,环境污染小,适于工业化生产。应当理解的是,本发明的上述具体实施方式仅仅用于示例性说明或解释本发明的原理,而不构成对本发明的限制。因此,在不偏离本发明的精神和范围的情况下所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。此外,本发明所附权利要求旨在涵盖落入所附权利要求范围和边界、或者这种范围和边界的等同形式内的全部变化和修改例。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1