含dmso电解液中制备二氧化钛纳米管的方法

文档序号:5277831阅读:470来源:国知局
专利名称:含dmso电解液中制备二氧化钛纳米管的方法
技术领域
本发明属于二氧化钛制备技术领域,尤其是涉及一种在包含适量DMSO的电解液中制备Ti02纳米管的方法。
背景技术
自2001年首先报道了采用阳极氧化制备TW2纳米管有序阵列的方法以来,对于纳米尺寸上的金属氧化物有序结构的研究成为纳米材料研究领域中的一个热点,这是因为 TiO2纳米管有序阵列具有区别于纳米粉体的奇异特性。与纳米TiO2粉末相比,TiO2纳米管具有更大的比表面积和更强的吸附能力,因而表现出更高的氢敏感性、光电转化效率和光催化性能,使其在气敏传感材料、太阳能电池、光催化等方面具有不可估量的潜在应用价值,吸引了各国科研工作者的广泛关注,大量的文献报道了有关T^2纳米管制备及其应用方面的研究。例如=Grimes课题组利用电化学阳极氧化方法制得TW2纳米管阵列,并将其作为光阳极进行光电催化分解水制氢。研究表明T^2纳米管阵列能为光电化学反应提供更大的比表面积,且钛基TW2纳米管阵列上产生的光生电子能更快地进入钛导电基体,减少了光生电子与空穴的复合,使TW2纳米管阵列的光电转化效率得到明显提高;将TiA纳米管阵列用于光电催化降解环境污染物,对水溶液中的五氯苯酚光电催化降解速率是同样条件下TiO2粉末的1.86倍,同样条件下对TOC的去除率高出20 %,对亚甲基蓝降解的光催化脱色率达到90 %以上。将TW2纳米管阵列作为光阳极制得的染料敏化太阳能电池也受到人们的广泛关注,并使光电转换效率得到大幅提高。这些研究工作表明TiO2纳米管及复合TiA纳米管阵列,在光催化、太阳能电池、气敏传感器以及微电子、医疗等领域具有潜在的不可估量的应用价值。

发明内容
发明目的本发明所要解决的技术问题在于改善现有TiA纳米管的壁厚和长径比,提供一种在包含适量DMSO电解液中制备TW2纳米管的方法,其制备工艺简单,操作方便且设计合理,并且可以可控合成形貌良好的TiA纳米管。其制备的TiA纳米管性能优良,可以明显改善现有纳米管的壁厚和长径比,可以有效推动TiA纳米管的有序阵列的实用化进程。技术方案含DMSO电解液中制备二氧化钛纳米管的方法,制备步骤为
a.对高纯钛片进行预处理,其包含以下步骤去除钛片表面的氧化层;将钛片浸泡在体积浓度30%的盐酸溶液中,加热至80°C保持20min,进一步去除表面氧化层,再用去离子水在超声条件下清洗干净,干燥后密闭保存;b.对钛片进行第一次阳极氧化,其包含以下步骤配置电解液将含氟原子离子化合物作为溶质溶于水,且加入有机溶剂均勻混合后制得电解液,所述含氟原子离子化合物的含量为0. 25wt%,水的含量为2wt%,有机溶剂的含量为97. 75wt%,所述有机溶剂为乙二醇和 DMSO的任意比混合溶剂;将经预处理的纯钛片置于所述电解液中进行第一次阳极氧化反应,制得T^2纳米管的一级初步产品以钛片作为阳极,钼片作为阴极,在磁力搅拌条件下, 施加20 40V的电压对钛片进行阳极氧化,氧化温度为室温,氧化时间为12小时;将经过第一次阳极氧化后制得的钛片在超声条件下清洗掉表面的TW2纳米管,然后先用乙醇在超声条件下清洗干净,再用去离子水在超声条件下清洗干净,干燥后密闭保存;
c.对钛片进行第二次阳极氧化,其包含以下步骤将第一次阳极氧化处理后的钛片置于第一次阳极氧化使用的电解液中,制得TW2纳米管产品以经过第一次阳极氧化处理的钛片为阳极,钼片作为阴极,在和第一次阳极氧化相同的磁力搅拌速度和电压下对第一次阳极氧化后的的钛片进行二次阳极氧化,氧化温度为室温,氧化时间为2小时 8小时;将经过第二次阳极氧化后制得的TW2纳米管在乙醇中超声清洗掉表面的有机溶剂和杂质,再在去离子水中超声清洗干净,干燥后密闭保存。所述含氟原子离子化合物为NaF、KF或NH4F。所述有机溶剂中DMSO的含量不超过25wt%。有益效果与现有技术相比,本发明具有以下特点
1、制备方法设计新颖、合理且工艺步骤实施方便,具体是先将经预处理的纯钛片置于所述电解液中进行第一次阳极氧化反应,将经过第一次阳极氧化后制得的T^2纳米管在高频率,长时间超声条件下清洗掉纯钛表面的TW2纳米管,然后用乙醇在超声条件下清洗干净,再用去离子水在超声条件下清洗干净以获得平整的表面,将第一次氧化处理后的高纯钛片置于第一次阳极氧化使用的电解液中进行第二次阳极氧化,阳极氧化结束后依次在乙醇,去离子水中清洗干净,制得T^2纳米管产品。2、利用本发明能根据具体实际需要,可以在可控合成TiO2纳米管的基础上进行壁厚和长径比的微调,可以有效地改善TiO2纳米管的壁厚和长径比,通过添加合适浓度的 DMSO可以把壁厚在2 14nm内微调,管长可以在1. 7 4. 5Mm内调节。3、本发明所制备的TiO2纳米管性能优良,结构平整,形貌规则,可以有效推动TW2 纳米管的实用化进程。综上所诉,本发明制备工艺简单,操作方便且设计合理,并且所制备的TiO2纳米管的壁厚和长径比得到了改善,而且纳米管性能优良,结构平整,形貌规则,可以有效推动 TiO2纳米管的实用化进程。


图1为本发明所制备的TiA纳米管的俯视SEM图;TiA纳米管的俯视SEM图 0. 25wt%NH4F, 2wt%H20, DMSO 和乙二醇混合体系,电压 20V,氧化时间 2h ; (a) 0%DMS0, (b )12%DMS0, (c) 25%DMS0, (d) 50%DMS0, (e)97. 75%DMS0 ;
图2为本发明所制备的TW2纳米管横切面SEM图;TW2纳米管的横切面SEM图 0. 25wt%NH4F, 2wt%H20, DMSO 和乙二醇混合体系,电压 20V,氧化时间 2h ; (a) 0%DMS0, (b)12%DMS0, (c) 25%DMS0, (d) 50%DMS0, (e)97. 75%DMS0。
具体实施例方式以下结合实例对本发明作进一步的描述 实施例1
本发明所述的种在包含适量DMSO的电解液中制备TiA纳米管的方法,包括以下步骤 步骤一、对高纯钛片进行预处理,其包含以下步骤 1.1、采用常规机械加工方式去除待处理纯钛片表面的氧化层,所述高纯钛片为一平整直径17mm,厚度为0. 5mm的圆片。所述高纯钛片为工业用纯钛片,纯度99. 9%-99. 9999%,实际处理过程中,采用机械打磨去除待处理纯钛片表面的氧化层,集体是依次采用600#和1000#水磨砂纸进行机械打磨去除纯钛表面的氧化层。1. 2、将机械加工过的高纯圆钛片浸泡在体积浓度30%的盐酸溶液中,加热至 80°C保持20min,以去掉表面的氧化层,再用去离子水在超声条件下清洗干净,干燥后密闭保存。其中所述超声清洗器的超声清洗时间为15min左右,频率为16KHz 20KHz之间, 上述干燥为置于干燥箱中,温度设定在70°C 80°C,经过预处理后高纯钛片为表面平整光亮的直径17mm,厚度为0. 5mm的圆片。步骤二、对经预处理的高纯钛片进行第一次阳极氧化,其包含以下步骤
1. 3、配置电解液将含卤原子的离子化合物作为溶质溶于适量水,且加入适量有机溶剂均勻混合后制得电解液。本实施例中所述离子化合物为NH4F,有机溶剂为乙二醇和DMSO的混合溶剂,电解液中NH4F的含量为0. 25wt%,水的含量为2wt%,DMSO的含量为12wt%,余量为乙二醇。1.4、将经预处理的纯钛片置于所述电解液中进行第一次阳极氧化反应,制得 TiO2纳米管的一级初步产品以经预处理的纯钛片作为阳极,直径12mm,厚度为0. 25mm的圆钼片作为阴极,在磁力搅拌条件下,且利用直流稳压电源提供20 40V的电压对预处理的纯钛片进行阳极氧化,氧化温度为室温,氧化时间为12小时。本实施例中,进行阳极氧化反应时,用磁子进行连续搅拌,所述直流电压为20V,氧化时间为12h。1. 5、将经过第一次阳极氧化后制得的钛片在高频率,长时间超声条件下清洗掉预处理过的纯钛表面的TW2纳米管,然后用乙醇在超声条件下清洗干净,再用去离子水在超声条件下清洗干净,干燥后密闭保存。本实施例中,高频率,长时间超声条件下清洗掉预处理过的纯钛表面的TiO2纳米管,超声清洗器的超声清洗时间为Ih左右,频率为36KHZ以上。步骤三、对经一次氧化后的高纯钛片进行第二次阳极氧化,其包含以下步骤
1.6、将第一次氧化处理后的高纯钛片置于第一次阳极氧化使用的电解液中,制得TW2纳米管产品以经过第一次阳极氧化处理的高纯钛片为阳极,直径12mm,厚度为 0. 25mm的圆钼片作为阴极,在和第一次阳极氧化相同速度的磁力搅拌速度下,相同的电压下对第一次阳极氧化后的的高纯钛片进行二次阳极氧化,氧化温度为室温,氧化时间为2 小时 8小时。本实施例中,所使用的电解液为第一次氧化所使用的电解液NH4F的浓度为 0. 25wt%,水的含量为2wt%,DMS0的含量为10wt%,余量为乙二醇,直流电压为20V,氧化时间为2h。1. 7、将经过第二次阳极氧化后制得的TW2纳米管在乙醇中低频率超声30s清洗掉表面的有机溶剂和杂质,再在去离子水中低频率超声IOs以清洗干净,干燥后密闭保存。本实施例中,在乙醇中低频率超声30s清洗掉表面的有机溶剂和杂质,频率为 16KHz 20KHz之间,再在去离子水中低频率超声IOs以清洗干净,频率为16KHz 20KHz 之间,用N2吹干然后密闭保存。制备的TW2纳米管壁厚约为4nm,管长约为3. 1 μ m。 实施例2
本实施例中,与实施例1不同的是步骤1. 3中所配置的电解液,NH4F的浓度为 0. 25wt%,水的含量为2wt%,DMSO的含量为0wt%,乙二醇的含量约为97. 75wt% (对照组)。 本实施例中,其余工艺步骤及其工艺参数均与实施例1相同。制备的T^2纳米管壁厚约为 2nm,管长约为1. 76 μ m。 实施例3
本实施例中,与实施例1不同的是步骤1. 3中所配置的电解液,NH4F的浓度为 0. 25wt%,水的含量为2wt%,DMS0的含量为25wt%,余量为乙二醇。本实施例中,其余工艺步骤及其工艺参数均与实施例1相同。制备的TiO2纳米管壁厚约为8nm,管长约为11.3μπι。 实施例4
本实施例中,与实施例1不同的是步骤1. 3中所配置的电解液,NH4F的浓度为 0. 25wt%,水的含量为2wt%,DMS0的含量为50wt%,余量为乙二醇。本实施例中,其余工艺步骤及其工艺参数均与实施例1相同。制备的TiO2纳米管壁厚约为14nm,管长约为0.5μπι, 并且侧壁受到严重腐蚀,对TW2纳米管形貌产生很大影响。
实施例5
本实施例中,与实施例1不同的是步骤1. 3中所配置的电解液,NH4F的浓度为 0. 25wt%,水的含量为2wt%,DMSO的含量约为97. 75wt%,乙二醇的含量为0wt%。本实施例中,其余工艺步骤及其工艺参数均与实施例ι相同。制备的T^2纳米管管口和侧壁都受到严重腐蚀,对T^2纳米管形貌产生很大影响。
权利要求
1.含DMSO电解液中制备二氧化钛纳米管的方法,其特征在于制备步骤为a.对高纯钛片进行预处理,其包含以下步骤去除钛片表面的氧化层;将钛片浸泡在体积浓度30%的盐酸溶液中,加热至80°C保持20min,进一步去除表面氧化层,再用去离子水在超声条件下清洗干净,干燥后密闭保存;b.对钛片进行第一次阳极氧化,其包含以下步骤配置电解液将含氟原子离子化合物作为溶质溶于水,且加入有机溶剂均勻混合后制得电解液,所述含氟原子离子化合物的含量为0. 25wt%,水的含量为2wt%,有机溶剂的含量为97. 75wt%,所述有机溶剂为乙二醇和 DMSO的任意比混合溶剂;将经预处理的纯钛片置于所述电解液中进行第一次阳极氧化反应,制得T^2纳米管的一级初步产品以钛片作为阳极,钼片作为阴极,在磁力搅拌条件下, 施加20 40V的电压对钛片进行阳极氧化,氧化温度为室温,氧化时间为12小时;将经过第一次阳极氧化后制得的钛片在超声条件下清洗掉表面的TW2纳米管,然后先用乙醇在超声条件下清洗干净,再用去离子水在超声条件下清洗干净,干燥后密闭保存;c.对钛片进行第二次阳极氧化,其包含以下步骤将第一次阳极氧化处理后的钛片置于第一次阳极氧化使用的电解液中,制得TW2纳米管产品以经过第一次阳极氧化处理的钛片为阳极,钼片作为阴极,在和第一次阳极氧化相同的磁力搅拌速度和电压下对第一次阳极氧化后的的钛片进行二次阳极氧化,氧化温度为室温,氧化时间为2小时 8小时;将经过第二次阳极氧化后制得的TW2纳米管在乙醇中超声清洗掉表面的有机溶剂和杂质,再在去离子水中超声清洗干净,干燥后密闭保存。
2.根据权利要求1所述的含DMSO电解液中制备二氧化钛纳米管的方法,其特征在于所述含氟原子离子化合物为NaF、KF或NH4F。
3.根据权利要求1所述的含DMSO电解液中制备二氧化钛纳米管的方法,其特征在于所述有机溶剂中DMSO的含量不超过25wt%。
全文摘要
含DMSO电解液中制备二氧化钛纳米管的方法,制备步骤为对高纯钛片进行预处理;对钛片进行第一次阳极氧化;对钛片进行第二次阳极氧化。该方法改善现有TiO2纳米管的壁厚和长径比,提供一种在包含适量DMSO电解液中制备TiO2纳米管的方法,其制备工艺简单,操作方便且设计合理,并且可以可控合成形貌良好的TiO2纳米管。其制备的TiO2纳米管性能优良,可以明显改善现有纳米管的壁厚和长径比,可以有效推动TiO2纳米管的有序阵列的实用化进程。
文档编号C25D11/26GK102212862SQ20111013795
公开日2011年10月12日 申请日期2011年5月26日 优先权日2011年5月26日
发明者刘晓瑞, 刘松琴, 朱文静 申请人:东南大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1