一种温度pH双重响应性肉桂酸-聚天冬酰胺扼合物及其水相交联方法与流程

文档序号:14905242发布日期:2018-07-10 21:50阅读:618来源:国知局

本发明属于新材料领域,具体涉及一种温度ph双重响应性肉桂酸-聚天冬酰胺扼合物

及其水相交联方法。



背景技术:

近年来,聚天冬酰胺衍生物由于可经小分子氨基酸聚合制备而来,并表现出毒性低、可降解代谢等优点,在生物医药、个人护理品等领域得到了广泛的关注。目前也已有三种基于聚天冬酰胺衍生物的抗癌制剂(nk105、nk911、nc-6300)进入临床研究。

环境响应性智能高分子由于可随外界环境(如:温度、ph、光等)的变化而作出不同的响应行为,因此具有较好的可控性,从而使大幅简化传统载药或装载活性物的过程(如:透析法)成为了可能。目前,已有报道可通过快速提高温敏性聚合物水溶液的温度至37℃以上,使其形成纳米粒子,并成功装载了抗癌药物紫杉醇。该方法与透析法相比,其优势在于,整个装载过程通常仅需2-5分钟,且可避免使用有毒有机溶剂。但值得注意的是,众多研究结果显示温敏性聚合物的温度响应行为具有可逆性,因此所形成的纳米粒子尺寸会随温度的变化而波动。当环境温度下降至临界胶束温度(cmt)以下时,由升温所形成的纳米粒子则会自行瓦解,重新恢复成透明的溶液状,因而无法继续包封疏水性药物或活性成分。而环境温度的变化,无论是在生产、运输还是储存等环节、亦或地域季节的变化都是不可避免的,因此导致温敏胶束的实际应用受到极大的限制。



技术实现要素:

本发明的目的在于保留利用温敏性载药的优势,克服温敏性材料所制备纳米粒子会随环境温度变化而波动、甚至瓦解的稳定性不足问题,提供一种可在升温形成纳米粒子后直接水相交联,制备出稳定纳米粒子的方法。

本发明提供的技术方案是:一种温度ph双重响应性肉桂酸-聚天冬酰胺扼合物pasp-ca,其具体结构如下:

其中,x、y分别表示叠氮乙胺、5-氨基戊醇的接枝比例,z表示肉桂酸的接枝比例,其中肉桂酸以酯键形式键合至聚天冬酰胺侧链。

优选地,如上所述的一种温度ph双重响应性肉桂酸-聚天冬酰胺扼合物,其特征在于:x,y,z分别为1-60,40-99,1-60的整数。

本发明还提供了一种温度ph双重响应性肉桂酸-聚天冬酰胺扼合物的制备方法,包括如下步骤:

(1)以1-乙基-3-(3-二甲基氨基丙基)碳酰二亚胺盐酸盐(edc)或n,n-二环己基碳二亚胺(dcc)作为偶联剂,4-二甲氨基吡啶(dmap)为催化剂,采用炔醇修饰肉桂酸得到端炔基肉桂酸酯;

(2)由天冬氨酸缩聚得到聚琥珀酰亚胺(psi);

(3)以dmf为溶剂,由叠氮乙胺和5-氨基戊醇先后对psi开环,制得叠氮功能化的聚天冬酰胺衍生物pasp-az;

(4)通过点击化学,将端炔基肉桂酸酯键合到叠氮功能化的聚天冬酰胺衍生物,制得肉桂酸-聚天冬酰胺扼合物pasp-ca。

本发明还提供了一种温度ph双重响应性肉桂酸-聚天冬酰胺扼合物的水相交联方法,先将交联剂加入至温度ph双重响应性肉桂酸-聚天冬酰胺扼合物的水溶液中,然后快速加热至40-70℃使肉桂酸-聚天冬酰胺扼合物在水中形成纳米粒子;最后保温10分钟以上,让交联剂与肉桂酸-聚天冬酰胺扼合物进行交联,形成对环境温度变化有良好耐受性的稳定纳米粒子;

所述交联剂的用量为扼合物pasp-ca中肉桂酸接枝比例的10%-200%,以上为摩尔比计。

所述交联剂为二胺或多胺小分子或聚合物,包括但不限于乙二胺、胱胺、线性聚乙烯亚胺、支化聚乙烯亚胺、三臂或多臂氨基封端的聚乙二醇。

与现有技术相比,本发明的优点为:

1、本发明所设计的温敏性聚天冬酰胺衍生物,其水溶液能在升温形成纳米粒子后,直接在水相中进一步进行交联,则所制备的纳米粒子即使在低于cmt的条件下,依然能保持其纳米粒子的形态,这对实现以低毒聚天冬酰胺衍生物作为载体,以温度作为开关,制备出对环境温度变化具有良好耐受性的稳定纳米粒子,对包封疏水性药物或活性成分具有较高的应用前景。

2、本发明的对温度ph双重响应性肉桂酸-聚天冬酰胺扼合物,含亲水链段(5-氨基戊醇)和疏水链段(叠氮乙胺),其亲疏水性可通过引入不同的接枝比例进行调节,即x,y的取值,可通过投料比控制。

3、本发明的对温度ph双重响应性肉桂酸-聚天冬酰胺扼合物,肉桂酸链段可根据x的取值在0至x之间进行调节,即z的取值,用于进一步微调亲疏水性,从而达到调控临界胶束温度(cmt)的目的;此外,z的取值也可调控保温交联的时间长短,以及交联剂(二胺或多胺小分子或聚合物)的用量。

附图说明

图1为pasp-ca和pasp-az的红外谱图。

图2为pasp-ca和pasp-az的核磁氢谱表征结果。

图3为pasp-ca和pasp-az的紫外表征结果。

图4为在不同ph条件下pasp-ca水溶液透过率随温度变化的曲线。

图5为未加和已加交联剂的pasp-ca水溶液,经快速升温形成纳米粒子并保温4小时后,重新降温至cmt以下的状态(18℃)。

具体实施方法

为能清楚说明本发明方案的技术特点,下面结合具体实施例,对本发明进行阐述。但是本发明的保护范围并不限于这些实施例。凡是不背离本发明构思的改变或等同替代均包括在本发明的保护范围之内。

实施例1

一种温度ph双重响应性肉桂酸-聚天冬酰胺扼合物的制备方法,包括如下步骤:

第一步端炔基肉桂酸酯的合成:将3克肉桂酸(1当量)溶于30毫升二氯甲烷和5毫升dmf的混合溶剂置于50毫升烧瓶中,再加入4.66克edc(1.2当量)活化1小时。然后,缓慢滴加1.42克炔丙醇(1.25当量)至烧瓶内,最后加入0.25克dmap(0.1当量),室温下反应24小时。反应结束后,水洗三次,无水硫酸镁干燥、过滤、旋蒸,得到黄色油状产物2.3克。

第二步聚琥珀酰亚胺(psi)的合成:称取16克天冬氨酸置于1升烧瓶内,加入8克浓磷酸,减压,升温至180℃反应2小时;反应结束后,冷却至室温,直接加水浸泡、洗涤至中性,经鼓风干燥和真空干燥后得到聚琥珀酰亚胺10克;通过上述方法调节反应时间和真空度可得到不同分子量的psi。

第三步叠氮功能化的聚天冬酰胺衍生物pasp-az的制备:称取200毫克psi加入烧瓶内,加入5毫升dmf溶解至均相,向烧瓶内加入71毫克叠氮乙胺后于室温下反应4天;反应4天后,再向烧瓶内加入过量的5-氨基戊醇,继续反应4天;待反应结束后,用无水乙醚沉淀,真空干燥得到叠氮功能化的聚天冬酰胺衍生物pasp-az。

红外结果表明,pasp-az在2100cm-1处存在明显的叠氮特征吸收峰(附图1);核磁氢谱结果表明,pasp-az已完全开环(5-6ppm之间无峰)(附图2);以d2o作为核磁氢谱的测试溶剂测得,叠氮基的含量为40%。通过类似方法,调整叠氮乙胺的用量可得到不同叠氮基含量的叠氮功能化的聚天冬酰胺衍生物。

第四步肉桂酸-聚天冬酰胺扼合物的制备:将100毫克pasp-az(1当量)溶于10mldmf中,然后加入一定量浓度为100毫克/毫升的端炔基肉桂酸酯(0.05当量)的dmf溶液;抽换气3次后,加入溴化亚铜(0.05当量),再进行抽换气一次,最后将体系置于50℃下反应48小时;反应结束后,将反应物装入截留分子量3500的透析袋中对水透析4-7天,冷冻干燥即可得到肉桂酸-聚天冬酰胺扼合物pasp-ca。

核磁氢谱结果表明,通过点击化学肉桂酸被成功键合到聚天冬酰胺的侧链上,在5.2ppm附近出现了明显的端炔基肉桂酸与pasp-az叠氮基反应成环后的特征峰k(附图2);紫外结果也显示,与pasp-az相比,扼合物pasp-ca的水溶液在275纳米处还出现的紫外吸收(附图3)。通过类似方法,调整端炔基肉桂酸酯的投料量可得到不同肉桂酸接枝比例的肉桂酸-聚天冬酰胺扼合物。端炔基肉桂酸酯投料比低于10%的pasp-az采用紫外进行定量,投料比为10%及以上的通过核磁定量计算接枝率。

实施例2

我们对实施例1制备的肉桂酸-聚天冬酰胺扼合物的温度和ph响应行为研究,具体方法结果如下:

聚合物水溶液的透过率随温度、ph的变化曲线(浓度为2毫克/毫升,升温速度为2℃/分钟),通过紫外可见分光光度计于500nm处测定(附图4)。

实施例3

肉桂酸-聚天冬酰胺扼合物稳定纳米粒子的制备(水相交联):称取由端炔基肉桂酸酯(0.05当量)与pasp-az(1当量)制备出的扼合物pasp-ca10毫克,并加入490微升去离子水,置于冰箱内冷藏24小时以上至pasp-ca完全溶解(2毫克/毫升);然后,按肉桂酰的摩尔数加入乙二胺,混匀,调节ph至8.0,并将所配置的pasp-ca与乙二胺的混合液置于50℃的水浴中,保温4小时,即可得到不受环境温度变化影响稳定的纳米粒子。待其降温至18℃后,依然可保持纳米粒子的形态(附图5右)。

对比实施例1

肉桂酸-聚天冬酰胺扼合物纳米粒子的制备:称取由端炔基肉桂酸酯(0.05当量)与pasp-az(1当量)制备出的扼合物pasp-ca10毫克,并加入490微升去离子水,置于冰箱内冷藏24小时以上至pasp-ca完全溶解(2毫克/毫升);然后,调节ph至8.0,并将所配置的2毫克/毫升pasp-ca溶液置于50℃的水浴中,即可得到纳米粒子,保温4小时后,待其降温至18℃,所形成的纳米粒子则会自动瓦解,恢复成透明状(附图5左)。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1