一种氮化硅陶瓷的制备方法及其陶瓷覆铜板与流程

文档序号:16241210发布日期:2018-12-11 23:06阅读:371来源:国知局
一种氮化硅陶瓷的制备方法及其陶瓷覆铜板与流程

本发明涉及先进结构陶瓷电路领域,具体涉及一种氮化硅陶瓷制备方法及其陶瓷覆铜板。

背景技术

氮化硅(si3n4)陶瓷是典型的高温高强结构陶瓷,具有良好的室温及高温机械性能,强度高、耐磨损、抗热震、抗化学腐蚀,能够广泛应用于航空、机械、化工等领域。但氮化硅(si3n4)是以共价键为主的化合物,烧结驱动力小,传统固相烧结难以将其烧结致密。针对氮化硅(si3n4)陶瓷烧结,研究人员开发了添加烧结氧化钇等烧结助剂的常压烧结方法、气压烧结方法和反应烧结等烧结方法。目前反应烧结氮化硅(si3n4)陶瓷是将硅粉与pva等粘结剂湿法球磨混合后压制成所需要形状的陶瓷毛坯,然后在氮气气氛中烧结,从而使硅粉与氮气反应生成氮化硅(si3n4)完成烧结。该烧结方案可以制备净尺寸氮化硅(si3n4)陶瓷。但由于整个烧结过程中氮气是沿着厚度方向从毛坯表层逐渐渗入毛坯内部,导致在烧结过程中毛坯表层的硅元素能够与氮元素充分接触,反应充分,表层的硅元素全部转化为氮化硅,而内部的硅元素受制于毛坯的孔隙率的影响,硅元素不能够与氮元素充分接触反应,导致每个批次的氮化硅(si3n4)陶瓷从表到里分布不均匀,性能差异。特别是使用反应烧结制备氮化硅陶瓷轴承、氮化硅陶瓷陶瓷板等较厚产品时,该问题由于突出。一种为了提升氮化硅陶瓷反应烧结过程中氮气的渗透速率的方案是降低压制毛坯生坯密度,提升空隙率,而过低的毛坯生坯密度会导致不能完全烧结致密,降低陶瓷性能。



技术实现要素:

有鉴于此,本发明针对现有技术存在之缺失,其主要目的是提供一种氮化硅陶瓷的制备方法,该方法包括以下步骤:a)将重量比为70%~95%的氮化硅和将重量比为5%~30%的硅粉球磨混合;b)将步骤a)的氮化硅和硅粉混合料使用表面改进剂处理;c)将步骤b)得到的改性料与混合粘结剂密炼造粒得到喂料;d)将经步骤c)得到的喂料注塑成型并脱脂得到毛坯;e)将经步骤d)得到毛坯在氮气气氛或者氮气混合气氛中气压烧结。该方案使用少量硅粉反应烧结生成氮化硅原位粘连烧结氮化硅,在整个毛坯中参与反应的硅粉很少,从而有效的降低了由于氮气渗透率不同导致陶瓷材料成分沿厚度方向不均一。

优选的,步骤a)中的氮化硅重量比为80%~90%,硅粉的重量比为10%~20%。

优选的,步骤a)中的氮化硅为α氮化硅与β氮化硅混合料,β氮化硅含量大于15%。

优选的,步骤a)中的氮化硅的d50为0.3~1.0un,硅粉的d50为1.0un~1.5um。

优选的,步骤b)表面改性剂为硬脂酸、硬脂酸铵、硅烷偶联剂中的一种,表面改性剂的质量比占氮化硅和硅粉混合料的0.3%~1%。

优选的,步骤c)中的改性料与混合粘结剂的重量比为80~90:10~20,密炼温度为170℃~190℃,密炼时间为1h~4h。

优选的,步骤c)中的混合粘结剂为以聚甲醛为主的混合粘结剂,包括聚甲醛、聚丙烯和高密度聚乙烯。

优选的,步骤d)中注塑温度为175℃~195℃,脱脂为催化脱脂,催化脱脂温度为110℃~135℃,硝酸蒸汽速率为0.16ml/min~0.25ml/min。

优选的,步骤e)中当温度小于800℃,为空气气氛无压升温过程,升温速率1℃/min,在250℃保温2h~10h,在450℃保温2h~10h;步骤e)中当温度大于800℃时,气氛为氮气或者氮气与氨气的混合气氛,炉内压力为2mpa~10mpa,以2℃/min升温速率升至烧结温度保温后随炉气氛保护冷却,烧结温度为1350℃~1450℃,保温时间2h~4h。

另一方面,本发明还公开了一种陶瓷覆铜板,该陶瓷覆铜板的陶瓷层使用上述的氮化硅陶瓷的制备方法制备得到。

本发明的有益效果:本发明提供一种氮化硅陶瓷的制备方法及其陶瓷覆铜板。该方法是将重量比为70%~95%的氮化硅和余量的硅粉球磨改性混料后与有机粘结剂密炼注塑成型脱脂后在氮气气氛中气压反应烧结得到氮化硅陶瓷,使用该陶瓷再在其上覆铜得到覆铜板。该方案使用少量硅粉反应烧结生成氮化硅原位粘连烧结氮化硅,在整个毛坯中参与反应的硅粉很少,从而有效的降低了由于氮气渗透率不同导致陶瓷材料成分沿厚度方向不均一。在制备过程使用含量大于15%的β氮化硅的氮化硅复合粉体,在烧结过程中β氮化硅有效的促进了α氮化硅向β氮化硅转化,并抑制晶粒异常长大的问题,而进一步提升陶瓷综合性能。

附图说明

图1为氮化硅陶瓷的制备方法工艺流程图。

具体实施方式

下面对本发明作进一步详细描述,其中所用到原料和设备均为市售,没有特别要求。可以理解的是,此处所描述的具体实施例仅用于解释相关发明,而非对该发明的限定。

本发明提供一种氮化硅陶瓷的制备方法,该方法包括以下步骤:

a)将重量比为70%~95%的氮化硅和将重量比为5%~30%的硅粉球磨混合,使氮化硅粉体与硅粉混合均匀;b)将步骤a)的氮化硅和硅粉混合料使用表面改进剂处理,使陶瓷粉表面包裹一层改性剂;在步骤b)中表面改性处理可以使用现有技术中干混改性,也可以使用湿法球磨改性,在本实施例中优选的使用湿法球磨改性。因此在制备过程中可以混料步骤a)完成后再次改性,也可以在混料过程就加入改性剂,改性与球磨混料一起完成,并无特别限制。在本实施中优选的氮化硅重量比为80%~90%,硅粉的重量比为10%~20%,进一步限制氮化硅与硅粉的含量,可以更一步优化烧结后陶瓷沿厚度方向分布均匀性。步骤a)中的氮化硅为α氮化硅与β氮化硅混合料,β氮化硅含量大于15%。在烧结过程中β氮化硅有效的促进了α氮化硅向β氮化硅转化,并抑制晶粒异常长大的问题,而进一步提升陶瓷综合性能。在本实例中优选的氮化硅粉体的d50为0.3~1.0un,硅粉的d50为1.0un~1.5um,可以降低烧结温度,提高反应活性。在本实施例中步骤b)表面改性剂优选为硬脂酸、硬脂酸铵、硅烷偶联剂中的一种,硅烷偶联剂为γ―氨丙基三乙氧基硅烷、γ-缩水甘油醚氧丙基三甲氧基硅烷、γ-(甲基丙烯酰氧)丙基三甲氧基硅烷和β-(3,4-环氧环己基乙基)三甲氧基硅烷,并无特殊限制,使用外加量计算,其质量比占氮化硅和硅粉混合料的0.3%~1%,进一步表面改性剂活性剂的量为0.5%。

c)将步骤b)得到的改性料与高分子混合粘结剂密炼造粒得到喂料;高分子混合粘结剂为常用石蜡基混合粘结剂、聚乙烯基混合粘结剂或者聚甲醛基混合粘结剂,在本实施例中改性料与高分子混合粘结剂的重量比为80~90:10~20,在本实施中的高分子混合粘结剂选为聚甲醛为主的混合粘结剂,包括聚甲醛、聚丙烯和高密度聚乙烯,其中聚甲醛为粘结剂,聚丙烯和高密度聚乙烯为骨架剂。密炼使用密炼机密炼,密炼温度为170℃~190℃,密炼时间为1h~4h。

d)将经步骤c)得到的喂料注塑成型并脱脂得到毛坯;根据选用的高分子混合粘结剂不同,选用不同的脱脂工艺,石蜡基混合粘结剂和聚乙烯基混合粘结剂使用热脱脂工艺,缓慢将有机物高分子分解为有机小分子化合物从注塑件中挥发完成脱脂。而聚甲醛基混合粘结剂选用硝酸催化将聚甲醛分解为甲醛小分子化合物从而完成脱脂。在本实施中优选的注塑温度为175℃~195℃,脱脂为催化脱脂,催化脱脂温度为110℃~135℃,硝酸蒸汽速率为0.16ml/min~0.25ml/min。

e)将经步骤d)得到毛坯在氮气气氛或者氮气混合气氛中气压烧结。在本实施例中烧结分为两个阶段,当温度小于800℃,优选的炉内气氛为空气气氛且无压升温,选用升温速率1℃/min从室温升温,并在250℃保温2h~10h,在450℃保温2h~10h,使毛坯中残余的高分子骨架有机物分解脱除;当温度大于800℃时,优选的炉内气氛为氮气或者氮气与氨气的混合气氛,炉内压力为2mpa~10mpa,以2℃/min升温速率升至烧结温度保温后随炉气氛保护冷却,烧结温度为1350℃~1450℃,保温时间2h~4h,完成硅元素与氮元素反应烧结得到致密的氮化硅陶瓷。

将烧结得到的致密的氮化硅陶瓷表面清洗干净后在其表面使用丝网印刷工艺印刷厚度为10un的70.5ag-26.5cu-3ti活性金属钎料焊膏后将与陶瓷尺寸相当的0.3mm铜箔平铺其上,放入真空钎焊炉中,以5℃/min升温至780℃保温3min后随炉冷却至室温得到该氮化硅陶瓷覆铜板。

以下是本发明的实施例:

实施例1

称取中值粒径d50约为1um的α氮化硅2800g投入带有氧化锆球的搅拌磨中,再次称取1500g中值粒径d50约为1um的硅粉和50g硬脂酸加入搅拌磨中,再加入5kg乙醇后球磨搅拌2h后得到改性混合料。

称取400g石蜡和155g高密度聚乙烯加入密炼机中升温至80℃使其融化后将5kg改性混合料分多次加入密炼机中,然后闭合密炼机抽真空至-0.07mpa在190℃密炼1h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,将200mm×100mm模具模腔抽至-0.07mpa,设定注塑机温度为195℃,注塑压力为150mpa注塑,打开喂料浇道口使熔融的喂料高速注入模腔中,待模腔注满后保压1s,得到氮化硅注塑件。将该注塑件放置脱脂炉中在空气气氛以1℃升温至160℃保温5h,再升温至220℃保温5h,然后升温至350℃保温5h后降温完成脱脂。

将脱脂后的毛坯放入烧结炉中,从室温以1℃/min升450℃保温2h,充入氮气气氛,保持压力10mpa,以2℃/min升温速率升至1450℃,保温时间2h,得到致密的氮化硅陶瓷。排水法测试该氮化硅陶瓷相对密度为98.1%,使用xrd测试氮化硅α相为83%,β相为27%,三点弯曲法测试抗弯强度为752mpa。

实施例2

称取中值粒径d50约为0.3um的β相含量>15%氮化硅4750g投入带有氧化锆球的搅拌磨中,再次称取250g中值粒径d50约为1.5um的硅粉和15g硬脂酸铵加入搅拌磨中,再加入5kg乙醇后球磨搅拌2.5h后得到改性混合料。

称取980g聚甲醛,140g聚丙烯和130g高密度聚乙烯加入密炼机中升温至170℃使其融化后将5kg改性混合料分多次加入密炼机中,然后闭合密炼机抽真空至-0.07mpa在180℃密炼1h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,将200mm×100mm模具模腔抽至-0.07mpa,设定注塑机温度为175℃,注塑压力为180mpa注塑,打开喂料浇道口使熔融的喂料高速注入模腔中,待模腔注满后保压1s,得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至135℃以硝酸蒸汽速率为0.25ml/min通入硝酸氮气混合气氛保温2h后降温完成脱脂。

将脱脂后的毛坯放入烧结炉中,从室温以1℃/min升温至250℃保温10h,再次以1℃/min升温至450℃保温2h,充入氮气气氛,保持压力2mpa,以2℃/min升温速率升至1350℃,保温时间4h,得到致密的氮化硅陶瓷。排水法测试该氮化硅陶瓷相对密度为98%,使用xrd测试氮化硅α相为52%,β相为48%,高导热的β相在β原始粉的诱导下,有了显著提升,三点弯曲法测试抗弯强度为788mpa。

实施例3

称取中值粒径d50约为0.3um的β相含量>15%氮化硅4500g投入带有氧化锆球的搅拌磨中,再次称取500g中值粒径d50约为1um的硅粉和25g硬脂酸铵加入搅拌磨中,再加入5kg乙醇后球磨搅拌2.5h后得到改性混合料。

称取661g聚甲醛,120g聚丙烯和100g高密度聚乙烯加入密炼机中升温至170℃使其融化后将5kg改性混合料分多次加入密炼机中,然后闭合密炼机抽真空至-0.07mpa在160℃密炼4h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,将200mm×100mm模具模腔抽至-0.07mpa,设定注塑机温度为195℃,注塑压力为180mpa注塑,打开喂料浇道口使熔融的喂料高速注入模腔中,待模腔注满后保压1s,得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至110℃以硝酸蒸汽速率为0.16ml/min通入硝酸氮气混合气氛保温8h后降温完成脱脂。

将脱脂后的毛坯放入烧结炉中,从室温以1℃/min升温至250℃保温2h,再次以1℃/min升温至450℃保温10h,充入氮气气氛,保持压力5mpa,以2℃/min升温速率升至1400℃,保温时间3h,得到致密的氮化硅陶瓷。排水法测试该氮化硅陶瓷相对密度为98.5%,三点弯曲法测试抗弯强度为825mpa。

实施例4

称取中值粒径d50约为0.3um的β相含量>15%氮化硅4000g投入带有氧化锆球的搅拌磨中,再次称取1000g中值粒径d50约为1um的硅粉和25gγ-(甲基丙烯酰氧)丙基三甲氧基硅烷加入搅拌磨中,再加入4kg乙醇和1kg去离子水后球磨搅拌2.5h后得到改性混合料。

称取580g聚甲醛,60g聚丙烯和40g高密度聚乙烯加入密炼机中升温至170℃使其融化后将5kg改性混合料分多次加入密炼机中,然后闭合密炼机抽真空至-0.07mpa在170℃密炼3h后降温出料并将其粉碎得到喂料。将喂料注塑机的料斗内,将200mm×100mm模具模腔抽至-0.07mpa,设定注塑机温度为190℃,注塑压力为180mpa注塑,打开喂料浇道口使熔融的喂料高速注入模腔中,待模腔注满后保压1s,得到氮化硅注塑件。将该注塑件放置催化脱脂炉中1℃/min升温至120℃以硝酸蒸汽速率为0.20ml/min通入硝酸氮气混合气氛保温5h后降温完成脱脂。

将脱脂后的毛坯放入烧结炉中,从室温以1℃/min升温至250℃保温5h,再次以1℃/min升温至450℃保温5h,充入氮气气氛,保持压力2.5mpa,以2℃/min升温速率升至1380℃,保温时间3h,得到致密的氮化硅陶瓷。排水法测试该氮化硅陶瓷相对密度为98.6%,三点弯曲法测试抗弯强度为839mpa。

以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1