一种有机电致发光材料、制备方法及其应用与流程

文档序号:11930752阅读:305来源:国知局

本发明涉及一种有机电致发光材料、制备方法及其应用,属于有机电致发光技术领域。



背景技术:

自1987年以来,有机电致发光器件(Organic Light-Emitting Diodes,简称OLEDs)逐渐成为业界公认的下一代平板显示技术。OLEDs属于自发光器件,当电荷(电子和空穴)被注入到阳极和阴极之间的有机膜时,电子和空穴复合形成激子并将能量传递给发光分子,进而激发电子从基态跃迁到激发态,激发态能量经过辐射失活而发光。OLEDs具有自发光、驱动电压低、轻薄、发光视角宽、响应速度快、可弯曲折叠、能耗低、可进行大面积生产等优点,因而在信息显示和固态照明领域具有广阔的应用前景。高性能有机电致发光材料的研发始终是OLEDs领域的研究重点和难点。无论是全彩显示还是白光照明,高稳定性、高色纯度、高效率的红、蓝、绿三基色发光材料均是必不可少的。而在各种有机电致发光材料中,蓝光材料的研发尤为重要,因为它不仅可以提供照明、显示必需的蓝光,还可以通过能量转移来获得红光和绿光。时至今日,与现有的红色和绿色有机电致发光材料和器件相比,具有优越综合性能的蓝色有机电致发光材料和器件却始终匮乏。相对而言,蓝光材料具有较宽的能隙,因而很难获得低电压、高效率和良好稳定性的深蓝光器件。另外,蓝光OLEDs的设计对主体材料乃至载流子传输和阻挡材料的能级带隙也提出了更为苛刻的要求。由于材料自身因素及其它客观条件的制约,蓝光材料的研发进展相对缓慢。所以开发具有优越综合性能的蓝光材料,获得高效蓝光器件尤其是深蓝光器件,对OLED技术在平板显示和固态照明领域的推广及应用十分关键。



技术实现要素:

本发明的目的之一,是提供一种有机电致发光材料。本发明的有机电致发光材料,具有较好的载流子传输效率及热力学稳定性、良好的成膜性、适合的分子能级、发光效率高的特点,可以作为蓝光掺杂材料,应用在有机电致发光领域中。

本发明解决上述技术问题的技术方案如下:一种有机电致发光材料,具有式1所示分子结构:

其中,A为空或6元碳环;X为O、S或CMe2;Ar1、Ar2为取代或者未取代基的芳基、取代或者未取代基的杂芳基。

本发明的有机电致发光材料,分子结构中包含螺环结构,螺环结构具有较大的二面角,可有效降低分子间有序堆积导致的荧光淬灭,螺环结构的分子刚性特征,可有效提高分子的玻璃化转变温度和热分解温度,有机电致发光材料的稳定性高,对进一步提高器件的寿命有极大的好处。

在上述技术方案的基础上,本发明还可以做如下改进。

进一步,所述Ar1、Ar2为以下取代基中的一种:

其中,E为化学键连接位点。

采用上述进一步的有益效果是:不同取代基的引入,可改变分子的电子跃迁,调节分子发光峰位。

进一步,所述有机电致发光材料的具体结构式为如下C01-C57中的一种或多种:

本发明的目的之二,是提供上述有机电致发光材料的制备方法。本发明的制备方法简单便利,易于操作,且成本低廉,有利于大规模的推广。此外,本发明制备得到的蓝光掺杂材料纯度高,产率高,且在制备的过程中所使用的原料均为常规原料,成本低廉。

本发明解决上述技术问题的技术方案如下:一种有机电致发光材料的制备方法,包括如下步骤:

(1)中间体a的制备:以1,8-二溴萘与苯硼酸为原料,经Suzuki偶联得到中间体a,反应式如下:

(2)中间体b的制备:原料1与原料2经Suzuki偶联反应、水解反应、付克反应得到中间体b,反应式如下:

其中,X为O、S或CMe2,A为空或6元碳环;

(3)将中间体a依次与正丁基锂、中间体b反应,再经脱水合环反应、C-N偶联反应,即得到所述有机电致发光材料,反应式如下:

本发明还将提供上述材料作为蓝光掺杂材料用于有机电致发光领域的应用实例,所述实施过程与结果,只是为了更好地解释本发明,并非是对本发明的限制。

本发明的目的之三,是提供上述有机电致发光材料的应用。

本发明解决上述技术问题的技术方案如下:一种有机电致发光材料的应用,在有机电致发光器件中,至少有一个功能层含有如上任一项所述的有机电致发光材料。

一种有机电致发光器件,如图1中所示,由下层至上层,依次为ITO导电玻璃衬底(阳极)101、空穴注入层(DNTPD)102、空穴传输层(NPB)103、发光层(本发明涉及的有机电致发光材料)104、电子传输层(Alq3)105、电子注入层(LiF)106、阴极层(Al)107。所有功能层均采用真空蒸镀工艺制成。该类器件中所用到的一些有机化合物的分子结构式如下所示,其中BH1作为荧光蓝色主体材料,BD1作为对比例中掺杂材料。

在本发明提供的有机电致发光器中,由于含有本发明提供的有机电致发光材料,具有色纯度好,发光效率高,热稳定性好的特点。

本发明的有益效果是:

1.本发明的有机电致发光材料,也就是式1所示的化合物,该分子结构中包含螺环结构,螺环结构具有较大的二面角,可有效降低分子间有序堆积导致的荧光淬灭,螺环结构的分子刚性特征,可有效提高分子的玻璃化转变温度和热分解温度,有机电致发光材料的稳定性高,对进一步提高器件的寿命有极大的好处。

2.本发明提供的有机电致发光材料制备方法简单,易于操作,材料易于提纯,收率高,且成本低廉,有利于大规模的推广。

3.本发明的有机电致发光材料,具有良好的热稳定性、良好的成膜性、适合的分子能级、发光效率高的特点,该类有机发光材料由于不同取代基的引入,能够改变电子跃迁,使其发光峰位可以调节,是一种发光效率很好的掺杂材料。应用本发明提供的有机电致发光材料制备的发光器件具有发光效率高,热稳定性好,色纯度好的优点,能够满足工业化生产的需求。

附图说明

图1为本发明制备的有机电致发光器件的结构示意图,由下层至上层,依次为ITO导电玻璃衬底101、空穴注入层102、空穴传输层103、发光层104、电子传输层105、电子注入层106、阴极层107,其中,发光层104涉及本发明的有机光电材料。

具体实施方式

以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。

中间体a的制备

在氮气保护下,将原料1,8-二溴萘(28.6g,0.1mol)、苯硼酸(12.2g,0.1mol)和180mL甲苯,75mL加入500mL三口瓶中,然后投入催化剂四(三苯基膦)钯(0.116g,0.1mmol),缚酸剂碳酸钾(20.7g,0.15mol)。体系升温至回流搅拌6小时,自然降温至20~25℃,分液,除去溶剂,将粗品用无水乙醇结晶,得到13.7g中间体a,收率48.4%。

高分辨质谱,ESI源,正离子模式,分子式C16H11Br,理论值282.0044,测试值282.0036。元素分析(C16H11Br),理论值C:67.87,H:3.92,Br:28.22,实测值C:67.86,H:3.93,Br:28.22。

中间体b1的制备

1)在氮气保护下,将原料1-1(26.2g,0.1mol)、原料2-1(34.1g,0.1mol)和220mL甲苯,80mL加入500mL三口瓶中,然后投入催化剂四(三苯基膦)钯(0.116g,0.1mmol),缚酸剂碳酸钾(20.7g,0.15mol)。体系升温至回流搅拌6小时,自然降温至20~25℃,分液,除去溶剂,将粗品用无水乙醇结晶,得到33.8g中间体b1-1,收率78.4%。

高分辨质谱,ESI源,正离子模式,分子式C24H15BrO3,理论值430.0205,测试值430.0206。元素分析(C24H15BrO3),理论值C:66.84,H:3.51,Br:18.53,O:11.13,实测值C:66.82,H:3.53,Br:18.52,O:11.13。

2)在氮气保护下,将中间体b1-1(33.8g,0.078mol)、氢氧化钠(6.2g,0.156mol)和170mL无水乙醇加入500mL三口瓶中,体系升温至回流搅拌3小时,自然降温至20~25℃,加入19.8mL 36%盐酸水溶液,加入200mL乙酸乙酯萃,分液,除去溶剂,使用甲苯结晶,得到26.3g中间体b1-2,收率80.4%。

高分辨质谱,ESI源,正离子模式,分子式C23H13BrO3,理论值416.0048,测试值416.0046。元素分析(C23H13BrO3),理论值C:66.21,H:3.14,Br:19.15,O:11.50,实测值C:66.22,H:3.13,Br:19.17,O:11.50。

3)在氮气保护下,将中间体b1-2(26.3g,0.063mol)和300mL甲磺酸加入500mL三口瓶中,体系升温至70-80℃反应3小时,自然降温至20~25℃,将反应液倒入300mL冰水中,抽滤,收集滤饼,用380mL四氢呋喃溶解滤饼并过硅胶柱,除去溶剂,使用甲苯结晶,得到18.8g中间体b1,收率74.7%。

高分辨质谱,ESI源,正离子模式,分子式C23H11BrO2,理论值397.9942,测试值397.9940。元素分析(C23H11BrO2),理论值C:69.19,H:2.78,Br:20.01,O:8.02,实测值C:69.20,H:2.78,Br:20.01,O:8.01。

中间体b2的制备

具体制备过程参考中间体b1的制备过程。

高分辨质谱,ESI源,正离子模式,分子式C23H11BrOS,理论值413.9714,测试值413.9716。元素分析(C23H11BrOS),理论值C:66.52,H:2.67,Br:19.24,O:3.85,S:7.72实测值C:66.50,H:2.68,Br:19.23,O:3.86,S:7.72。

中间体b3的制备

具体制备过程参考中间体b1的制备过程。

高分辨质谱,ESI源,正离子模式,分子式C26H17BrO,理论值424.0463,测试值424.0462。元素分析(C26H17BrO),理论值C:73.42,H:4.03,Br:18.79,O:3.76,实测值C:73.41,H:4.04,Br:18.79,O:3.76。

中间体b4的制备

具体制备过程参考中间体b1的制备过程。

高分辨质谱,ESI源,正离子模式,分子式C27H13BrO2,理论值448.0099,测试值448.0100。元素分析(C27H13BrO2),理论值C:72.18,H:2.92,Br:17.78,O:7.12,实测值C:72.19,H:2.91,Br:17.78,O:7.12。

中间体b5的制备

具体制备过程参考中间体b1的制备过程。

高分辨质谱,ESI源,正离子模式,分子式C27H13BrOS,理论值463.9870,测试值463.9871。元素分析(C27H13BrOS),理论值C:66.69,H:2.82,Br:17.17,O:3.44,S:6.89,实测值C:69.70,H:2.82,Br:17.17,O:3.43,S:6.89。

中间体b6的制备

具体制备过程参考中间体b1的制备过程。

高分辨质谱,ESI源,正离子模式,分子式C30H19BrO,理论值474.0619,测试值474.0620。元素分析(C30H19BrO),理论值C:75.80,H:4.03,Br:16.81,O:3.37,实测值C:75.81,H:4.04,Br:16.81,O:3.37。

实施例1化合物C01的制备

1)氮气保护下,在250mL三口瓶中加入中间体a(1.56g,5.5mmol)和50mL四氢呋喃,置于低温浴中降温至-78℃,滴加正丁基锂(0.352g,5.5mmol),-78℃反应2小时。将中间体b1(2.25g,5mmol)溶于40mL四氢呋喃并滴入上述反应体系,-78℃反应2小时。自然升温至0-5℃后加入20mL稀盐酸淬灭反应,分液,除去溶剂得到2.65g中间体C01-a,收率87.7%。将C01-a(2.65g,4.4mmol)加入100mL三口瓶中并加入40mL乙酸和0.5mL36%(wt%)浓盐酸,110℃回流反应3.5小时,自然降温至20-25℃后,抽滤,收集滤饼,得到2.11g中间体C01-b,收率81.7%。

高分辨质谱,ESI源,正离子模式,分子式C39H21BrO,理论值584.0776,测试值586.0776。元素分析(C39H21BrO),理论值C:80.00,H:3.62,Br:13.65,O:2.73,实测值C:80.02,H:3.62,Br:13.65,O:6.71。

2)在氮气保护下,将中间体C01-b(2.11g,3.6mmol)、原料3-1(1.01g,3.6mmol)和160mL甲苯加入250mL三口瓶中,然后投入催化剂醋酸钯(0.022g,0.1mmol)和催化剂配体三叔丁基膦四氟硼酸盐(0.058g,0.2mmol),缚酸剂碳酸钾(0.75g,5.4mmol)。体系升温至回流搅拌10小时,自然降温至20-25℃后加入50mL水淬灭反应,分液,除去溶剂,将粗品用甲苯结晶,得到2.06g目标物C01,收率72.8%。

高分辨质谱,ESI源,正离子模式,分子式C59H41NO,理论值785.3658,测试值785.3655。元素分析(C59H41NO),理论值C:90.16,H:6.03,N:1.78,O:2.04,实测值C:90.17,H:6.02,N:1.78,O:2.04。

实施例2化合物C04的制备

合成方法参照C01的制备方法。

高分辨质谱,ESI源,正离子模式,分子式C60H39NO2,理论值805.2981,测试值805.2978。元素分析(C60H39NO2),理论值C:89.41,H:4.88,N:1.74,O:3.97,实测值C:89.42,H:4.87,N:1.73,O:3.98。

实施例3化合物C10的制备

合成方法参照C01的制备方法。

高分辨质谱,ESI源,正离子模式,分子式C55H34N2O,理论值738.2671,测试值738.2670。元素分析(C55H34N2O),理论值C:89.40,H:4.64,N:3.79,O:2.17,实测值C:89.41,H:4.63,N:3.79,O:2.17。

实施例4化合物C13的制备

合成方法参照C01的制备方法。

高分辨质谱,ESI源,正离子模式,分子式C63H45NO,理论值831.3501,测试值831.3500。元素分析(C63H45NO),理论值C:90.94,H:5.45,N:1.68,O:1.92,实测值C:90.95,H:5.45,N:1.67,O:1.92。

实施例5化合物C14的制备

合成方法参照C02的制备方法,总收率23.2%。

高分辨质谱,ESI源,正离子模式,分子式C62H53N,理论值811.4178,测试值811.4178。元素分析(C62H53N),理论值C:91.70,H:6.58,N:1.72,实测值C:91.71,H:5.57,N:1.72。

实施例6化合物C18的制备

合成方法参照C01的制备方法。

高分辨质谱,ESI源,正离子模式,分子式C56H42N2,理论值742.3348,测试值742.3347。元素分析(C56H42N2),理论值C:90.53,H:5.70,N:3.77,实测值C:90.53,H:5.71,N:3.76。

实施例7化合物C26的制备

合成方法参照C01的制备方法,总收率18.3%。

高分辨质谱,ESI源,正离子模式,分子式C54H37NOS,理论值747.2596,测试值747.2597。元素分析(C54H37NOS),理论值C:86.71,H:4.99,N:1.87,O:2.14,P:4.29,实测值C:86.70,H:5.01,N:1.88,O:2.15。

实施例8化合物C31的制备

合成方法参照C01的制备方法。

高分辨质谱,ESI源,正离子模式,分子式C63H49NO,理论值835.3814,测试值835.3813。元素分析(C63H49NO),理论值C:90.50,H:5.91,N:1.68,O:1.91,实测值C:90.49,H:5.91,N:1.68,O:1.92。

实施例9化合物C35的制备

合成方法参照C01的制备方法,总收率18.3%。

高分辨质谱,ESI源,正离子模式,分子式C60H38N2O,理论值802.2984,测试值802.2984。元素分析(C60H38N2O),理论值C:89.75,H:4.77,N:3.49,O:1.99,实测值C:89.73,H:4.77,N:3.51,O:2.00。

实施例10化合物C45的制备

合成方法参照C01的制备方法。

高分辨质谱,ESI源,正离子模式,分子式C63H42N2,理论值826.3348,测试值826.3347。元素分析(C63H42N2),理论值C:91.49,H:5.12,N:3.39,实测值C:91.50,H:5.11,N:3.39。

实施例11化合物C48的制备

合成方法参照C01的制备方法。

高分辨质谱,ESI源,正离子模式,分子式C61H46N2,理论值807.0313,测试值861.2792。元素分析(C62H40NO2P),理论值C:86.39,H:4.68,N:1.62,O:3.71,P:3.59,实测值C:86.40,H:4.67,N:1.62,O:3.71,P:3.59。

实施例12化合物C57的制备

合成方法参照C01的制备方法。

高分辨质谱,ESI源,正离子模式,分子式C59H35N3S,理论值817.2552,测试值817.2550。元素分析(C59H35N3S),理论值C:86.63,H:4.31,N:5.14,S:3.92,实测值C:86.62,H:4.30,N:5.16,S:3.92。

有机电致发光器件实施例:

本发明选取化合物C01、化合物C04、化合物C10、化合物C13、化合物C14、化合物C18、化合物C26、化合物C31、化合物C35、化合物C45、化合物C48、化合物C57制作有机电致发光器件,并选择BD1作为对比例,下面结合图1叙述,有机电致发光器件从下至上依次为为ITO导电玻璃衬底(101)、空穴注入层(102)、空穴传输层(103)发光层(104)、电子传输层(105)、电子注入层(106)和阴极层(107)。应当理解,器件实施过程与结果,只是为了更好地解释本发明,并非对本发明的限制。

实施例13化合物C01在有机电致发光器件中的应用

本实施例按照下述方法制备有机电致发光器件一:

a)清洗ITO(氧化铟锡)玻璃:分别用去离子水、丙酮、乙醇超声清洗ITO玻璃各30分钟,然后在等离子体清洗器中处理5分钟;

b)在阳极ITO玻璃上真空蒸镀空穴注入层DNTPD蒸镀速率0.1nm/s,蒸镀膜厚为80nm;

c)在空穴注入层之上真空蒸镀空穴传输层NPB,蒸镀速率0.1nm/s,蒸镀膜厚为30nm;

d)在空穴传输层之上,真空蒸镀发光层BH1:3%wt化合物C01(实施例1制备的化合物),蒸镀速率0.1nm/s,蒸镀总膜厚为30nm;

e)在发光层之上,真空蒸镀作为电子传输层的Alq3,厚度为30nm;

f)在电子传输层之上,真空蒸镀电子注入层LiF,厚度为1nm;

g)在电子注入层之上,真空蒸镀阴极Al,厚度为100nm。

器件的结构为ITO/DNTPD(80nm)/NPB(30nm)/BH1:3%wt化合物C01(30nm)/Alq3(30nm)/LiF(1nm)/Al(100nm),真空蒸镀过程中,压力<4.0×10-4Pa,以化合物C01作为器件一的发光材料,所得器件的测试结果见表1所示。

对比例1:根据与实施例13相同的方法制作有机电致发光器件,区别在于使用BD1作为发光层的掺杂材料代替作为发光层掺杂材料的实施例1中合成的C01。所得器件的测试结果见表1所示。

实施例14:化合物C04在有机电致发光器件中的应用

根据与实施例13相同的方法制作有机电致发光器件,区别在于使用C04作为发光层的掺杂材料代替作为发光层掺杂材料的实施例1中合成化合物C01。所得器件的测试结果见表1所示。

实施例15:化合物C10在有机电致发光器件中的应用

根据与实施例13相同的方法制作有机电致发光器件,区别在于使用C10作为发光层的掺杂材料代替作为发光层掺杂材料的实施例1中合成化合物C01。所得器件的测试结果见表1所示。

实施例16:化合物C13在有机电致发光器件中的应用

根据与实施例13相同的方法制作有机电致发光器件,区别在于使用C13作为发光层的掺杂材料代替作为发光层掺杂材料的实施例1中合成化合物C01。所得器件的测试结果见表1所示。

实施例17:化合物C14在有机电致发光器件中的应用

根据与实施例13相同的方法制作有机电致发光器件,区别在于使用C14作为发光层的掺杂材料代替作为发光层掺杂材料的实施例1中合成化合物C04。所得器件的测试结果见表1所示。

实施例18:化合物C18在有机电致发光器件中的应用

根据与实施例13相同的方法制作有机电致发光器件,区别在于使用C18作为发光层的掺杂材料代替作为发光层掺杂材料的实施例1中合成化合物C01。所得器件的测试结果见表1所示。

实施例19:化合物C26在有机电致发光器件中的应用

根据与实施例13相同的方法制作有机电致发光器件,区别在于使用C26作为发光层的掺杂材料代替作为发光层掺杂材料的实施例1中合成化合物C06。所得器件的测试结果见表1所示。

实施例20:化合物C31在有机电致发光器件中的应用

根据与实施例13相同的方法制作有机电致发光器件,区别在于使用C31作为发光层的掺杂材料代替作为发光层掺杂材料的实施例1中合成化合物C01。所得器件的测试结果见表1所示。

实施例21:化合物C35在有机电致发光器件中的应用

根据与实施例13相同的方法制作有机电致发光器件,区别在于使用C35作为发光层的掺杂材料代替作为发光层掺杂材料的实施例1中合成化合物C01。所得器件的测试结果见表1所示。

实施例22:化合物C45在有机电致发光器件中的应用

根据与实施例13相同的方法制作有机电致发光器件,区别在于使用C45作为发光层的掺杂材料代替作为发光层掺杂材料的实施例1中合成化合物C01。所得器件的测试结果见表1所示。

实施例23:化合物C48在有机电致发光器件中的应用

根据与实施例13相同的方法制作有机电致发光器件,区别在于使用C48作为发光层的掺杂材料代替作为发光层掺杂材料的实施例1中合成化合物C01。所得器件的测试结果见表1所示。

实施例24:化合物C57在有机电致发光器件中的应用

根据与实施例13相同的方法制作有机电致发光器件,区别在于使用C57作为发光层的掺杂材料代替作为发光层掺杂材料的实施例1中合成化合物C01。所得器件的测试结果见表1所示。

表1器件光电数据表

从表1的数据可以看出,使用本发明提供的材料制作的发光器件具有较高的亮度和发光效率,本发明提供的材料是性能优良的有机电致发光材料,特别是性能比较好的掺杂材料,是非常有前景的一类有机电致发光材料。

以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1