确定电极区域的方法

文档序号:5277696阅读:490来源:国知局
专利名称:确定电极区域的方法
技术领域
本发明涉及用于确定固定到多孔基底上或与多孔基底相接触的镀膜或层的一个区域的方法。更确切地说,本发明涉及其中镀膜或层为电极的方法。尽管将参照在电化学领域中的应用说明本发明,但这并不意味着本发明将限于此种应用。可以将本发明推广到需要确定多孔基底区域的各种应用中去。
背景技术
过去人们发现当进行定量电化学测量时,必须具有既能复现又能精确确定的电极区域,其中电极区域与被分析样品接触。当对大量溶液进行测量时,通常的作法是将电极浸入到溶液中的某一平面或者在电极上外加绝缘层,以便保留与溶液接触的精确确定区域。已经证明这些作法比较昂贵,并且也不太可靠。人们同时发现,当使用这些方法时,特别是当安装电极的基底为多孔基底时,很难防止泄露以及防止与确定区域之外的电极接触。
通过提供一个廉价的、易于使用的、可靠的方法,本发明试图解决或者至少减轻现有技术中的问题。

发明内容
根据第一方面,本发明的要点在于确定多孔基底上的层的一个区域的方法,该方法包括压缩基底的体积以便生成压缩的区域,该压缩的区域确定,或者与基底或层的边缘的边缘一起确定,该区域的一个边界,区域边界实际防止原料管移通过或越过其表面。
根据第二方面,本发明的要点在于电化学检测设备,包括一个多孔基底;和在基底一侧上的一个电极;其中将该基底的一个区域压缩到某一程度,以形成对基底内电解液迁移的屏障,该压缩的区域确定,或者与基底或电极的边缘一起确定,预定区域的电极上的一个区。
根据第三方面,第二方面的多孔基底为一种隔膜,该隔膜能够透过包含第一分析样本的液体,但绝不会透过液体中包含的第二样本,第二样本为影响第一样本的电化学检测的样本。
最好是,可以固定在多孔基底上或者与基底接触或者可以是加到该基底上的镀膜的层是一个电极,并且确定的区域是一个电极区域。当该层为一个电极时,通常在基底的表面溅射沉积层,以便在该表面上形成连续薄膜。但是,也可以采用其他方法,如化学镀、电镀、蒸发和阳极氧化处理等方法,形成电极。通常基底上的薄膜厚度为10-200nm,更好为60-120nm。
适合用作电极的材料包括金、银、铂、钯、铱、铅、以上金属的合金、碳、混合有粘结材料的碳、和用不溶解银盐,如氯化银、溴化银、碘化银、铁氰化银和亚铁氰化银的多孔层进行部分覆盖的银。根据本发明,在电化学检测设备中通常有两个或多个电极,并且这些电极可以安装在基底的一侧,也可以安装在基底的对侧。
在最佳形式中,按照本发明的方法生成的合成基底至少有两个离散区域—一个经过压缩,另一个未经压缩。业已证明该种合成基底特别适合用作电化学检测设备。当将样品置于合成基底的未压缩的区域时,由于压缩的区域将第一区域隔离开来,所以能够彻底防止样品迁移到基底的另一区域。已经证明样品被限制在合成基底的预定区域内,从而被限制在电极的预定区域内,其中电极被固定在合成基底上,或者与合成基底相接触。
通过彻底消除或者充分限制压缩的区域内基底的多孔结构,本发明的方法发挥作用密封该区域。
可以单独使用本发明的方法,最好与阻滞剂一起使用本发明的方法。在本发明中,阻滞剂是加在基底内的一种物质,该物质并不妨碍基底的未压缩的区域内的材料迁移,但有助于阻止压缩的区域内的材料迁移。例如,葡萄糖、琼脂、胶凝体和淀粉等均可作为阻滞剂原料。
在最佳形式中,通常采取以下步骤将阻滞剂加入到预压缩的多孔基底中(a)在相应溶剂中溶解阻滞剂;(b)利用阻滞剂溶液浸湿基底;和然后(c)经过蒸发去除溶剂。
在另一最佳形式中,多孔基底为具有孔隙的基底,其孔径沿光滑或磨光面到粗糙面逐渐增加。多孔基底最好为美国专利No.4,629,563和No.4,774,039(这里全文引用作为参考)中公开的基底。但是,根据最后用途,基底可为非对称隔膜或对称隔膜。
基底可以为任何适宜压缩的多孔材料,在压缩期间该材料将保持其力学结构的完整性。该种材料的例子包括聚合物或聚合物的混合物-如聚砜、如聚偏二氟乙烯这样的聚偏二卤乙烯、四氟乙烯、聚酰胺、聚酰亚胺、聚乙烯、聚丙烯、聚丙烯硝酸酯(polyacrylonitrites)、和聚碳酸酯等。这些材料可以为薄片、软管或中空纤维,并且具有细微孔隙或大孔隙。
根据最后用途选择基底的厚度。基底最好比较薄以便减少样品体积。但是,基底又必须足够厚以便保证加工的机械强度,同时保证在基底两侧的电极之间有足够的间隔以防止电路短路。
在某些应用中(如阳极脱膜),较大的采样容量和较高的厚度是更可取的。以下将参照附图,通过示例说明本发明的最佳实施方式和具体示例。其中附图为


图1是未压缩的微多孔基底的截面图,其中部分用放大图形表示;图2说明具有压缩的区域的图1的基底,压缩的区域和微多孔基底的边缘一起确定区域的边界,并用放大视图表示部分压缩的区域;图3是图2所示基底的俯视图;图4为图1或图2的基底的侧视图;图5与图1的视图相似,其中在基底内加入了阻滞剂;图6与图2的视图相似,其中在基底内加入了阻滞剂;
图7为第一实施方式的俯视图,差别在于确定的目标区域不同;图8为第二实施方式的俯视图,差别在于目标区域不同;图9为第三实施方式的俯视图,差别在于目标区域不同;图10为第四实施方式的俯视图,差别在于目标区域不同;和图11为本发明最佳实施方式的俯视图。
具体实施例方式
图1表示未压缩的微多孔基底10,微多孔基底10具有电极1,电极1被固定在基底10上或者与基底10相接触。预压缩基底的厚度最好为180μm,更可取的是30-150μm。孔隙尺寸从10千道尔顿阻断(下限)到5微米,最好从0.1μm到0.8μm,更可取的是从0.2μm到0.5μm。同时图1表示了基底的未压缩孔隙2的放大图形。当向微多孔基底10的区域5加压时,将生成一个或多个离散的压缩的区域8。如图2和图3所示,压缩的区域8和未压缩的区域的边缘7一起定义区域4的边界。压缩的区域8彻底阻止了材料(未示出)迁移通过或越过其体积。
图2的放大图形说明区域8的孔隙6已经经过压缩,从而彻底阻止了材料迁移通过或越过区域8。
图5和图6说明添加阻滞剂3的效果。正如图6的放大图形所示,添加阻滞剂3使区域8内的孔隙6阻塞,从而阻止材料迁移通过或越过。
图7和图8说明压缩的区域5,压缩的区域5在基底10的一侧为环形或者为方形,在相对的一侧覆盖电极1。压缩的区域8确定电极的区域4的边界,该边界彻底阻止了材料(未示出)迁移通过或越过区域8到达邻接区域9。
尽管在附图中并未说明,部分地由压缩的区域8或者区域5以及部分地由电极边缘可以确定电极1的区域4。
图9说明矩形区域4,该区域的一边由压缩基底5确定,而其他边由未压缩基底9的边缘11确定。
图10说明矩形区域4,由两个压缩区域5与未压缩区域9的两个边缘11确定。
在本发明中,最好利用压力或者任何适宜的压缩过程压缩多孔基底,其中压缩过程至少允许压缩多孔基底的一个区域。在压力范围的高端和低端,基底间所施加的压力也不同。最好向基底施加足够的压力,该压力将破坏基底的孔隙结构实现彻底的无空性,但其强度又不足以破坏基底的力学结构完整性。
以下将参照示例和比较示例,说明压缩多孔基底所需的典型压力范围。
示例1将一聚砜基底薄膜,其厚度为150μm,孔隙为0.2μm到0.5μm,浸入到在水中加入1wt%的明胶的溶液中。从基底的外面擦去多余液体,并在干燥箱内烘干基底以便脱去水分。然后用100MPa的压力压缩基底,从而在基底上形成一个环形压缩的区域。该环形区域的内径为8mm,外径为10mm。
在环内侧的基底上滴入10μl染色剂(玫瑰红)水溶液。可以看到染色剂溶液蔓延到压缩环的内侧边缘,然后停止蔓延。大约1小时以后,并未在压缩环确定的环形区域外看到染色剂,此时染色溶液中的水分已经蒸发。
对比示例1除利用30MPa的压力压缩基底外,其他同示例1。在该压力下,在确定区域的外面有一些染色剂泄露。
示例2除用作为电极的大约60nm的铂对基底镀膜之外,其他同示例1。另外,使用含有亚铁氰化物和铁氰化物的溶液取代将要滴到基底上的染色剂溶液,向铂电极施加电压并记录此间的电流。在经过最初的较高电流之后,电流大约稳定了10分钟,此后,基底开始干燥,并失去导电性。稳定电流表示没有溶液蔓延到确定区域的外面。
对比示例2除利用55MPa的压力压缩基底外,其他同示例1。并且准备5个确定区域。其中之一在确定区域的外面有一些染色剂泄露,而其他四个区域没有泄露。
示例3除采用孔隙大约为0.2μm的聚二偏氟乙烯基底外,其他同示例2。
示例4除利用80MPa的压力压缩基底外,其他同示例1。在该压力下,在确定区域的外面没有染色剂泄露。
对比示例4除去并未将基底浸入到明胶溶液中外,其他同示例1。所施加的压力为70MPa。准备四个确定的区域,在所有确定的区域外均有染色剂泄露。
对比示例5除去并未将基底浸入到明胶溶液中,所施加的压力为80MPa外,其他同示例1。准备五个确定的区域,在四个确定的区域外均有染色剂泄露,只有一个区域没有染色剂泄露。
对比示例6除去并未将基底浸入到明胶溶液中,所施加的压力为100MPa外,其他同示例1。准备三个确定的区域,在一个确定的区域外有染色剂泄露,而另外两个区域没有染色剂泄露。
本发明中的隔膜最好能够透过含有第一分析样本的溶液,但绝不会透过第二样本。以下将参照下述示例,说明本发明最佳实施方式的典型示例。
示例A在厚度为100μm、孔隙为0.2μm的聚砜薄膜的一侧,镀有两条1mm的铂条。根据示例1的方法准备一个确定电极区域。使分析血样与基底接触,在基底的另一侧检测电极被镀膜并且位于确定区域之内。发现该薄膜不能透过血液中的干扰样本红血球(II),但能透过葡萄糖或胆固醇(I)。从而能够分析第一样本,葡萄糖或胆固醇,而不受红血球(II)的干扰。
应该理解的是,通常在电化学检测设备内使用两个或三个电极,此时,所有电极可以插到或穿过由本发明的一个或多个阻挡层所确定的区域。例如,压缩的阻挡层可以定义一个有两条电极穿过的方形区域。每个电极上的区域是由该电极的边缘和压缩的阻挡层确定的,条进入并离开该方形区域。
示例B在图11所示的本发明的最佳实施方式中,条状基底10具有电极1,在基底条的另一侧具有电极1A。电极1和电极1A沿基底条的纵向扩展,基底条具有多个确定的方形区域4,该区域沿基底条长度方向间隔开,各个区域是由根据本发明的压缩过程形成的边界8确定的。
每个区域4定义电极1和电极1A(表示为交叉阴影线)的预定区域。在使用时,可以将采样放入与基底条末端最接近的区域4。
借助常规方式,把相应装置连接到对应基底条末端的电极,就可以进行测量。从而可以从基底条切下“已用”区域,而与基底条末端最接近的区域4可用于下次采样。
若需要,可以在远离传感电极的一侧安装吸收条,以便增加样品体积,从而增强了信号,或者减少测量时间。同样,若需要,也可以在压缩基底8界定的基底的体积内包含一种或多种分析物。
尽管参照特定示例和

了本发明,熟练的技术人员懂得可以用许多其他方式实现本发明。
权利要求
1.一种电化学传感器,包括一个多孔基底;以及该基底一侧上的一个电极;其中基底的一个区域被压缩到某个程度,以形成一个边界,它阻止在基底内电解液的迁移,该压缩的区域确定,或者与基底或电极的边缘一起确定,预定区域的电极上的一个区。
2.根据权利要求1的电化学传感器,其中通过选自以下方法组的一种方法,在基底的一侧形成电极,该方法组包括化学镀、电镀、蒸发和溅射。
3.根据权利要求2的电化学传感器,其中在基底表面上溅射沉积电极以形成连续薄膜。
4.根据权利要求1的电化学传感器,其中基底上的薄膜厚度为10到200nm。
5.根据权利要求4的电化学传感器,其中薄膜厚度为60到120nm。
6.根据权利要求1的电化学传感器,其中电极由选自以下材料组的材料制成,该材料组包括金、银、铂、钯、铱、铅、以上材料的合金、碳、混合有粘结材料的碳、和用不溶解银盐多孔层进行部分覆盖的银。
7.根据权利要求6的电化学传感器,其中不溶解银盐为氯化银、溴化银、碘化银、铁氰化银或亚铁氰化银。
8.根据权利要求1的电化学传感器,其中有两个或多个电极,它们位于基底的一侧或相对着的侧。
9.根据权利要求1的电化学传感器,还包括基底内的阻滞剂,该阻滞剂有助于阻止压缩的区域内的材料迁移。
10.根据权利要求9的电化学传感器,其中阻滞剂选自葡萄糖、琼脂、明胶和淀粉。
11.根据权利要求9的电化学传感器,其中采用以下步骤将阻滞剂加入到预压缩多孔基底中a)在合适的溶剂中溶解阻滞剂;b)利用阻滞剂溶液浸湿基底;以及然后c)通过蒸发去除溶剂。
12.根据权利要求1的电化学传感器,其中基底由选自以下材料组的多孔材料制成,该材料组包括聚合物或聚合物的混合物。
13.根据权利要求12的电化学传感器,其中聚合物或聚合物的混合物包括聚砜、聚偏卤乙烯、四氟乙烯、聚酰胺、聚酰亚胺、聚乙烯、聚丙烯、聚丙烯硝酸酯(polyacrylonitrate)或聚碳酸酯。
14.根据权利要求13的电化学传感器,其中聚偏卤乙烯为聚偏二氟乙烯。
15.根据权利要求1的电化学传感器,其中预压缩基底的厚度为从30μm到180μm。
16.根据权利要求1的电化学传感器,其中预压缩基底的厚度为从30μm到150μm。
17.根据权利要求1的电化学传感器,其中基底的孔隙尺寸为从10千道尔顿阻断到5微米。
18.根据权利要求1的电化学传感器,其中基底的孔隙尺寸为从0.1μm到0.8μm。
19.根据权利要求1的电化学传感器,其中基底的孔隙尺寸为从0.2μm到0.5μm。
20.根据权利要求1的电化学传感器,其中多孔基底为一种隔膜,该隔膜能够透过包含待分析的第一样本的液体,但绝不会透过该液体中包含的第二样本,该第二样本为干扰第一样本的电化学检测的样本。
21.根据权利要求1的电化学传感器,其中通过对基底的区域施加从30MPa到100Mpa的压力形成该压缩的区域。
22.根据权利要求1的电化学传感器,其中对基底的区域的压缩是在从30MPa到80Mpa的压力下进行的。
23.根据权利要求1的电化学传感器,其中对基底的区域的压缩是在从30MPa到70Mpa的压力下进行的。
24.根据权利要求1的电化学传感器,其中对基底的区域的压缩是在从55MPa到70Mpa的压力下进行的。
全文摘要
本发明涉及一种用于确定多孔基底上一个层的区域(4)的方法,该方法包括压缩基底的体积以便生成一个压缩的区域(8),它确定,或者与基底或者层的边缘(7)一起确定该区域的一个边界,该边界彻底防止原料迁移通过或越过其表面。同时本发明还涉及一种电化学检测设备,包括一多孔基底;和基底一侧上的一个电极(1);其中将基底的一个区域压缩到某一程度,以形成对基底内电解液离子迁移的屏障,该压缩的区域确定,或者与基底或电极的边缘一起确定,预定区域的电极上的一个区。
文档编号C25B9/06GK1487291SQ03125169
公开日2004年4月7日 申请日期1996年4月11日 优先权日1995年4月12日
发明者阿拉斯泰尔·迈克英多·霍格斯, 奥德瓦尔·约汉森, 托马斯·威廉·贝克, 威廉 贝克, 尔 约汉森, 阿拉斯泰尔 迈克英多 霍格斯 申请人:利费斯坎公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1