在脱硫以前用俘获催化剂除去砷的方法

文档序号:5134762阅读:228来源:国知局
专利名称:在脱硫以前用俘获催化剂除去砷的方法
技术领域
本发明提供生产具有改进性能的石脑油沸程产物的方法。
背景技术
用于加工裂化石脑油的一种常规技术涉及进行裂化石脑油的选择性加氢脱硫。选择性加氢脱硫指其中将硫从石脑油中除去,同时使反应中发生的烯烃饱和量最小化的方法。避免烯烃饱和可以是有价值的,因为它导致较高辛烷石脑油产物。保持较高辛烷值容许选择性加氢脱硫进料用作石脑油燃料油料而无须使用重整步骤。不重整而使用的具有合适辛烷值的一类石脑油进料为通过流化床催化裂化(FCC)方法产生的石脑油进料。FCC石脑油进料可含有基本量的烯烃,使得选择性加氢脱硫方法是有吸引力的选择。然而,取决于供入FCC方法中的进料的类型,所得FCC石脑油进料还可含有基本量的砷。砷是许多加氢脱硫催化剂的已知催化剂毒物。砷俘获催化剂为市售的以缓解进料中砷的影响。在本发明中,这种砷俘获催化剂可装载于加氢脱硫方法的催化剂床的顶部或顶部附近。砷俘获催化剂可用于从进料中俘获(sequester)砷,由此降低或甚至防止砷达到以及随后毒害加氢脱硫催化剂。发明概沭本发明一个方面涉及选择性加氢处理石脑油沸程进料的方法,其包括提供含有至少约5重量%烯烃和至少约Ippb砷的石脑油沸程进料。然后可确定选择性加氢脱硫方法的运转周期和产物硫含量。另外,可确定第一有效选择性加氢脱硫条件以在第一体积加氢脱硫催化剂的存在下将石脑油沸程进料选择性加氢脱硫,其中第一有效条件包括第一运转起始催化剂床温度和第一空速。然后可使石脑油沸程进料与砷俘获催化剂接触。这之后可以使石脑油沸程进料在第二有效选择性加氢脱硫条件下与第二体积加氢脱硫催化剂接触, 第二体积为第一体积的约95%或更小,第二有效选择性加氢脱硫条件包括(i)比第一运转起始催化剂床温度高至少约I. 5°C的第二运转起始催化剂床温度和(ii)大于第一空速的第二空速。在本发明这一方面中,石脑油沸程进料可在接触第二体积加氢脱硫催化剂以前接触砷俘获催化剂。石脑油沸程进料与砷俘获催化剂和第二体积加氢脱硫催化剂的接触继续确定的运转周期,同时保持加氢脱硫石脑油进料中确定的产物硫含量。附图
简沭图I示意性地显示适于进行本发明实施方案的反应器的实例。实施方案详述在实施方案中,提供制备具有至少可比的,优选改进的辛烷的石脑油沸程产物,同时实现所需工艺运转周期的低成本方法。改进的辛烷保存可通过使用降低加氢脱硫催化剂负荷与足够As俘获催化剂负荷的组合以匹配所需运转周期而实现。这可容许加氢脱硫反应器在较高的起始温度下操作,这可增强加氢脱硫方法运转周期的早期部分期间的辛烷保存。在选择性加氢脱硫方法中,可平衡多个考虑以选择催化剂负荷的大小和加工温度。通常可以为理想的是脱除硫至相当于低硫燃料的目前要求的水平。例如,具有约15wppm或更少,例如约IOwppm或更少的硫的石脑油产物的生产通常是理想的。另一考虑可包括保持催化剂的活性。通常,催化剂在较高温度操作期间应更快地失活。因此,较低的操作温度可以是优选的,特别是在在将新催化剂加入加氢处理反应器中以后在初始加工阶段期间。又一考虑可包括烯烃在所得石脑油产物中的保存。通常,在高于满足所需硫规格所需的温度下加工进料可产生另外的烯烃饱和。该考虑会倾向于建议较低反应温度是优选的,以避免进料的过度加工。然而,催化剂的选择性可随着温度提高而提高。这里,选择性指相对于烯烃饱和的活性,加氢脱硫的相对活性。因此,存在可能偏好较低和较高温度加工的因素。进料中的污染物可提供考虑的另一套挑战。催化剂毒物如砷可降低加氢脱硫方法过程期间加氢脱硫催化剂的活性。砷通常可导致催化剂以比通常预期的快得多的速率失活。对抗该失活的一种方法包括提高总催化剂负荷。由于实践考虑,约800 T (约427°C)以上的运转末端温度通常不是优选的,优选运转末端温度可以小于约675 T (约357°C )。提高加氢脱硫催化剂的量可降低将给定流速的石脑油进料有效加氢脱硫所需的温度。通过提高加氢脱硫催化剂的量,一部分催化剂可失活,同时仍留下足够的较高活性催化剂在所需温度以下所需运转周期。按照惯例,提高的催化剂负荷与砷俘获催化剂联合使用。砷俘获催化剂可装载入催化剂床中使得进料在接触反应器中的加氢脱硫催化剂以前接触砷俘获催化剂。不愿受理论束缚,认为加氢脱硫催化剂与砷结合,因此降低到达加氢脱硫催化剂的砷的量并延长反应器的运转周期,因为加氢脱硫催化剂仅会经受来自加工的典型失活,且由于砷的存在不会经受更快的失活。与砷俘获催化剂的常规用途相反,本发明各个实施方案使用砷俘获催化剂以保持,以及优选增强脱硫石脑油产物的辛烷值。这可通过降低所用的加氢脱硫催化剂的量实现。通过使用较少的催化剂,反应的运转起始温度可以提高,这可容许更大的辛烷保留。在实施方案中,砷俘获催化剂的使用可容许加氢脱硫催化剂的体积降至不使用砷俘获催化剂所需的体积的约95%或更小,例如至约90%或更小或至约85%或更小。通过降低加氢脱硫催化剂的体积,进料接触加氢脱硫催化剂的相应空速可提高,同时仍加工类似流速的进料。在实施方案中,砷俘获催化剂的使用可容许比不使用砷俘获催化剂的空速更大的空速。优选用砷俘获催化剂的空速可以为不用砷俘获催化剂的空速的至少约105%,例如为不用砷俘获催化剂的空速的至少约110%。MM在各个实施方案中,选择性加氢脱硫方法的原料可以为石脑油沸程进料,特别是烯烃石脑油沸程进料。合适的原料通常可在约50 T (约10°C )至约450 T (约232°C )范围内沸腾。关于烯烃含量,合适的原料可有利地包括烯烃含量为至少约5重量%的原料。这类合适原料的非限定性实例可包括但不意欲限于流化床催化裂化装置石脑油(FCC催化石脑油或催化石脑油)、蒸汽裂化石脑油、焦化石脑油或其组合。还包括烯烃石脑油与非烯烃石脑油的混合物,条件是该混合物具有至少约5重量%的烯烃含量。烯烃石脑油精炼料流一般不仅含有链烷烃、环烷烃和芳烃,而且含有不饱和物,例如开链和环状烯烃、二烯,和具有烯烃侧链的环状烃。烯烃石脑油原料可含有约60重量%或更小,例如约50重量%或更小或约40重量%或更小的总烯烃浓度。另外或作为选择,烯烃浓度可以为少约5重量%,例如至少约10重量%或至少约20重量%。烯烃石脑油原料还、可具有基于原料的总重量为至多约15重量%,但更通常小于约5重量%的二烯浓度。高二烯浓度通常是不理想的,因为它们可导致具有差的稳定性和颜色的汽油产物。烯烃石脑油的硫含量可以为至少约IOOwppm,例如至少约500wppm、至少约IOOOwppm或至少约1500wppm。另外或作为选择,硫含量可以为约7000wppm或更少,例如约6000wppm或更少、约5000wppm或更少或约3000wppm或更少。硫通常可作为有机结合的硫,即作为硫化合物如简单的脂族、脂环族和芳族硫醇、硫化物、二 -和聚-硫化物等存在。其它有机结合的硫化合物可包括杂环硫化合物类如噻吩和它的更高同系物/类似物(包括二苯并二噻吩(dibenzodithiophene)等)。氮也可存在于进料中。在实施方案中,氮的量可以为至少约5wppm,例如至少约lOwppm、至少约20wppm或至少约40wppm。另外或作为选择,氮含量可以为约250wppm或更少,例如约150wppm或更少、约IOOwppm或更少或约50wppm或更少。 砷也可存在于进料中。在实施方案中,砷的量可以为至少约lwppb,例如至少约5wppb、至少约lOwppb、至少约20wppb或至少约40wppb。另外或作为选择,砷含量可以为约IOOwppb或更少,例如约75wppb或更少或约50wppb或更少。催化剂选择性加氢脱硫可通过使烯烃石脑油进料在有效选择性加氢脱硫条件下暴露于一个或多个加氢脱硫催化剂床下而进行。在实施方案中,砷俘获催化剂可用于单独床中,例如在加氢脱硫催化剂床上游的床,或砷俘获催化剂可装载于也包含加氢脱硫催化剂的床的顶部。通常,砷俘获催化剂为具有足以俘获(吸附)砷的活性,但另外具有对于所需反应如加氢脱硫具有降低或最小影响的较低催化活性的催化剂。典型的砷俘获催化剂可以为相对低活性负载型镍基催化剂。例如,催化剂可包含载于氧化铝载体上的约5至约20重量%Ni。这种砷俘获催化剂的市售实例包括可由Haldor Topsoe市购的TK-47。在实施方案中,包含在催化剂床中的砷俘获催化剂的量可取决于进料中存在的砷的量以及所需运转周期。优选砷俘获催化剂的量可足以防止砷与加氢脱硫催化剂的实质接触。应当指出具有过量的砷俘获催化剂可对加氢脱硫活性和/或选择性具有很少或不具有影响(除提高的催化剂成本外),因为砷俘获催化剂通常可具有较低加氢脱硫活性和/或烯烃饱和。在各个实施方案中,合适的选择性加氢脱硫催化剂可包括由载体材料如二氧化硅、氧化铝或其组合上载的如下组分组成的催化剂至少一种VIII族金属氧化物,例如Co和/或Ni的,优选至少含有Co的氧化物;和至少一种VIB族金属氧化物,例如Mo和/或W的,优选至少含有Mo的氧化物。其它合适的加氢处理催化剂可包括沸石催化剂,以及贵金属催化剂(例如其中贵金属包含Pd和/或Pt)。在本发明范围内的是多于一类加氢处理催化剂用于同一反应容器中。选择性加氢脱硫催化剂的VIII族金属氧化物可以以约O. I至约20重量%,优选约I至约12重量%的量存在。另外或作为选择,VIB族金属氧化物可以以约I至约50重量%,优选约2至约20重量%的量存在。所有金属氧化物重量百分数基于载体。“基于载体”意指该百分数基于载体的重量。例如,如果载体重100g,则20重量%VIII族金属氧化物意指20g VIII族金属氧化物在载体上。用于本发明实践中的加氢脱硫催化剂可优选为负载型催化剂。任何合适的耐熔催化剂载体材料,优选无机氧化物载体材料可用作本发明催化剂的载体。合适载体材料的非限定性实例可包括沸石、氧化铝、二氧化硅、二氧化钛、氧化钙、氧化锶、氧化钡、碳、氧化锆、氧化镁、硅藻土、镧系元素氧化物(包括二氧化铈、氧化镧、氧化钕、氧化钇和氧化镨)、氧化铬、氧化钍、二氧化铀、氧化铌、氧化钽、氧化锡、氧化锌、磷酸铝等及其组合。优选的载体包括氧化铝、二氧化硅和二氧化硅-氧化铝。应当理解载体材料还可含有少量污染物,例如Fe、硫酸盐、二氧化硅,和/或可在制备载体材料期间引入的各种金属氧化物。这些污染物通常可存在于用于制备载体的原料中,且优选可以以基于载体的总重量为小于约I重量%的量存在。更优选载体材料基本不含(例如含有不多于约O. I重量%,优选不多于约O. 05重量%、不多于约O. 01重量%,或不可检测的量)这类污染物。另外或作为选择,约O至约5重量%,例如约O. 5至约4重量%或约I至约3重量%的添加剂可存在于载体中/上,该添加剂可选自磷和兀素周期表(CAS版本)的IA族(碱金属)金属或金属氧化物。 m
反应备件和环塏选择性加氢脱硫可以在任何合适的反应系统中,例如在一个或多个固定床反应器中进行,其中一个或多个固定床反应器各自可包含一个或多个相同或不同加氢脱硫催化剂的催化剂床。任选,多于一类催化剂可用于单个床中。尽管可使用其它类型的催化剂床,但固定床是优选的。可用于本发明实践中的该其它类催化剂床的非限定性实例可包括但不限于流化床、沸腾床、淤浆床、移动床等及其组合。在一些实施方案中可使用反应器之间或同一反应器中的催化剂床之间的级间冷却,因为可能发生一些烯烃饱和以及因为烯烃饱和以及脱硫一般为放热的。加氢脱硫期间产生的一部分热可例如通过常规技术被回收。如果该热回收选择不可行,则常规冷却可通过冷却设施如冷却水或空气,和/或通过使用氢气骤冷料流进行。这样,可更容易地保持最佳反应温度。一般而言,选择性加氢脱硫条件可包括约425 T (约218°C )至约800 T (约4270C ),优选约500 0F (约260°C )至约675 0F (约357°C )的温度。在实施方案中,反应运转起始温度可以为至少约450 0F (约232°C ),例如至少约475 0F (约246°C )、至少约500 0F (约260°C )或至少约510 0F (约266°C )。另外或作为选择,运转起始温度可以为约575 0F (约302°C )或更低,例如约540 0F (约282V )或更低或约525 0F (约274°C )或更低。独立地,或与描述运转起始温度的实施方案组合,加工运转终点温度可以为约800 0F (约427°C )或更低,例如约750 0F (约399°C )或更低,约700 0F (约371°C )或更低,约675 0F (约357°C )或更低,或约650 0F (约343°C )或更低。另外或作为选择,加工运转终点温度可以为至少约550 0F (约288°C ),例如至少约575 0F (约302°C )、至少约600 0F (约 316°C )或至少约 625 0F (约 329°C )。在各个实施方案中,选择作为加工运行终点的温度可取决于多个因素。例如,可以为理想的是在特定值以下的温度下操作反应器和反应系统中的其它设备。这可能是由于设备极限、其它上游或下游方法中所需的温度,或其它原因。另一考虑可以为催化剂失活的速率。当催化剂失活时,催化剂上的其余活性部位的数量可能减少。当催化剂上许多活性部位失活时,使用催化剂的方法稳定性可能降低。这可例如反映于例如需要以较快的速率提高温度以保持基本恒定的硫含量。另外,如上所述,一些类型的催化剂一般在较高的温度下较快地失活。
在实施方案中,加氢脱硫方法开始与方法终点之间的温差可以为至少约25 °F (约14°C ),例如至少约50 0F (约28°C )、至少约75 0F (约42°C )或至少约100 0F (约56°C )。另外或作为选择,运转起始与运转终点之间的温差可以为约300 T (约167°C )或更低,例如约200 0F (约IlTC )或更低,约150 0F (约83°C )或更低,约100 0F (约56°C )或更低,或约75 0F (约42 V )或更低。其它选择性加氢脱硫条件可包括约60psig (约400kPag)至约800psig (约5. 5MPag),例如约 200psig (约 I. 4MPag)至约 500psig (约 3. 4MPag)或约 250psig (约I. 7MPag)至约400psig(约2. 8MPag)的压力。氢气进料率可以为约500scf/b (约84Nm3/m3)至约 6000scf/b (约 1000Nm3/m3),例如约 1000scf/b (约 170Nm3/m3)至约 3000scf/b (约510Nm3/m3),液时空速可以为约O. 5至约15hr \例如约O. 5至约IOhr 1或约I至约5hr、图I示意性地显示适于进行本发明实施方案的反应器的实例。在图I中,将含砷石脑油进料105和氢进料107引入反应器110中。反应器110显示为包含单独砷俘获催化剂床112和单独加氢脱硫催化剂床114。作为选择,砷俘获催化剂和加氢脱硫催化剂可在 单个床中,其中砷俘获催化剂装载于床的顶部。任选还可包含其它加氢脱硫催化剂床114。在反应器110中处理以后,加氢脱硫进料115可进入分离器120中。在图I所示实施方案中,分离器120可有利地从剩余的分离的脱硫石脑油进料125中除去包含H2、H2S和其它气相产物的料流127。产物特征和反应条件的控制在各个实施方案中,可产生与由不使用砷俘获催化剂的类似方法形成的加氢处理石脑油相比,具有降低或优选不具有辛烷损失的加氢处理石脑油。通过容许使用降低量的催化剂和因此提高的运转起始温度,可降低烯烃饱和。这可导致所得加氢处理石脑油的行车辛烷值(RON)和/或发动机辛烷值(MON)的较高值。在各个实施方案中,选择性加氢脱硫方法的目标可以是制备具有基本恒定硫含量的石脑油产物。在实施方案中,基本恒定的硫含量可以为至少约5wppm,例如至少约lOwppm、至少约15wppm、至少约20wppm或至少约30wppm。另外或作为选择,基本恒定的硫含量可以为约150wppm或更少,例如约IOOwppm或更少、约75wppm或更少、约50wppm或更少或约30wppm或更少。如本文所用,保持加氢脱硫产物中基本恒定的硫含量可定义为保持硫含量在目标水平的约5wppm内(例如约3wppm内)。可以为理想的是由于多种原因保持石脑油产物中基本恒定的硫含量。保持恒定的硫含量可容许工艺控制,因为汽油配方设计师能够依赖石脑油产物的规格。为此,保持基本恒定的硫含量是有利的,因为硫含量不提高。也可以为理想的是提供恒定硫含量以防止硫含量太低。在关于本发明实施方案所述的产物硫含量下,除去另外的硫可表明反应条件可能太严格。使用更严格的加氢脱硫条件有时可产生提高的烯烃键饱和,这可能是不理想的。因此,实现低于目标水平的硫含量实际上在一些情况下是有害的,因为用于实现较低硫含量的加工也可进一步降低石脑油产物的RON和或Μ0Ν。在各个实施方案中,另一目标可以为提供具有改进辛烷值的石脑油产物。通过在较高运转起始温度下但以降低的催化剂量(例如使得进料不会过度加工)操作,较少的烯烃键可在进料中饱和和/或转化成硫醇。这种烯烃保存可导致加氢脱硫期间降低的辛烷损失。在实施方案中,由于加氢脱硫导致的辛烷损失可相对于由于在类似条件下而不用砷俘获催化剂导致的辛烷损失,降低约O. 05R0N或更多,例如约O. IRON或更多。 一个或两个上述目标可根据本发明达到,或不能达到任一目标。保持所需硫含量的一个途径可以为使用产物硫含量以提供对工艺条件的反馈。各种方法可用于检测产物硫含量。监控硫含量的一个选择可以为取出加氢脱硫石脑油试样并分析试样的硫。由于加工期间催化剂失活所涉及的时标,石脑油试样的离线分析可足以容许保持基本恒定的水平。作为选择,加氢脱硫石脑油产物中硫含量水平的在线监控技术也可用。尽管在某些情况下可以为理想的是使用含有砷俘获催化剂的体系以降低产物硫含量,在其它情况下,基于石脑油产物中的硫含量的反馈可用于调整反应条件使得可保持基本恒定的产物硫含量。在各个实施方案中,调整反应条件可尤其包括调整催化剂床的温度(加权平均床温度)。实施例一具有和不具有砷俘获的选择性加氢处理的模拟开发选择性加氢脱硫方法的方法模拟用于说明使用砷俘获催化剂的优点。模拟结果显示于表I中。用于这些模拟的条件包括约5500桶/天(约870m3/天)的FCC石脑油进料;约4200wppm进料硫含量;约45cg/g进料溴含量;和约40ppb进料砷含量。一个方法目的是将硫含量降至至少约120wppm,同时保持约6年的运转周期。处理气体率为约620000scf/hr (约18000Nm3/hr),具有约72%氢气和约IOwppm CO (其余为惰性气体)。模拟的催化剂代表市售的耐熔载体上的CoMo催化剂。表I
权利要求
1.选择性加氢处理石脑油沸程进料的方法,其包括 提供含有至少约5重量%烯烃和至少约Ippb砷的石脑油沸程进料; 确定选择性加氢脱硫方法的运转周期和产物硫含量; 确定用于在第一体积加氢脱硫催化剂的存在下将石脑油沸程进料选择性加氢脱硫的第一有效选择性加氢脱硫条件,第一有效条件包括第一运转起始催化剂床温度和第一空速; 使石脑油沸程进料与砷俘获催化剂接触;和 使石脑油沸程进料在第二有效选择性加氢脱硫条件下与第二体积加氢脱硫催化剂接触,其中第二体积为第一体积的约95%或更小,第二有效选择性加氢脱硫条件包括比第一运转起始催化剂床温度高至少约I. 5°C的第二运转起始催化剂床温度和大于第一空速的第二空速; 其中石脑油沸程进料在接触第二体积加氢脱硫催化剂以前接触砷俘获催化剂,其中石脑油沸程进料与砷俘获催化剂和第二体积加氢脱硫催化剂的接触持续确定的运转周期,同时保持加氢脱硫石脑油进料中确定的产物硫含量。
2.根据权利要求I的方法,其中第二体积催化剂为第一体积的约90%或更小。
3.根据权利要求I或权利要求2的方法,其中第二空速为第一空速的约105%。
4.根据前述权利要求中任一项的方法,其中第二运转起始催化剂床温度比第一运转起始催化剂床温度高至少约2. 5°C。
5.根据前述权利要求中任一项的方法,其中确定的产物硫含量为小于约150wppm。
6.根据前述权利要求中任一项的方法,其中确定的产物硫含量为约IOwppm至约30wppmo
7.根据前述权利要求中任一项的方法,其中运转起始催化剂床温度为约450T (约232 0C )至约 575 0F (约 302 °C )。
8.根据前述权利要求中任一项的方法,其中加氢脱硫催化剂的接触结束时的加权平均床温度为约55O 0F (约288°C )至75O 0F (约3"°C )。
9.根据前述权利要求中任一项的方法,其中第二有效选择性加氢脱硫条件包括约60psig(约400kPag)至约800psig(约5. 5MPag)的压力、约500标准立方英尺/桶(scf/b)(约84Nm3/m3)至约6000scf/b (约IOOONmVm3)的氧气进料率和约O. 5hr 1至约15hr 1的液时空速。
10.根据前述权利要求中任一项的方法,其中第二有效选择性加氢脱硫条件包括约200psig (约 I. 4MPag)至约 500psig (约 3. 4MPag)的压力、约 1000scf/b (约 170Nm3/m3)至约3000scf/b (约510Nm3/m3)的氢气进料率和约O. 5hr_1至约IOhf1的液时空速。
11.根据前述权利要求中任一项的方法,其中石脑油进料与第二体积加氢脱硫催化剂在第二有效加氢脱硫条件下的接触导致的辛烷值损失比由于石脑油进料与第一体积加氢脱硫催化剂在第一有效加氢脱硫条件下的接触导致的相应辛烷值损失小至少O. 05R0N。
12.根据前述权利要求中任一项的方法,其中石脑油沸程进料包含至少约IOppb砷,优选至少约20ppb砷。
全文摘要
砷俘获催化剂可用作石脑油进料选择性加氢脱硫方法的一部分。砷俘获催化剂的使用可容许使用减少量的加氢脱硫催化剂。这可容许提高的运转起始温度,这可提高所得脱硫石脑油产物的辛烷值。
文档编号C10G29/04GK102639677SQ200980162707
公开日2012年8月15日 申请日期2009年12月1日 优先权日2009年12月1日
发明者J·P·格里雷 申请人:埃克森美孚研究工程公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1