车辆的行进驱动装置的制作方法

文档序号:11761073阅读:169来源:国知局
车辆的行进驱动装置的制作方法

本发明涉及控制车辆的行进驱动。



背景技术:

在最近开发的混合动力车辆中,已知能够以行进模式操作的车辆,其中,通过电动机驱动用于行进的驱动轮,而电力通过内燃机(串行模式)驱动发电机产生。

而且,设置有用于行进驱动的电动机的许多车辆被配置为能够再生制动,其中,电动机产生电力,以及由关闭加速器等而在车辆减速过程中制动车辆,因此,通过再生制动产生的电力能够对车载电池进行充电。进一步地,如发动机制动,再生制动能够将制动应用于车辆。

进一步地,还提出了一种包括用于使电压升压和降压的变压器的车辆,其中,通过变压器使从车载电池输出的电压升压,以驱动电动机。

例如,日本专利特开公开号2007-325352公开了一种包括用于驱动前轮的电动前电机和用于驱动后轮的后电机的车辆。在有关车辆中,通过从车载电池输出并且通过变压器升压的电压驱动前电机。通过发电机产生的电力能够被施加于前电机。进一步地,通过利用变压器使得由发电机产生的电力的电压降压,而变得可以将电力供应至后电机并且对电池进行充电。

如上所述,在能够支持串行模式操作与再生制动的车辆中,例如,当加速器在串行模式过程中关闭时,电动机通过再生制动产生电力。

进一步地,还存在这样一种车辆,其中,执行控制以增加发电机产生的电力,使得当加速器在该串行模式下从打开关闭时,随着行进驱动所需的电力减少,发动机旋转速度降低。

然而,如上所述,鉴于保护部件免于产生热等,变压器的输入和输出电力存在上限值。在如上所述的配备有变压器并且能够再生制动的车辆中,在当加速器在该串行模式过程中从打开关闭以使车辆减速时,当发动机旋转速度如上所述降低时的这种情况下,产生电力可以从发电机输出,使得通过电动机产生的电力与通过发电机产生的电力被输入至变压器。因此,在车辆减速过程中,存在输入至变压器的电力超过其上限的风险。其中,存在的问题在于抑制再生制动从而不允将超过上限值的电力输入至变压器,使产生空闲的行进感觉以及行进稳定性下降。



技术实现要素:

相应地,本发明的目的是提供一种车辆的行进驱动装置,在设置有变压器并且能够再生制动的混合动力车辆中,该装置在车辆减速过程中能够在确保再生制动扭矩不小于预定水平的同时保护变压器。

为了实现上述目标,用于本发明的车辆的行进驱动装置包括:变压器,基于温度条件改变变压器的最大输入/输出电力;第一电动机,用于通过车辆的前轮和后轮中的任意一个的旋转力再生电力并且使电力通过变压器变压并且被供应至电池;以及发电机,用于通过被内燃机驱动产生电力,并且使电力通过变压器变压并且被供应至电池,其中,车辆的行进驱动装置包括第一演算部和第二演算部,第一演算部用于演算第一电动机的再生电力,使得对车辆的车轮中的任意一个施加不小于预定水平的再生制动扭矩;并且第二演算部用于演算发电机的产生电力,其中,第二演算部将通过从变压器的最大输入/输出电力中减去在第一演算部中演算的再生电力而获得的差设置成发电机的最大产生电力。

因此,因为在根据本发明的车辆的行进驱动装置中,将通过从变压器的最大输入/输出电力中减去第一电动机的再生电力而获得的差设置成发电机额最大产生电力,所以在车辆减速过程中,当将第一电动机的再生电力与发电机的产生电力输入至变压器时,可以防止超过最大输入/输出电力,由此保护变压器。而且,因为演算第一电动机的再生电力使得对车轮施加不小于预定水平的再生制动扭矩,所以在减速过程中可以抑制车辆的空闲行进感并且改善行进稳定性。

进一步地,优选地,行进驱动装置进一步包括:设置部,用于设置内燃机的目标旋转速度;和检测部,用于检测内燃机的实际旋转速度;其中,第二演算部可基于目标旋转速度与实际旋转速度之间的偏差演算产生电力,使得产生电力不大于最大产生电力。

因此,例如,当通过关闭加速器控制内燃机的旋转速度时,执行控制以限制发电机产生的电力,从而可以在保护变压器的同时确保再生制动扭矩。

进一步地,优选地,第二演算部可执行演算,使得产生电力随着目标旋转速度与实际旋转速度之间的偏差的增加而减少。

因此,例如,当通过关闭加速器控制内燃机的旋转速度时,基于目标旋转速度与实际旋转速度之间的偏差适当地执行控制以限制发电机产生的电力,从而可以在保护变压器的同时确保再生制动扭矩。

进一步地,优选地,行进驱动装置进一步包括:第二电动机,用于不经由变压器将电力供应至电池,电力通过车辆的前轮和后轮中的另一个的旋转力再生;和计算部,计算部用于计算第一电动机的再生扭矩与第二电动机的再生扭矩之间的分配比,其中,计算部可基于变压器的温度对第一电动机与第二电动机的再生扭矩进行校正,使得在第一电动机和第二电动机处产生不小于预定水平的再生制动扭矩。

这使得可以确保前轮与后轮在再生制动过程中的再生制动扭矩,由此改善车辆在减速过程中的行进稳定性。

进一步地,优选地,计算部可随着变压器的温度变高而降低在第一电动机处产生的再生扭矩。

这使得可以降低前轮的再生电力,由此增加发电机的最大产生电力。因此,当关闭加速器时,可以快速降低发动机旋转频率。

附图说明

图1是根据本发明的一个实施方式的车辆的行进驱动装置的示意性配置图;

图2是示出根据本实施方式的驱动控制装置的配置的框图;

图3是示出本实施方式的行进驱动装置中的驱动控制程序的一部分的流程图;

图4是用于计算发动机产生的上限电力的绘图的一个实例。

图5是示出本实施方式的驱动控制中的电机再生最大电力相对于升压转换器上限电力的关系的图表;

图6是示出本实施方式的驱动控制中的发电机再生最大电力相对于升压转换器上限电力的关系的图表;并且

图7是示出与升压转换器的温度对应的升压转换器上限电力处的前轮发动机制动电力与发电机再生最大电力之间的比例的图表。

具体实施方式

在下文中,将参考附图对本发明的实施方式进行描述。

图1是根据本发明的一个实施方式的车辆的行进驱动装置1的示意性配置图。

如图1所示,本发明的一个实施方式的配备有行进驱动装置1的车辆是四轮驱动混合动力车辆,其中,设置有用于驱动前轮2的电驱动前电机3(第一电动机)、用于驱动后轮4的电驱动后电机5(第二电动机)、发动机6(内燃机)、发电机7、以及电池8。

发动机6能够经由前变速驱动桥16驱动前轮2并且驱动发电机7产生电力。而且,发动机6与前轮2连接,使得经由离合器11在发动机6与前轮2之间传输动力。

而且,车辆设置有用于控制对前电机3的电力供应的逆变器12、用于控制对后电机5的电力供应的逆变器13、以及用于控制发电机7的输出的逆变器14。

本实施方式的行进驱动装置1包括升压转换器15(变压器),升压转换器15使电池8的电压升压并且将高电压电力供应至前电机3,并且同时,使得通过发电机7产生的高电压电力降压,以将电力供应至电池8和后电机5。

能够被经由升压转换器15和逆变器12通过电池8供应的电力驱动的前电机3也能够被经由逆变器14和逆变器12而通过发电机7供应的电力驱动,并且前电机3经由前变速驱动桥16驱动前轮2。

被经由逆变器13通过电池8供应的电力驱动的后电机5经由后变速驱动桥17驱动后轮4。

通过发电机7产生并且从逆变器14输出的电力允许经由升压转换器15对电池8进行充电,并且还能够分别经由逆变器12被供应至前电机3并且经由升压转换器15和逆变器13被供应至后电机5。

而且,被经由升压转换器15和逆变器14而通过电池8供应的电力驱动的发电机7具有用作启动发动机6的启动电机的功能。

由诸如锂离子电池等二次单元电池构成的电池8具有未示出并且由多个放在一起的电池单元构成的电池模块。

通过来自安装在车辆上的混合控制单元20(计算部、第一演算部、以及第二演算部)的控制信号控制逆变器12、逆变器13、逆变器14、以及升压转换器15中的每个的操作。

升压转换器15设置有用于检测升压转换器15的部件(元件等)的温度的温度传感器21。

而且,车辆配备有用于检测前轮2的每单位时间的旋转次数的前轮旋转频率传感器22或前电机旋转频率传感器(解算器)、用于检测后轮4的每单位时间的旋转次数的后轮旋转频率传感器23或后电机旋转频率传感器(解算器)、用于检测加速器压制量(acceleratordepressionamount)的加速器传感器24、用于检测制动压制量的制动传感器25、用于检测车辆的纵向加速度和横向加速度的g传感器26、用于检测转向控制角(转向角)的转向角传感器27、用于检测发动机6的旋转速度的发动机旋转速度传感器28(检测部)或发电机旋转频率传感器(解算器)、以及用于控制发动机6的驱动的发动机控制单元30。

发动机控制单元30基于来自混合控制单元20的控制信号控制发动机6的驱动。

混合控制单元20,其是用于执行车辆的综合控制的控制装置,被配置为包括输入/输出装置、储存装置(rom、ram、非易失性ram等)、中央处理单元(cpu)、以及定时器等。

混合控制单元20的输入侧与逆变器12至14、发动机控制单元30、温度传感器21、前轮旋转频率传感器22、后轮旋转频率传感器23、加速器传感器24、制动传感器25、g传感器26、转向角传感器27、以及发动机旋转速度传感器28中的每个连接,并且被从这些设备输入检测与操作信息。

另一方面,混合控制单元20的输出侧与逆变器12至14、发动机控制单元30、以及离合器11中的每个连接。

然后,混合控制单元20将控制信号传输至发动机控制单元30、逆变器13和14中的每个、以及离合器11,以基于诸如来自车辆的加速器传感器24的加速器压制量等各个检测量及各种操作信息控制涉及离合器11的齿合与脱离、发动机6、前电机3及后电机5的输出扭矩、以及发电机7的产生电力与输出扭矩的行进模式(ev模式、串行模式、以及并行模式)的切换。

在并行模式中,在离合器11齿合的情况下,前轮2通过发动机6的输出机械地驱动,并且还通过前电机3或后电机5驱动而行进。

在ev模式与串行模式中,离合器11脱离。在ev模式中,发动机6停止,并且通过来自电池8的电力驱动前电机3和后电机5。在串行模式中,将发动机6操作为使发电机7产生电力,由此将电力供应至前电机3和后电机5并且驱动前电机3和后电机5。

而且,本实施方式的车辆被配置为能够再生制动,其中,前电机3和后电机5被强制驱动,以产生(再生)电力以及在车辆减速过程中对前轮2和后轮4施加制动力。混合控制单元20在车辆减速过程中具有分别经由逆变器12、13控制通过前电机3和后电机5的强制驱动而产生的电力量的功能,由此独立控制前轮2和后轮4的再生制动力(再生扭矩)。

图2是示出本实施方式的驱动控制装置的配置的框图。

如图2所示,混合控制单元20包括最大升压输入/输出极限计算部40、电机扭矩极限计算部41、驱动扭矩计算部42、电机扭矩计算部43、产生电力极限计算部44、产生电力计算部45、发电机扭矩极限计算部47、旋转速度计算部48(设置部)、以及发电机扭矩计算部49。

最大升压输入/输出极限计算部40基于升压转换器15的温度计算升压转换器上限电力pvmax,即,升压转换器15的输入/输出电力的最大值。

电机扭矩极限计算部41分别计算电机最大扭矩,即,电机扭矩(前电机3与后电机5的驱动扭矩和再生扭矩)的上限值。

驱动扭矩计算部42计算整个车辆的驱动扭矩(用户要求的驱动扭矩tur)。

电机扭矩计算部43计算前电机3的电机扭矩tmf与后电机5的电机扭矩tmr。然后,基于这些电机扭矩tmf、tmr,其经由逆变器12、13控制前电机3与后电机5的操作。

产生电力极限计算部44计算发电机7的产生电力的最大值(发动机产生的上限电力pemax)。

产生电力计算部45计算发动机动力输出pe,其不大于在产生电力极限计算部44处计算的发动机产生上限电力pemax并且是通过发电机7产生的需要与用户要求驱动扭矩tur对应的电力。因此,经由发动机控制单元30控制发动机6的操作,使得发电机7处可以产生发动机动力输出pe。

发电机扭矩极限计算部47计算发电机扭矩tg(发电机最大再生扭矩tgmax)的极限值。

旋转速度计算部48计算与发动机动力输出pe对应的发电机7的旋转速度。

发电机扭矩计算部49计算用于实现在旋转速度计算部48处计算的发电机7的旋转速度的发电机扭矩tg。然后,基于发电机扭矩tg,经由逆变器14控制发电机7。

接着,通过使用图3和图4对通过本实施方式中的行进驱动装置1的驱动控制进行详细描述。

图3是示出行进驱动装置1中的驱动控制过程的流程图。图4是用于计算发动机产生上限电力pemax的绘图的一个实例。

混合控制单元20在串行模式过程中重复运行图3中所示的驱动控制的例程。

首先,在步骤s10中,从温度传感器21输入升压转换器15的温度。然后,过程进行至步骤s20。

在步骤s20中,基于在步骤s10中输入的升压转换器15的温度计算升压转换器上限电力pvmax。升压转换器上限电力pvmax指升压转换器15能够输入/输出的电力的上限值。例如,通过使用预储存绘图计算升压转换器上限电力pvmax,并且做出设置,使得升压转换器上限电力pvmax随着升压转换器15的温度变高而变低。然后,过程进行至步骤s30。应注意,此步骤的控制对应于上述最大升压输入/输出极限计算部40中的功能。

在步骤s30中,通过g传感器26检测车辆的纵向加速度和横向加速度。而且,通过转向角传感器27检测转向角。然后,输入这些纵向加速度、横向加速度、以及转向角。之后,过程进行至步骤s40。

在步骤s40中,基于在步骤s30中输入的纵向加速度、横向加速度、以及转向角计算前轮分配比rdf。前轮分配比rdf指前轮2的再生扭矩与整个车辆的再生扭矩之比,并且例如,当假设基于横向加速度和转向角直线行进时,执行控制以增加前轮分配比rdf。然后,过程进行至步骤s50。应注意,此步骤的控制对应于本发明的分配比计算部51。

在步骤s50中,基于在步骤s40中计算的前轮分配比rdf与发动机制动保证扭矩tm计算前轮发动机制动保证扭矩tmf。通过下式(1)计算前轮发动机制动保证扭矩tmf,其为前轮在再生制动中所需的最小制动扭矩(预定的再生制动扭矩)。应注意,发动机制动保证扭矩tm指再生制动中整个车辆(前轮+后轮)所需的最小制动扭矩,并且是预设值。

tmf=tm×rdf...(1)

然后,过程进行至步骤s60。

在步骤s60中,通过前轮旋转频率传感器22检测前轮2的旋转频率(前轮旋转频率rf),并且输入前轮旋转频率rf。然后,过程进行至步骤s70。

在步骤s70中,基于在步骤s50中计算的前轮发动机制动保证扭矩tmf和在步骤s70中输入的前轮旋转频率rf计算前轮发动机制动电力pmf。通过下式(2)计算前轮发动机制动电力pmf,其为当执行前轮发动机制动保证扭矩tmf的再生制动时,前电机3产生的电力。应注意,ηm是电机效率。

pmf=tmf×rf×ηm×2π/60...(2)

然后,过程进行至步骤s80。应注意,本步骤对应于本发明的第一演算部。

在步骤s80中,找出用于保护升压转换器pevmax的产生上限电力。如下式(3)所示,用于保护升压转换器pevmax的产生上限电力指通过在步骤s70中计算的前轮发动机制动电力pmf与电机电力pf(即,前电机3通过再生产生的电力)中的较大值、以及在步骤s20中计算的升压转换器上限电力pvmax相加、并且考虑产生效率ηe而获得的值。

pevmax=(pvmax+max(pmf,pf(上一个值))/ηe...(3)

然后,过程进行至步骤s90。

在步骤s90中,计算发动机产生上限电力pemax。基于通过发动机旋转速度传感器28检测的发动机6的实际旋转速度re与发动机6的目标旋转速度reobj之间的旋转频率偏差计算发动机产生上限电力pemax。例如,如图4所示,由于发动机的实际旋转速度re与目标旋转速度reobj之间的旋转频率偏差增加,所以发动机产生上限电力pemax被限制为更小。而且,当实际旋转速度re与目标旋转速度reobj之间的旋转频率偏差不大于α时,发动机产生上限电力pemax将不受限制(在图4中,为β)。应注意,将本步骤中的α设置成这样一个值,即,使得当实际旋转速度re为目标旋转速度reobj时,发电机7通过再生制动产生的电力可以被忽略。应注意,本步骤中的控制对应于上述产生电力极限计算部44的功能。

然后,过程进行至步骤s100。

如下式(4)所示,在步骤s100中,将发动机动力输入pe限制为不大于用于保护在步骤s80中计算的升压转换器的产生上限电力pevmax与在步骤s90中计算的发动机产生上限电力pevmax中的较小值。

0≤pe≤min(pevmax,pemax)...(4)

然后,过程进行至s110。

在步骤s110中,计算发电机最大再生扭矩tgmax。如下式(5)所示,发电机最大再生扭矩tgmax指通过将通过在步骤s70中计算的前轮发动机制动电力pmf和电机电力pf(前一个值)中的较大一个加到在步骤s20中计算的升压转换器上限电力pvmax而获得的值,通过除以发电机7的旋转频率rg并且考虑发电效率ηg而获得的值。

tgmax=(pvmax+max(pmf,pf(前一个值))/rg/ηg...(5)

进一步地,将发电机7的再生扭矩限制为不大于发电机最大再生扭矩tgmax。然后,过程进行至步骤s120。应注意,本步骤的控制对应于上述发电机扭矩极限计算部47中的功能。

在步骤s120中,从受步骤s110中计算的发电机最大再生扭矩tgmax限制的发电机扭矩与发电机旋转频率计算发电机再生电力pg。然后,过程进行至步骤s130。

在步骤s130中,计算电机最大再生扭矩tmmax。如下式(6)所示,假定电机最大再生扭矩tmmax是在步骤s50中计算的前轮发动机制动保证扭矩tmf与将通过从步骤s20中计算的升压转换器上限电力pvmax中减去在步骤s120中计算的发电机再生电力pg而获得的值通过除以电机旋转频率rm并且考虑电机效率ηm而获得的值中的较小值(较大负值中的一个)。

tmmax=min(tmf,(pvmax-pg/rm/ηm))...(6)

应注意,尽管在本步骤中设置电机最大再生扭矩tmmax将导致限制再生制动力,然而,在本实施方式中,电机最大再生扭矩tmmax是前电机3的最大再生扭矩。

然后,结束此例程。

本实施方式中的车辆是四轮驱动车辆,其中,通过前电机3驱动前轮2,并且通过后电机5驱动后轮4,并且在减速过程中,四轮驱动车辆能够通过前电机3和后电机5再生制动。在这种情形下,混合控制单元20能够分别经由逆变器12、13控制这些再生扭矩。

进一步地,根据本实施方式的车辆能够在串行模式下操作,其中,通过操作发动机6产生电力,并且通过前电机3和后电机5执行行进驱动。

车辆安装有升压转换器15并且被配置成使得前电机3被通过从电池8供应并且通过升压转换器15对电压升压的电力供应并且驱动。在车辆减速过程中,发电机7产生的电力与前电机3再生的电力经由升压转换器15被供应至电池8并且对电池8进行充电。

尽管无需前电机3和后电机5的驱动扭矩,当在串行模式中从打开关闭加速器时,排除操作发动机6的需求,以通过发电机7产生电力,可以通过使发电机7再生电力,控制与加速度操作对应的发动机旋转速度,而无不适感,由此对发动机6施加负载,并且由此在关闭加速器的同时降低发动机旋转速度。

因此,当在串行模式下关闭加速器时,存在这样一种情况,即,不仅产生电机再生电力,而且发电机7还产生电力,以降低发动机旋转速度,使得前电机3再生的电力与发电机7产生的电力被一起输入至升压转换器15。

在本实施方式中,如上面图3所示,在串行模式中,通过检测升压转换器15的温度并且通过驱动控制限制发动机动力输出pe、发电机7的再生扭矩、以及前电机3的最大再生扭矩而计算升压转换器上限电力pvmax,执行控制,使得发电机7产生的电力(发电机再生电力pg)与前电机3再生的电力的总值不超过升压转换器上限电力pvmax。这使得可以保护升压转换器15。具体地,由于将发电机7的再生扭矩限制为从升压转换器上限电力pvmax中减去前电机3再生的电力而获得的差计算的发电机最大再生扭矩tgmax的结果,所以将发电机7的产生电力(pg)设置成与相关发电机最大再生扭矩tgmax对应的发电机再生最大电力,并且进一步地,将前电机3再生的电力设置成不小于前轮发动机制动电力pmf,可以确保前电机3的再生制动扭矩,由此抑制车辆在减速过程中的空闲行进感并且改善行进稳定性。

进一步地,由于基于发动机6的实际旋转速度re与目标旋转速度reobj之间的旋转频率偏差计算发动机产生上限电力pemax,并且发动机动力输出pe被限制成不超过发动机产生上限电力pemax,所以当通过关闭加速器而控制发动机旋转速度时,执行控制以调节发电机7产生的电力,从而在保护升压转换器15的同时确保再生制动扭矩。

图5是示出在本实施方式的驱动控制中的升压转换器上限电力pvmax与电机再生最大电力pmmin之间的关系的图表。图6是示出在本实施方式的驱动控制中的升压转换器上限电力pvmax与发电机再生最大电力pgmin之间的关系的图表。应注意,图5中的α表示前轮发动机制动电力pmf。此外,图5和图6中的β表示升压转换器15的连续额定再生电力。进一步地,图5和图6中的γ表示升压转换器15的最大额定再生电力。应注意,在升压转换器15的正常操作过程中,升压转换器上限电力pvmax介于连续额定再生电力β与最大额定再生电力γ之间。

在本实施方式中,尽管通过上述行进驱动控制将发电机7产生的电力与前电机3再生的电力的总值控制成不超过升压转换器上限电力pvmax,然而,如图5所示,在连续额定再生电力β与最大额定再生电力γ之间的正常操作过程中,电机再生最大电力pmmin,即,前电机3再生电力的最大值,将具有不小于α的值(前轮发动机制动电力pmf)。进一步地,随着发电机再生电力pg的减少或升压转换器上限电力pvmax的增加,电机再生最大电力pmmin增加。

进一步地,如图6所示,在连续额定再生电力β与最大额定再生电力γ之间的正常操作过程中,尽管发电机再生最大电力pgmin随着升压转换器上限电力pvmax的增加而增加,然而,将确保前电机3的再生电力不小于预定值(pmf)。

就目前所述,在本实施方式中,当在串行模式中(车辆减速过程中)关闭加速器时,通过根据升压转换器上限电力pvmax设置发电机最大再生扭矩tgmax而限制发电机扭矩tg。因此,限制通过发电机7产生的电力,从而使得可以确保前电机3的再生电力。因此,能够确保车辆的再生制动扭矩,具体地,前轮2的再生制动扭矩,从而使得可以在减速过程中抑制车辆发生空闲行进感并且改善车辆的行进稳定性。

进一步地,如上所述,因为将在步骤s40中计算的前轮分配比rdf设置成不小于50%(0.5),所以在再生制动过程中可以确保前轮2的再生制动扭矩,由此改善车辆在减速过程中的行进稳定性。

进一步地,根据升压转换器上限电力pvmax与行进条件可以校正前轮分配比rdf。例如,随着升压转换器上限电力pvmax减少或行进稳定性劣化,前轮分配比rdf减少。

图7是示出了与升压转换器15的温度对应的升压转换器上限电力pvmax时的前轮发动机制动电力pmf与发电机再生最大电力pgmin之间的比例的图表。在图中,链线表示升压转换器上限电力pvmax,并且折线和实线表示前轮发动机制动电力pmf。折线表示这样一种情况,即,在不对前轮分配比rdf进行校正的情况下,前轮发动机制动电力pmf保持不变,并且实线表示这样一种情况,即,对前轮分配比rdf进行校正,以随着升压转换器15变高而减少。应注意,发电机再生最大电力pgmin是通过从升压转换器上限电力pvmax中减去前轮发动机制动电力pmf而获得的值。

如图7中的链线所示,升压转换器上限电力pvmax随着升压转换器15的温度从预定温度或以上增加而减少。如折线所示,因为在不对前轮分配比rdf进行校正的情况下,前轮发动机制动电力pmf保持不变,所以当升压转换器15的温度上升时,如果升压转换器上限电力pvmax明显减少,发电机再生最大电力pgmin减少。如实线所示,通过执行校正使得前轮分配比rdf随着升压转换器15的温度的上升而减少,可以使得前轮发动机制动电力pmf减少,由此增加发电机再生最大电力pgmin。这使得在关闭加速器时可以快速降低发动机旋转频率。

应注意,尽管前轮发动机制动电力pmf的减少会使得前轮2的再生制动扭矩减少,可以通过校正前轮分配比rdf增加后轮4的再生制动扭矩,由此确保整个车辆的再生制动扭矩。

而且,可以定期对前轮分配比rdf执行校正,或例如,仅在转动行进之外的时间段执行校正。在转向行进的再生制动过程中,通过仅在转向行进过程中对前轮分配比rdf执行校正,可以抑制后轮4的再生制动扭矩增加,由此抑制车辆的直线行进稳定性劣化。

应注意,本发明并不局限于上述实施方式。本发明可广泛应用于配备有升压转换器并且执行再生制动的混合动力车辆。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1