用于动态随机存取内存(dram)局部字符线驱动器的电路的制作方法

文档序号:6775165阅读:251来源:国知局
专利名称:用于动态随机存取内存(dram)局部字符线驱动器的电路的制作方法
技术领域
本发明涉及一种动态随机存取内存(DRAM),特别涉及一种用以提供DRAM局部字符线驱动器的电路。
背景技术
将内存系统能量以最佳化设计愈来愈重要,现今许多计算机应用其数据的集积度愈高,而对于现阶段的ASIC(Application Specific Integrated Circuit)系统、及嵌入式系统(embedded system)而言,记忆体能量的耗损约占整个数据处理系统能量耗损的90%。
一般动态随机存取内存(DRAM)的电路设计中通常要求,位线接收电源供应电压位准VDD,则字符线驱动器须能够产生一个高于电压位准VDD的输出电压VPP。如此的设计方式,是为了将电压位准VDD升压至高于晶胞电容电压。对于DRAM数组的操作而言,输出电压VPP的高位准是必要的,但是因能量供应效率降低而电压位准VDD降低时,会产生较高的电流损耗。
以下是几个记载了内存系统的能量耗损最佳化处理的相关专利。
美国公告第6,236,617号专利揭露了一种负字符线DRAM数组,其包含m个字符线的n个字符线组,其中,一个字符线组是由一组译码电路来驱动,且该组译码电路的电压摆动范围是介于接地位准0~2V之间。而每一组译码电路中具有一个字符线驱动电路,该字符线驱动电路是用以提供一个高于2V的升压字符线电压2.8V。又,该字符线驱动器电路具有一输出级(output stage)。该输出级包含了一组相互串联的n型场效晶体管(nFET)与具有高临界电压的p型场效晶体管(pFET)。如此一来,在启动的时候,升压字符线电压2.8V将被施加至未被选择的字符线驱动电路上,且将会有一个非常低的漏电流流过字符线驱动电路的p型场效晶体管;同时被选定的字符线驱动电路则会因为n型场效晶体管上的Vgs电压几乎等于其本身的临界电压值,而在该字符线驱动电路中产生一可容忍的高漏电流2muA。根据上述的设计方式,负字符线DRAM数组将因为电压的摆动范围缩小而使其主动功率(active power)净值小于传统方式配置的主动功率净值。因此需要承受高电压的晶体管数目将从9个减少至1个,并且用来降低横跨主动n型场效晶体管的电压降的缓冲n型场效晶体管的数量将从8个减少至1个。
美国公告专利第5,202,855号揭露一种利用驱动控制逻辑电路及电压转换电路的DRAM,来产生一个高压的字符线信号。该驱动控制逻辑电路利用时序信号与列地址信息,产生时序控制信号给电压转换电路。接着,电压转换电路在一特定时间点根据该时序控制信号来产生一高压字符线信号。再者,藉由驱动控制逻辑电路对电压转换器电路的控制,将可确保驱动字符线信号的晶体管不会在电压切换的过渡期间遭致损害。
再者,美国公告专利第6,747,904号介绍了一种漏电流控制电路、及设有该漏电流控制电路的DRAM。该漏电流控制电路包含了一差动放大器、一第一分压器、一第二分压器、MOS晶体管、以及一电荷泵。该第一分压器是用以产生一第一参考电压。第二分压器是用以产生一第二参考电压。而差动放大器具有一接收第一参考电压的第一输入端、一接收第二参考电压的第二输入端、以及一个与电荷泵的输入端耦合的输出端。且每一MOS晶体管均具有与差动放大器的第一输入端耦合的汲极、与电荷泵的输出端耦合的闸极、以及与接地电位耦合的源极。

发明内容
本发明的目的是为了提供一种用以提供内存数组局部字符线驱动器升压电压的电路,以及降低内存局部字符线驱动器功率耗损的方法,从而降低动态随机存取内存(DRAM)的局部字符线驱动器的功率耗损。
本发明提供了一种藉由在n个阶段中提升所需的升压电压VPP以降低动态随机存取内存的局部字符线驱动器功率耗损的方法与装置。该方法包含下列步骤首先,(1)提供n个升压转换器、n个切换装置、一局部字符线驱动器、及n-1个电压侦测器。接着,(2)监控局部字符线驱动器上的电压。之后,(3)利用上述n个升压转换器中的第一升压转换器的输出,以在局部字符线驱动器上提升一第一中间电压VPP1,且第一中间电压VPP1是小于升压电压VPP,且该升压电压VPP是用来操作动态随机存取内存晶胞数组的字符线,直到达到第一中间电压VPP1为止。再者,(4)利用n个升压转换器中的一第二升压转换器的输出,以在局部字符线驱动器上提升一个第二电压位准,其是指派用于操作n个升压转换器,其中第二电压位准是高于前一个中间电压位准,直到达到指派的第二电压位准为止。最后,(5)检查第n个升压转换器是否为使用中,若为否时,则回到步骤(4);若为是时,则结束。
另外,本发明提供了一种用以提供一动态随机存取内存(DRAM)晶胞数组的局部字符线驱动器的一升压电压的电路。该电路包含一动态随机存取内存DRAM晶胞数组的局部字符线、两个升压转换器、一控制电路、一电压侦测器、一第一切换装置、以及一第二切换装置。两个升压转换器是连接第一切换装置,其中一第一升压转换器提供用以操作该DRAM晶胞数组的局部字符线所需的一电压位准VPP,且一第二升压转换器提供一低于电压位准VPP的电压位准VPP1。控制电路具有输入与输出,其中输入为一信号,且该信号是用以将局部字符线驱动器致能,并且此输入为电压侦测器的信号,以显示局部字符线驱动器的电压位准是否已到达电压位准VPP1,且此输出为两独有信号,其将一第一切换装置致能,以输出VPP1电压、或VPP电压于局部字符在线。而电压侦测器是监控局部字符线驱动器的电压位准,且通知控制电路已达到VPP1的电压位准。第一切换装置是由控制电路所控制,且将VPP电压或VPP1电压置于局部字符线。最后,第二切换装置是藉由将局部字符线连接至一接地电压位准而关闭局部字符线驱动器。


图1是显示习知DRAM晶胞的示意图,其是包括有一字符线驱动器、一将字符线的电压升压的升压电压电路、以及一字符线译码器。
图2是显示本发明的两阶段式升压电压电路的示意图。
图3是显示本发明的各种不同情况以驱动局部字符线驱动器的升压电压VPP的波形图。两种情况是显示在两阶段时升压电压VPP的影响。
图4是显示本发明的降低局部DRAM字符线驱动器的能量耗损方法的流程图。
附图标号说明1-位线;2-字符线驱动器;3-升压电压电路;4-字符线译码器;200-双驱动器控制电路;201-电压侦测器;202、203-升压转换器(三态驱动器);LWDR 212-局部字符线驱动器;204-晶体管;205-晶体管结构;LWLx 217-局部字符线;WxxB 218-局部字符线重置闩致能线。
具体实施例方式
以下的较佳实施例揭露了一种降低动态随机存取内存(DRAM)的局部字符线驱动器(local word line driver)功率耗损的电路与方法。
图1是显示一种习知DRAM晶胞(memory cell)与其驱动电路的示意图。该DRAM晶胞包含两条位线1、两条字符线WL1与WL2、一作为开关组件的导通晶体管Mpass、以及一作为储存组件的电容器C。再者,图1还显示了一字符线驱动器2、一升压电压电路(boost voltage circuit)3、以及一字符线译码器4。该升压电压电路3提供了一电压,该电压至少等于导通晶体管Mpass的一临界电压Vth、并且该电压还高于电源供应器的操作电压VDD。
当深次微米制程(0.18μm~0.13μm)逐渐成为制造例如DRAM的集成电路的主流技术时,操作电压VDD必须被降低。而升压电压电路3(例如电荷泵)的效率, 可依照下列方程式求出其中,操作电压VDD是DRAM系统的电源供应器所提供的电压,而升压电压VPP是升压电压电路3的输出电压。由方程式(1)可知,电荷泵的效率将随着操作电压VDD的降低而降低。
在早期的DRAM系统中,较常采用的电压为操作电压VDD=2.5V、以及升压电压VPP=3.6V。若采用此两电压操作,且根据方程式(1)来运算,则该系统所使用的电荷泵的效率可达到约40%;而在目前的深次微米制程制作DRAM系统的世代中,通常是使用操作电压VDD=1.8V、以及升压电压VPP=2.9V。若采用此两电压操作,且根据方程式(1)来运算,则该系统所使用的电荷泵效率将降低到只有25%。换言之,当使用的电压VDD与VPP下降时,将导致DRAM系统电源供应器的功率耗损增加。
本发明的关键,是利用多个阶段的方式来提升局部字符线所需的升压电压VPP,或者换言之,本发明是使用多重电源供应器来提升字符线所需要的VPP电压位准。
图2是显示本发明一较佳实施例的示意图。该图是显示本发明的局部字符线驱动器与升压电压电路。图中,局部字符线所需要的升压电压VPP是利用两个电源供应器、且分别在两阶段(stage)中产生。而本发明另外增加了一个电压位准VPP1,并且在本较佳实施例中是设定为VPP>VPP1≥VDD。其中,电压位准VPP1是介于操作电压VDD与升压电压VPP之间,且其位准高低可依据需求任意调整。
图2所示的系统包含一双驱动器控制电路(dual driver control circuit)200。该双驱动器控制电路200是分两阶段来控制电压位准VPP的提升。在第一阶段中,利用一第一电荷泵(未图示)来提升一电压位准VPP1。双驱动器控制电路200是由信号LWDREN 210来驱动,且双驱动器控制电路200的输出包含了两个不同的致能信号,即一第一致能信号VPP1_DREN 211及一第二致能信号VPP_DREN 213。该第一致能信号VPP1_DREN 211是用以驱动第一升压转换器203,当第一升压转换器203被驱动时,第一升压转换器203将产生电压位准VPP1、并输出至局部字符线驱动器LWDR 212上;而第二致能信号VPP_DREN 213是用以驱动第二升压转换器202,当第二升压转换器202被驱动时,第二升压转换器202将产生电压位准VPP、并输出至局部字符线驱动器LWDR 212上。再者,双驱动器控制电路200还接收来自电压侦测器201的输入信号,且该输入信号是用以将局部字符线驱动器LWDR 212致能。须注意,该电压侦测器201是用来监控局部字符线驱动器LWDR212上的电压位准高低,且电压侦测器电路201是与每一局部字符线驱动器LWDR连接。而当局部字符线驱动器LWDR上的电压位准达到VPP1时,电压侦测器201会将此事件以一输入信号传达给双驱动器控制电路200。之后,双驱动器控制电路200将根据该信号来关闭致能信号VPP1_DREN,并同时开启致能信号VPP_DREN。
本较佳实施例包含了两个标准的电荷泵(未图示)。一第一电荷泵用以产生电压位准VPP1,且另一第二电荷泵则用以产生电压位准VPP。另外,本较佳实施例中的升压转换器202与203是利用三态驱动器(Tri-state driver)来实施;当然,其它形式的升压转换器亦可以使用于本较佳实施例中。再者,就电压侦测器201而言,任何能够精确感测需求的电压大小的电路,例如史密特触发器(Schmitt-trigger)、一比较器、或一齐纳二极管(zener diode),均可用来实施该电压侦测器201。
须注意的是,本发明亦可以采用n个阶段的方式来实施,即藉由在n个阶段中提升所需的升压电压VPP以降低DRAM局部字符线驱动器LWDR 212的功率耗损。假若以三个阶段的方式来提升升压电压VPP,则势必会增加另一个中间值升压电压VPP2。如此一来,就需要再增加一个电压侦测器与一个升压转换器。
由于上述升压电压VPP1的位准低于升压电压VPP,因此使用两个电荷泵的供能效率将比仅使用一个电荷泵的供能效率高。
于图2中,所显示的两个升压转换器202、203是以三态驱动器来实施。在此处的说明将以三态驱动器202、203来表示升压转换器202、203。一般三态驱动器的输出信号为「高位准」、「低位准」、或「无(nothing)」。于该图中,所采用的运作方式是利用三态驱动器202在局部字符线驱动器LWDR 212上输出电压VPP、或三态驱动器203在局部字符线驱动器LWDR 212上输出电压VPP1,藉由系统的控制以上述两者择一的方式,使局部字符线驱动器LWDR 212上产生升压电压VPP或VPP1。须注意的是,致能信号VPP1_DREN 211是用来驱动三态驱动器203;而致能信号VPP_DREN 213是用以驱动三态驱动器202。两个三态驱动器均与局部字符线驱动器LWDR 212连接,并利用独有的致能信号VPP1_DREN及VPP_DREN来确保下列机制-即在任何时间点只允许一个三态驱动器输出升压电压VPP或VPP1给局部字符线驱动器LWDR 212。而当任一三态驱动器202或203的输出为高位准时,局部字符线驱动器LWDR 212亦将被驱动至对应的高位准;否则三态驱动器202或203仅会输出一高阻抗信号。
此外,本发明亦可以利用其它的切换装置,例如多任务器,来取代三态驱动器202及203。
而图2中的晶体管204是作为开关使用,且其接收一LWDROFF信号,并根据该信号的状态而可将局部字符线驱动器LWDR 212禁能。
图2的晶体管结构205为图1的字符线驱动器2的一个较佳实施例。该晶体管结构205适用于256、或512的内存数组。接着,在此处的说明将以字符线驱动器205来表示晶体管结构205。字符线驱动器205是由PMOS晶体管P1、以及NMOS晶体管N1、N2所组成。该PMOS晶体管P1的源极是连接局部字符线驱动器LWDR212、且其闸极是接收由全域字符线(Global word-line bar)传送的信号GWLB 216。当PMOS晶体管P1及NMOS晶体管N1的闸极216接收到低位准0的信号GWLB时,PMOS晶体管P1及NMOS晶体管N1的闸极216的电压位准将变为接近于接地参考点VLOW的电压。相似地,当局部字符线驱动器LWDR 212被充电至升压电压VPP,并且晶体管N2的闸极接收到低准位0的信号,此信号为接近接地参考点VLOW,于是局部字符线LWLx 217则将被充电至升压电压VPP。其中,NMOS晶体管N2是在DRAM数组预充电时,用来重置(reset)局部字符线用。
局部字符线LWLx 217是连接晶体管N1、N2的汲极,其中x是表示局部字符线的数目有x条(x为正整数)。而重置线WOOB 218是连接晶体管N2的闸极。
图3是显示建立各种升压电压VPP实例的波形图,且该升压电压VPP是用来驱动图2的局部字符线驱动器LWDR 212。而图1所示的内存胞的电容器C的电量,可由下列方程式求出Q=C×V (2)其中,Q为电容器C的电量、C为电容值、V为电容器上的电压。
而功率耗损的多寡是决定于电容器上的电压V、电容值C的大小、以及利用上述方程式(1)所求出的整体的供能效率。
图3中的三种曲线30、31及32均采用1.8伏特的VDD电压,并且曲线30、31及32显示出图2的局部字符线驱动器LWDR 212上所建立的升压电压VPP的波形。曲线30、31及32均对应到一2.9V的VPP电压位准。曲线30是显示仅利用一电荷泵来提升电压位准VPP的波形。当利用一电荷泵时,功率耗损Pc是由下列方程式决定 而曲线31显示以两个阶段的方式来提升电压位准VPP的波形。于第一阶段,是将电压提升至2.4V的VPP1电压,而根据方程式(1)可求出供能效率为40%。接着,于第二阶段,是将电压提升至2.9V的VPP电压,且根据方程式(1)可求出供能效率为25%。因此,曲线31的整个功率耗损Pc为Pc=2.4V40%xC+2.9V-2.4V25%xc=6C+2C=8C]]>再者,曲线32显示仍以两个阶段的方式提升电压位准VPP的波形,但其电压设定有所改变。于第一阶段,是将电压提升至1.3V的VPP1电压,且根据方程式(1)可求出供能效率为100%。而第二阶段是将电压提升至2.9V的VPP电压,且根据方程式(1)可求出供能效率为25%。因此,曲线32的全部的功率耗损Pc为Pc=1.3V100%xC+2.9V-1.3V25%xC=1.3C+6.4C=7.7C]]>
由上述的讨论可知,曲线30的效能最佳;但亦具有最高的功率耗损11.6C。而曲线32的功率耗损最低为7.7C。曲线31是采用较适中的VPP1电压,而可提供适中的功率耗损8C、以及适当的效能,藉以保持最均衡的效果。此外,当提升电压VPP1高于电压VDD时,局部字符线驱动器LWDR将具有一较佳的RC响应。
须注意的是,本发明除了可用在DRAM字符线驱动器之外,也可应用于需要升压而达成降低功率耗损的其它场合中。
图4是显示降低局部DRAM字符线驱动器的能量耗损的方法流程图。步骤40说明了两个升压转换器、一切换装置、一局部字符线驱动器、以及一电压侦测器的提供。需注意的是,本发明可以使用两个以上的阶段来实施。而每增加一个阶段,就需要外加一个升压转换器与一个电压侦测器来配合运作。在较佳实施例中,是使用两个升压转换器。步骤41叙述了在一局部字符线驱动器上使用第一升压转换器的输出、来建立一中间电压VPP1。其中,该中间电压VPP1小于用来操作一DRAM内存晶胞数组的局部字符线驱动器所需的升压电压VPP。
当中间电压VPP1等于、或大于系统电源供应器的电压VDD时,功率耗损及效能之间可达平衡而产生较佳的效果。在步骤42中,该局部字符线驱动器的电压是被监控的,而在步骤43是检查该局部字符线驱动器的电压是否达到中间电压VPP1的位准。当尚未达到电压位准VPP1时,流程将跳至步骤42,否则就会继续进行步骤44。当达到VPP1电压后,第二升压转换器将根据上述切换装置来产生输出升压电压VPP,并将该升压电压VPP施加在局部字符线驱动器上,藉以提供操作DRAM内存晶胞数组的字符线所需的电压。
以上,本发明已藉由各个实施例及其相关附图而清楚载明。然而,熟悉该项技术的一般技术人员应当了解,本发明的各个实施例在此仅为例示性而非为限制性,亦即,在不脱离本发明实质精神及范围之内,上述所述及的各组件的变化例及修正例均为本发明所涵盖,本发明是由后附的权利要求所加以界定。
权利要求
1.一种藉由在n个阶段中提升所需的升压电压VPP以降低动态随机存取内存(DRAM)局部字符线驱动器功率耗损的方法,其特征在于,该方法是包括有(1)提供n个升压转换器、n个切换装置、一局部字符线驱动器、及n-1个电压侦测器;(2)监控该局部字符线驱动器上的电压;(3)利用该n个升压转换器中的第一升压转换器的输出,以在该局部字符线驱动器上提升一第一中间电压VPP1,且该第一中间电压VPP1是小于该升压电压VPP,且该升压电压VPP是用来操作动态随机存取内存(DRAM)内存晶胞数组的字符线,直到达到该第一中间电压VPP1为止;(4)利用该n个升压转换器中的一第二升压转换器的输出,以在该局部字符线驱动器上提升一个第二电压位准,其是指派用于操作该n个升压转换器,其中该第二电压位准是高于该前一个中间电压位准,直到达到指派的第二电压位准为止;以及(5)检查第n个升压转换器是否为使用中,若为否时,则回到步骤(4);若为是时,则结束。
2.如权利要求1所述的方法,其特征在于,该n个升压转换器为电荷泵。
3.如权利要求1所述的方法,其特征在于,该n个切换装置为n个三态电路。
4.如权利要求1所述的方法,其特征在于,该切换装置为多任务器。
5.如权利要求1所述的方法,其特征在于,该第一中间电压VPP1等于或大于系统电源供应电压VDD,且小于操作DRAM内存晶胞的字符线所需的该升压电压VPP。
6.如权利要求1所述的方法,其特征在于,n等于2,且使用了两个升压转换器与一个电压侦测器。
7.一种用以提供一动态随机存取内存(DRAM)晶胞数组的局部字符线驱动器的一升压电压的电路,其特征在于,其包括有一动态随机存取内存(DRAM)晶胞数组的局部字符线;两个升压转换器,其是连接一第一切换装置,其中一第一升压转换器提供用以操作该DRAM晶胞数组的局部字符线所需的一电压位准VPP,且一第二升压转换器提供一低于该电压位准VPP的电压位准VPP1;一控制电路,该控制电路具有输入与输出,其中该输入为一信号,且该信号是用以将该局部字符线驱动器致能,并且该输入为一电压侦测器的信号,以显示该局部字符线驱动器的电压位准是否已到达电压位准VPP1,且该输出为两独有信号,其将一第一切换装置致能,以输出该VPP1电压、或该VPP电压于该局部字符在线;该电压侦测器是监控该局部字符线驱动器的电压位准,且通知该控制电路已达到该VPP1电压位准;该第一切换装置,其是由该控制电路所控制,且将该VPP电压或该VPP1置于该局部字符线;及一第二切换装置,是藉由将该局部字符线连接至一接地电压位准而关闭该局部字符线驱动器。
8.如权利要求7所述的电路,其特征在于,该升压转换器为电荷泵。
9.如权利要求7所述的电路,其特征在于,该第一切换装置为两个三态驱动器,且其中若被该控制电路所致能时,一第一三态驱动器将切换该局部字符在线的该VPP1电压,且若被该控制电路所致能时,一第二三态驱动器将切换该在该局部字符在线的VPP1电压。
10.如权利要求7所述的电路,其特征在于,该第二切换装置为一晶体管。
11.如权利要求7所述的电路,其特征在于,该电压侦测器为一史密特触发器。
12.如权利要求7所述的电路,其特征在于,该电压侦测器为一比较器。
全文摘要
本发明是涉及一种降低内存局部字符线驱动器的功率耗损的方法及电路。一第一升压转换器是提供一电压VPP1,其是为低于操作一动态随机存取内存(DRAM)晶胞数组的字符线所需的电压VPP。一电压侦测器是监控局部字符线驱动器的电压位准。一旦局部字符线驱动器上的电压达到电压位准VPP1时,切换装置(例如三态驱动器)便会将电压VPP施加在局部字符在线。该电压VPP是由一第二升压转换器来产生。因此,本发明是在n个阶段中来提升施加在局部字符在线的升压电压,而可降低局部动态随机存取内存(DRAM)字符线驱动器功率耗损。当然,电压位准VPP1必须小心的选定,以达成在电流耗损与效能间的平衡。
文档编号G11C8/08GK1945738SQ20061013821
公开日2007年4月11日 申请日期2006年11月6日 优先权日2005年12月14日
发明者袁德铭, 许人寿, 刘曜毅 申请人:钰创科技股份有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1