一种高效荧光碳纳米颗粒的制备方法及其应用的制作方法

文档序号:5884160阅读:333来源:国知局
专利名称:一种高效荧光碳纳米颗粒的制备方法及其应用的制作方法
技术领域
本发明属于碳纳米材料领域,特别是涉及一种高效荧光碳纳米颗粒的制备方法及 其应用。
背景技术
荧光碳纳米材料由于具有环境友好、化学惰性和良好的生物相容性等许多优点, 因此在生物检测、传感、造影等诸多领域具有重要的应用。传统的块体碳材料(如石墨、金刚石)的带隙结构决定了它们都不能发出可见 光,所以最早实现碳材料发光的方法是在金刚石结构中掺杂硼和氮等元素(Gruber A,et al. Science, 1997,276 =2012-2014)。掺杂金刚石的工艺通常需要要求作为原料的金刚石中 必须含有一定量的掺杂元素,然后用高能量粒子束辐照并高温退火才能得到少量的样品。 整个制备过程不易控制、成本高,而且不能在细小的金刚石颗粒中实现掺杂,因此限制了荧 光碳材料在上述领域中的广泛应用。直到2006年,Sun Y-P等人(J. Am. Chem. Soc.,2006, 128 :7756-7757)首次报道了表面钝化的细小碳纳米颗粒不仅可以发出强的多种可见光、 稳定性好,而且可以用于生物标记,才掀起了制备荧光碳纳米颗粒的又一次高潮。随后, Zhou J等人(J. Am. Chem. Soc.,2007,129 :744-745)报道了电化学分解碳纳米管制备出了 蓝光发射的碳纳米晶;Liu H等人(Angew. Chem. Int. Ed.,2007,46 :6473-6475)报道了酸煮 蜡烛灰制备出超细的荧光碳纳米颗粒,并发现还可以通过PH值调节荧光发射强度。同年, SunY-P等人(J.Am. Soc. Chem.,2007,129 :11318-11319)又发现这种细小的荧光碳纳米颗 粒还表现出双光子吸收并能实现上转化荧光发射的特性。由于双光子激发过程使用的波长 在红外区,避免了生命体系所不能承受的紫外光损伤,所以在生命科学领域中应用这种荧 光碳纳米颗粒具有了更多优势。但是,目前文献报道的所有方法制备的荧光碳纳米颗粒荧 光量子产率都不超过10%,双光子吸收截面也仅有39000GM左右,限制了它们在上述各个 领域中的广泛应用。

发明内容
本发明主要针对目前制备高效荧光碳纳米颗粒的方法存在荧光量子产率低和双 光子吸收截面小的技术问题,提供一种绿色无污染、荧光量子产率高和双光子吸收截面大 的高效荧光碳纳米颗粒的制备方法。本发明还涉及该碳纳米颗粒的应用。本发明为解决上述问题而采取的技术方案为—种高效荧光碳纳米颗粒的制备方法包括以下步骤(1)按照100 1.5 5的摩尔比取碳粉和氮化硼于容器中,混合均勻,再加入2 5%的石墨粘结剂,调勻后压制成型,于800 1000°C下,在惰性气氛中烧制成靶材;(2)取溶剂与有机聚合物,混合均勻,制成流动粘度< 5mm2/S的有机聚合物溶液, 然后把烧制好的靶材浸入到循环的有机聚合物溶液中,保持靶面到液面的距离为2 3mm ;
(3)使用脉冲或连续激光光束轰击有机聚合物溶液中的靶材3 8小时,取出未作 用完的靶材后得到悬浮液,再用高速离心机离心悬浮液获得清液,冷冻干燥清液制得高效 荧光碳纳米颗粒粉体。其中所述的碳粉为粒径< 6μπι的石墨或炭黑,氮化硼为粒径< 6μπι的六方氮化硼。所述的惰性气氛为氮气或氩气气氛。所述的溶剂为水、乙醇或水与乙醇任意比例的混合物;所述的有机聚合物为任何
含羟基、羧基或胺基的有机聚合物。所述的激光光束或靶材可以运动,激光焦点汇聚区域的激光功率密度为5Χ IO5W/ cm2 108W/cm2。所述的高速离心机的转速为3500 10000转/分钟。本发明高效荧光碳纳米颗粒可应用于生物检测和光化学传感器材料中。为表明本发明碳纳米颗粒的分布状态,对本发明碳纳米颗粒作了透射电镜检测, 结果显示出碳纳米颗粒呈分散状态,尺寸分布为3 8nm。为表明本发明碳纳米颗粒具有转化荧光发射的性质,本发明检测了 400nm和 SOOnm波长激发下获得的碳纳米颗粒的荧光发射光谱,结果显示400nm和SOOnm波长激发获 得的荧光发射光谱的峰值位置相一致,说明利用本发明方法制备的碳纳米颗粒具有转化荧 光发射的性质。本发明荧光量子产率采用常规的参比法测定,即荧光量子产率的获得是在相同激 发条件下,分别测定待测荧光试样、已知量子产率的参比荧光标准物质的积分荧光强度和 同一激发波长的入射光的吸光度,再将这些值代入下面公式Qx = Qst [[IxAst )//, 4 hi hi )式中,I和At分别为待测物质和参比物质的荧光量子产率;IX和Ist分别为待测 物质和参比物质的荧光积分强度;AX和Ast为待测物质和参比物质在该激发波长的入射光 的吸收度;nx和nst分别为待测样品和标准样品的折射率。经测定,本发明碳纳米颗粒的荧光量子产率为45-69%。本发明双光子吸收截面的获得是在相同的激发光源下,分别测量待测物质与同浓 度的参比标准物质的双光子荧光积分强度,再将这些值代入下面公式Ox= ost[ (FxQst) /FstQJ (nst/n x)式中,Oj^Post分别代表待测物质和参比物质的双光子吸收截面;FX和Fst分别 代表待测物质和参比标准物质的双光子荧光积分强度。经测定,本发明碳纳米颗粒的双光子吸收截面为58000-79000GM。与现有技术相比,本发明方法制备的碳纳米颗粒荧光量子产率为45-69 %,双光子 吸收截面为58000-79000GM,远远超过现有技术中的10%和39000GM。


图1是本发明的透射电镜图(a)和尺寸分布图(b);图2是本发明在400nm和SOOnm波长激发下获得的荧光发射光谱。
具体实施例方式实施例1一种高效荧光碳纳米颗粒的制备方法,包括以下步骤(1)按照100 1. 5的摩尔比取粒径小于6 μ m的石墨和粒径小于6 μ m的六方氮 化硼于容器中,混合均勻,再加入2%的石墨粘结剂,调勻后在20MPa的压力下压制成圆棒 状,于80(TC下,在氮气气氛中烧制成靶材;(2)取水与二乙醇胺混合均勻,制成流动粘度为0. 8mm2/s的有机聚合物溶液,然后 把溶液倒入容器中,并让液面超过靶材表面2mm,通过电泵让溶液循环起来;(3)使用Nd-YAG固体脉冲激光器在输出波长1064nm,脉宽0. 8ms,频率20Hz,功率 密度约5X106W/cm2下输出的激光聚焦到靶面上,辐照过程中激光束往复运动,连续轰击靶 材3小时,取出未作用完的靶,在3500转/分钟下使用高速离心机离心悬浮液获得含有高 效荧光碳纳米颗粒的清液,冷冻干燥清液制得粉状产品。经透射电镜和荧光发射光谱检测, 本实施例碳纳米颗粒呈分散状态,尺寸分布为3 Snm(见图1) ;400nm和SOOnm波长激发 获得的荧光发射光谱的峰值位置相一致,说明利用本发明方法制备的碳纳米颗粒具有上转 化荧光发射的性质(见图2)。实施例2一种高效荧光碳纳米颗粒的制备方法,包括以下步骤(1)按照100 3的摩尔比取粒径小于6 μ m的石墨和粒径小于6 μ m的六方氮化 硼于容器中,混合均勻,再加入3%的石墨粘结剂,调勻后在20MPa的压力下压制成圆棒状, 于800°C下,在氮气气氛中烧制成靶材;(2)取水与二乙醇胺混合均勻,制成流动粘度为1. 0mm2/s的有机聚合物溶液,然后 把溶液倒入容器中,并让液面超过靶材表面2mm,通过电泵让溶液循环起来;(3)使用Nd-YAG固体脉冲激光器在输出波长1064nm,脉宽0. 8ms,频率20Hz,功率 密度约5X106W/cm2下输出的激光聚焦到靶面上,辐照过程中激光束往复运动,连续轰击靶 材3小时,取出未作用完的靶,在7500转/分钟下使用高速离心机离心悬浮液获得含有高 效荧光碳纳米颗粒的清液,冷冻干燥清液制得粉状产品。经透射电镜和荧光发射光谱检测, 本实施例碳纳米颗粒呈分散状态,尺寸分布为3 Snm(见图1) ;400nm和SOOnm波长激发 获得的荧光发射光谱的峰值位置相一致,说明利用本发明方法制备的碳纳米颗粒具有上转 化荧光发射的性质(见图2)。实施例3一种高效荧光碳纳米颗粒的制备方法,包括以下步骤(1)按照100 1. 5的摩尔比取粒径小于6 μ m的石墨和粒径小于6 μ m的六方氮 化硼于容器中,混合均勻,再加入5%的石墨粘结剂,调勻后在20MPa的压力下压制成圆棒 状,于80(TC下,在氮气气氛中烧制成靶材;(2)取水与二乙醇胺混合均勻,制成流动粘度为1. 5mm2/s的有机聚合物溶液,然后 把溶液倒入容器中,并让液面超过靶材表面2mm,通过电泵让溶液循环起来;(3)使用Nd-YAG固体脉冲激光器在输出波长1064nm,脉宽0. 8ms,频率20Hz,功率 密度约5X106W/cm2下输出的激光聚焦到靶面上,辐照过程中激光束往复运动,连续轰击靶 材3小时,取出未作用完的靶,在10000转/分钟下使用高速离心机离心悬浮液获得含有高效荧光碳纳米颗粒的清液,冷冻干燥清液制得粉状产品。经透射电镜和荧光发射光谱检测, 本实施例碳纳米颗粒呈分散状态,尺寸分布为3 Snm(见图1) ;400nm和SOOnm波长激发 获得的荧光发射光谱的峰值位置相一致,说明利用本发明方法制备的碳纳米颗粒具有上转 化荧光发射的性质(见图2)。
权利要求
1.一种高效荧光碳纳米颗粒的制备方法,其特征是包括以下步骤(1)按照100 1.5 5的摩尔比取碳粉和氮化硼于容器中,混合均勻,再加入2 5% 的石墨粘结剂,调勻后压制成型,于800 1000°C下,在惰性气氛中烧制成靶材;(2)取溶剂与有机聚合物,混合均勻,制成流动粘度<5mm2/S的有机聚合物溶液,然后 把烧制好的靶材浸入到循环的有机聚合物溶液中,保持靶面到液面的距离为2 3mm ;(3)使用脉冲或连续激光光束轰击有机聚合物溶液中的靶材3 8小时,取出未作用完 的靶材后得到悬浮液,再用高速离心机离心悬浮液获得清液,冷冻干燥清液制得高效荧光 碳纳米颗粒粉体。
2.权利要求1所述的高效荧光碳纳米颗粒的应用,其特征是在生物检测和光化学传感 器材料中的应用。
3.根据权利要求1所述的高效荧光碳纳米颗粒的制备方法,其特征是所述的碳粉为粒 径< 6 μ m的石墨或炭黑,氮化硼为粒径< 6 μ m的六方氮化硼。
4.根据权利要求1所述的高效荧光碳纳米颗粒的制备方法,其特征是所述的惰性气氛 为氮气或氩气气氛。
5.根据权利要求1所述的高效荧光碳纳米颗粒的制备方法,其特征是所述的溶剂为 水、乙醇或水与乙醇任意比例的混合物;所述的有机聚合物为任何含羟基、羧基或胺基的有 机聚合物。
6.根据权利要求1所述的高效荧光碳纳米颗粒的制备方法,其特征是所述的激光光束 的激光焦点汇聚区域的激光功率密度为5X105W/cm2 108W/cm2。
7.根据权利要求1所述的高效荧光碳纳米颗粒的制备方法,其特征是所述的高速离心 机的转速为3500 10000转/分钟。
全文摘要
本发明涉及一种高效荧光碳纳米颗粒的制备方法及其应用。本发明主要解决目前制备高效荧光碳纳米颗粒的方法存在荧光量子产率低和双光子吸收截面小的技术问题。本发明制备方法包括以下步骤(1)按照一定的摩尔比将碳粉和氮化硼压制成型,烧制成靶材;(2)制备流动粘度<5mm2/s的有机聚合物溶液,然后把烧制好的靶材浸入到循环的有机聚合物溶液中,(3)使用脉冲或连续激光光束轰击靶材,取出未作用完的靶材后得到悬浮液,再离心悬浮液获得清液,冷冻干燥清液制得粉体。本发明方法制备的碳纳米颗粒荧光量子产率为45-69%,双光子吸收截面为58000-79000GM,远远超过现有技术中的10%和39000GM。
文档编号G01N21/76GK102127430SQ20101060101
公开日2011年7月20日 申请日期2010年12月17日 优先权日2010年12月17日
发明者刘炜, 曹士锐, 杨金龙, 胡胜亮, 董英鸽 申请人:中北大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1