机动车辆的操纵方法和机动车辆与流程

文档序号:14373384阅读:172来源:国知局
机动车辆的操纵方法和机动车辆与流程

本发明涉及一种用于越过障碍物的机动车辆的操纵方法和一种用于越过障碍物的机动车辆。



背景技术:

用于检测机动车辆的前方或者后方的障碍物的机动车辆的辅助系统是普遍的。这种类型的检测系统被实施用于检测不同的障碍物,例如人、路沿、前方机动车辆等。主要检测在车辆附近的障碍物。由障碍物的检测引起的机动车辆的动作各不相同。在这种情况下,动作可能涉及机动车辆的制动器、转向装置或者更一般地车辆部件。

常规方法主要是首先接触障碍物,然后通过各种方法越过障碍物。一方面,存在一种基于迭代算法并且允许机动车辆缓慢地越过障碍物的方法。一方面,存在一种在功率限制范围之外的驱动单元功率范围内工作的方法。作为示例,可以提到混合动力车辆,其内燃机通常在操纵过程中被关闭并且在障碍物的情况下被接通。

在us2016/0102622a1中公开了一种越过障碍物的方法。在us2016/0102622a1中,提供了分析车辆数据并且检查障碍物是否阻碍车辆的运动的软件,例如机动车辆的车轮是否正在接触路沿。如果检测到障碍物,则检查障碍物是否可以被越过以及是否将被越过。如果对所述问题的响应是肯定的,则将转矩传递到车轮,以使得能够越过障碍物。在这种情况下,间歇地将扭矩传递到车轮。设计间隔后面的迭代算法,使得电动马达的部件不会过热。

特别地,机动车辆与人之间的相互作用越来越多并且各种各样。在us9,368,034b2中,例如人与机动车辆之间的相互作用被表示为使得通过机动车辆的检测系统检测在机动车辆后面附近朝向机动车辆移动的人。一旦人做出预定义的手势,则行李箱作为机动车辆的动作被打开。在这种情况下,检测系统包含超声波传感器和电容式传感器。超声波传感器被实施用于检测远离车辆的人,而电容式传感器被实施用于检测靠近车辆的人。超声波传感器和电容式传感器之间的协调导致相对于机动车辆的预定义距离,在该距离内由人进行的手势导致行李箱的打开。



技术实现要素:

本发明的目的是提供一种用于越过障碍物的机动车辆的有利方法。本发明的另一个目的是提供一种用于执行越过障碍物的方法的有利的机动车辆。

第一个目的是通过权利要求1所述的方法实现的。第二个目的是通过权利要求8所述的机动车辆实现的。

本发明的第一方面涉及根据本发明的用于越过障碍物的机动车辆的操纵方法。该操纵方法包括使用包含至少一个车轮、检测设备和驱动单元的机动车辆。在这种情况下,驱动单元包含功率限制范围。此外,操纵方法包含提供包含至少一个障碍物的操纵区域。操纵方法的特征在于下面的步骤。在第一步骤s1中,通过检测设备检测机动车辆的前方和/或后方的障碍物。在第二步骤s2中,机动车辆相对于障碍物移动。在此期间,进行移动,使得机动车辆在规定距离x处停止。在这种情况下,距离x通过障碍物和车轮之间的距离来定义。一旦机动车辆停止,车轮的行进方向指向障碍物。在第三步骤s3中,机动车辆朝向障碍物加速。在此期间,加速发生在驱动单元的功率限制范围内。

因此,根据本发明的操纵方法与传统方法相比是有利的,原因在于它继续越过在驱动单元的功率限制范围内的障碍物。在混合动力车辆的情况下,这意味着在使用根据本发明的方法时,内燃机不用于驱动机动车辆。此外,没有使用可能引起机动车辆在缓慢越过障碍物时的摇摆移动的迭代算法。

根据本发明的操纵方法的一种设计,步骤s2被划分为子步骤。在步骤s2的第一子步骤中,障碍物和车轮之间的距离x_var由机动车辆的第一模块确定。在步骤s2的第二子步骤中,在机动车辆的移动期间,将距离x_var与距离x进行比较。在步骤s2的第三子步骤中,进行机动车辆的移动,使得距离x_var接近距离x。例如,使用雷达系统、具有超声波传感器的系统或者具有摄像机和激光器的系统,可以例如在厘米范围内足够精确地确定距离x_var。

根据本发明的操纵方法的一种设计,此外,在步骤s2中,距离x由机动车辆的第二模块计算。对于包含预定模式或者已知结构的已知障碍物,可以使用存储在机动车辆中的数据来计算距离x。或者,合适的数据可以已经存储在机动车辆中,使得不再需要计算。

根据本发明的操纵方法的一种设计,在步骤s2中,障碍物的高度由机动车辆的第三模块确定。此外,使用所确定的障碍物的高度来计算距离x。

根据本发明的操纵方法的一种设计,在步骤s2中,机动车辆的离地高度由第四模块确定。使用确定的机动车辆的离地高度,计算距离x。在路沿的情况下,或者在没有朝向机动车辆的平坦上升成分的障碍物的情况下,越过障碍物的先决条件是机动车辆具有超过障碍物高度的离地高度。越过这种障碍物的另一个先决条件是车轮的半径大于障碍物的高度。当越过具有朝向机动车辆的平坦上升部分的障碍物时,机动车辆只能在倾斜角度范围内越过障碍物。所述倾斜角度范围是车轮与车辆后部或车辆前部上的外部区域之间的距离的函数。此外,倾斜角度的范围是离地高度的函数。

根据本发明的操纵方法的一种设计,在步骤s2中,机动车辆的质量由机动车辆的第五模块确定。使用确定的质量来计算距离x。质量的惯性是越过障碍物的决定性因素。

根据本发明的操纵方法的一种设计,在步骤s1至s3中自主地控制机动车辆。优选地,机动车辆的控制完全自主地进行。在此期间,机动车辆的驾驶员可以位于车辆内,或者甚至位于车辆的外部。机动车辆的完全自主控制的另一个替代方案是,机动车辆显示诸如距离x和加速度的强度的数据,并且机动车辆的驾驶员仅操作油门踏板和制动踏板。

本发明的第二方面涉及一种用于执行根据本发明的方法的机动车辆。机动车辆包含至少一个车轮、检测设备和驱动单元。在这种情况下,驱动单元包括功率限制范围。检测设备检测机动车辆的前方和/或后方的障碍物。此外,检测设备包含水平距离模块,其被实施用于确定机动车辆的车轮与障碍物之间的距离x_var。在这种情况下,检测设备可以包含雷达系统、超声波传感器、一个或多个摄像机或者激光系统。属于各个系统的传感器可以安装在机动车周围的适当位置。

根据本发明的机动车辆的一种设计,具有功率限制范围的驱动单元被电动地实现。在这种情况下,具有功率限制范围的驱动单元也可以包含除电动马达之外的内燃机。然而,在根据本发明的操纵方法的情况下,内燃机不工作。被称为混合动力车辆的机动车辆在根据本发明的操纵方法的情况下仅电动移动。或者,燃料电池系统也可以用作驱动单元。这里也是以功率限制的方式进行机动车辆的操纵。

根据本发明的机动车辆的一种设计,机动车辆包含计算模块。实施计算模块以计算距离x。距离x表征障碍物与机动车辆的车轮之间的距离。计算距离x,使得机动车辆处于与障碍物相距所述距离处,并且可以从静止状态朝向障碍物加速。在这种情况下,除了障碍物的属性之外,距离x还是机动车辆的参数(例如向公路的合适的扭矩传递和机动车辆的质量)的函数。计算距离x,使得机动车辆的惯性质量和向公路的扭矩传递导致机动车辆的相应加速,使得机动车辆具有能够使机动车辆越过障碍物的动能。

根据本发明的机动车辆的一种设计,检测设备包含高度模块。实施高度模块以确定障碍物的高度。高度模块优选地包含一个或多个摄像机或者激光系统。

根据本发明的机动车辆的一种设计,检测设备包含离地高度模块。离地高度模块实施用于确定机动车辆的底部与机动车辆正在移动的地面之间的距离。机动车辆优选地在路面上移动,特别是在街道或公路上移动。离地高度模块可以包含用于其的超声波传感器或者激光系统。

根据本发明的机动车辆的一种设计,机动车辆包含质量模块。质量模块实施用于确定机动车辆的质量。

在根据本发明的机动车辆的一个有利设计中,机动车辆可以包含实施用于控制机动车辆的控制设备。控制设备优选地控制机动车辆的动作,例如机动车辆的转向和加速。此外,控制设备可以致动机动车辆的视觉和听觉信号。

附图说明

通过参照附图对两个示例性实施例的以下描述来揭示本发明的其它特征、性质和优点。

图1示出了根据本发明的示例性实施例的相对于障碍物的机动车辆的示意图;

图2表示指示根据本发明的操纵方法的第一示例性实施例的过程的流程图;

图3表示指示根据本发明的操纵方法的第二示例性实施例的过程的流程图。

具体实施方式

下面使用图1至图3详细描述根据本发明的用于机动车辆1越过障碍物3的操纵方法的两个示例性实施例。

在这两个示例性实施例中,在每种情况下描述了使用装有电动驱动单元5的机动车辆1的操纵方法。在这种情况下,电动驱动单元5(这里是混合动力车辆的电动马达5)在功率限制范围内操作。混合动力车辆的内燃机在根据本发明的操纵方法期间是停用的。通过在功率极限范围内使用电动马达5并且通过不使用内燃机,提供了一种使用低电压混合动力技术来实现纯电动操纵的操纵方法。此外,在两个示例性实施例中,机动车辆1被纯粹地自主地操作。

在图1中,示出了根据本发明的机动车辆1的示例性实施例。机动车辆1位于与障碍物3的相距距离x_var处。在这种情况下,距离x_var是机动车辆1的车轮4与障碍物3之间的距离。安装在机动车辆1中的水平距离模块10在机动车辆1相对于障碍物3移动期间连续地测量距离x_var。在该示例性实施例中,机动车辆1的移动通过电动马达5实现。如果距离x_var等于距离x,则机动车辆1的移动结束。通过机动车辆1的计算模块11来计算表征用于越过障碍物3的车轮4和障碍物3之间的目标距离的距离x。通过确定障碍物3的高度22的高度模块12、确定机动车辆1的底部与公路6之间的距离的离地高度模块13和确定机动车辆1的质量的质量模块14来提供计算距离x所需的参数。

在两个示例性实施例中,机动车辆1使用根据本发明的操纵方法来越过路沿3。根据本发明的两种操纵方法在机动车辆1的车轮4接触路沿3并且机动车辆1位于路沿3的前方的时间点开始。

从机动车辆1到公路6的扭矩的传递导致沿着机动车辆1的运动方向指向的所产生的力。一旦驱动单元5的功率为足够高,则机动车辆1遵循该力的方向。如果扭矩的传递发生在电动马达5的功率限制范围内,则机动车辆1可以主要仅在没有障碍物3的情况下从停止状态加速。一旦障碍物3存在并且至少一个车轮4被阻挡,则机动车辆1的电力通常不足以越过障碍物3。在混合动力车辆的情况下,通常在这种情况下起动内燃机,使得从机动车辆1到公路6的相应的扭矩传递得到保证,并且障碍物3可以由机动车辆1越过。然而,所述方法与在功率极限范围内操作的纯电动驱动的操纵方法的想法冲突。

在图2中,示出了示出根据本发明的操纵方法的第一示例性实施例的过程的步骤。在第一步骤s1中,检测设备2检测在机动车辆1的前方和/或后方的障碍物3。在第二步骤s2中,机动车辆1相对于障碍物3移动。进行移动使得机动车辆1在障碍物3和车轮4之间的规定距离x处停止。在这种情况下,车轮4的行驶方向指向障碍物3。在第三步骤s3中,机动车辆1朝向障碍物3加速。在这种情况下,加速发生在驱动单元5的功率限制范围内。

在第二示例性实施例中,操纵方法5包含由s1、s2a、s2b、s2c和s3表示并且在图3中示意性地表示的步骤。

在操纵方法的第一步骤s1中,检测设备2检测障碍物3,障碍物3在这种情况下是路沿3。在操纵方法的第二步骤s2a中,机动车辆1的车轮4和路沿3之间的距离通过机动车辆1的水平距离模块10确定。所述距离被称为x_var。在操纵方法的第三步骤s2b中,距离x通过机动车辆1的计算模块11计算。距离x表征了路沿3与机动车辆1的车轮4之间的距离,机动车辆1可以从该距离x朝向路沿3加速并且可以越过路沿3。为了计算距离x,需要机动车辆1和路沿3的参数。一方面,路沿3的高度22对于计算是必需的。路沿3的高度22的确定通过机动车辆1的高度模块12进行。另一方面,计算距离x需要机动车辆1的离地高度21。机动车辆1的离地高度21通过离地高度模块13确定。在没有平坦上升部分(例如路沿3的倾斜)的障碍物3的情况下,车轮4与车辆的前部的前点或车辆后部的最后点之间的距离与越过障碍物3或路沿3有关。障碍物3或路沿3的倾斜也影响距离x。此外,在例如要越过路沿3并且离地高度21大于路沿3的高度22的本示例性实施例的情况下,车轮4的半径20起作用。车轮4的半径20优选地大于障碍物3或路沿3的高度22。

在计算距离x之后,进行机动车辆1的移动,在所述示例性实施例中远离路沿3。在所述第四步骤s2c中,机动车辆1移开,使得连续测量的距离x_var接近距离x。一旦距离x_var与距离x一致,则机动车辆1停止。在这种情况下,车轮4的行进方向指向路沿3。机动车辆1到距离x的移动优选地通过对驾驶员和/或车辆外部的人的视觉和听觉信号来指示。在所述示例性实施例中,蜂鸣器在机动车辆1的移动期间发出声音,并且前灯或后灯亮起。此外,闪光灯系统打开。

在机动车辆的第五步骤s3中,机动车辆1从停止状态朝向路沿3加速。在此期间,加速在电动马达5的功率限制范围内进行。在所述示例性实施例中,功率限制在48伏特。一旦机动车辆1已经越过了路沿3,就可以继续原来设想的操纵。

在完全自主控制的机动车辆1中,或者可以更早地使用根据本发明的操纵方法。在这种情况下,已经检测和测量在与机动车辆1更远的距离处的障碍物3。在所述时间点,机动车辆1的车轮4与障碍物3之间的距离x可以通过从障碍物3获得的数据以及车辆数据计算得到。可以在所述时间点再次测量计算所需的车辆数据,或者可以从先前的操作中获取。作为另一替代方案,机动车辆1的速度可以在更大的距离处被调节,使得障碍物3可以容易地越过,而不会使机动车辆1停止。这里的先决条件总是机动车辆1的驱动单元5在功率限制范围内操作。

附图标记列表

1机动车辆

2检测设备

3障碍物

4车轮

5驱动单元

6公路

10水平距离模块

11计算模块

12高度模块

13离地高度模块

14质量模块

20车轮的半径

21离地高度

22障碍物的高度

s1检测障碍物

s2将机动车辆移动到距离x

s2a确定障碍物和机动车辆的车轮之间的距离x_var

s2b计算距离障碍物的距离x,加速的机动车辆可以从该距离越过障碍物

s2c通过距离x_var与距离x的比较将机动车辆移动到距离x

s3朝向障碍物加速机动车辆

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1