燃料电池及用于此燃料电池的双极板的制作方法

文档序号:6847640阅读:149来源:国知局
专利名称:燃料电池及用于此燃料电池的双极板的制作方法
技术领域
本发明一般涉及燃料电池,更具体而言是涉及燃料电池双极板。
背景技术
燃料电池将燃料和氧化剂(统称“反应物”)转变为电流和反应产物。许多燃料电池使用氢气作为燃料,氧气作为氧化剂。在这种情况下,反应产物是水。一种这样的燃料电池是质子交换膜(PEM)燃料电池。在PEM燃料电池中,每个单电池都包括由薄的离子导电膜隔开的阳极和阴极,通常将它们统称为膜电极部件(MEA)。在离子导电膜两侧的阳极和阴极包括含膜的薄层催化剂和气体扩散层。将氢气供给阳极,氧化剂供给阴极。气体扩散层确保氢气有效地传输到阳极催化剂上,氧化剂有效地传输到阴极催化剂上。氢气在阳极催化剂上电化学氧化,由此产生的质子通过导电膜,与阴极催化剂上的氧气反应生成水。将单个膜电极部件(MEAs)叠加,与其间的不能渗透的导电双极板电串联,此双极板在一个MEA的阳极和与其相邻的MEA的阴极之间传导电流。传统的双极板是平板,在双极板一侧所形成的一个或多个通道用于向一个MEA上传输燃料,双极板另一侧所形成的一个或多个通道用于向另一个MEA上传输氧化剂。氧化剂通道可以与燃料通道对齐,也可以不与燃料通道对齐。
由于各种原因,燃料电池被认为是很有吸引力的能源。与一般的电池相比,燃料电池的优点在于只要连续不断地提供燃料,燃料电池可以保持一定的输出功率,而不受充/放电循环的阻碍。而且燃料电池较小、重量轻并且不污染环境。PEM燃料电池最为显著的优点在于其具有较低的工作温度并且采用非液体、非腐蚀性的电解质。
尽管燃料电池具有上述优点,本发明人认为传统的燃料电池仍有待改进。例如,本发明人决定减少传统燃料电池的尺寸和重量。本发明人还决定通过改进隔离相邻MEAs的双极板的设计,从而实现燃料电池尺寸和重量的减小。

发明内容
因此,本发明的一个目的是提供一种具有相同输出功率、但比传统燃料电池更小、更轻的燃料电池。本发明的另一目的是提供一种比传统双极板更小的双极板。本发明的再一个目的是提供比传统双极板更轻的双极板。
为了实现这些和其它目的,根据本发明优选实施例的双极板包括燃料侧和氧化剂侧,燃料侧包括一系列限定各燃料路径的燃料电池通道,氧化剂侧包括一系列限定各氧化剂路径的氧化剂通道。至少某些燃料通道在横切于燃料和氧化剂路径的方向与相邻的氧化剂通道偏置。根据本发明的燃料电池包括这种位于一对MEAs之间的双极板。
本发明和传统双极板和燃料电池相比具有许多优点。例如,在传统双极板中燃料和氧化剂通道形成在极板的相对表面上,如

图1中所示。因此,当从接触一个MEA阳极的燃料侧上的表面到接触另一个MEA阴极的氧化剂侧上的表面所测量的传统双极板的厚度等于相对的通道的深度和隔开通道的材料的厚度之和。由于燃料和氧化剂通道不对齐,从而远远减少了此双极板的厚度。因此,双极板的厚度不需要等于、实际上小于相对的通道的深度和隔开通道的材料的厚度之和。在一个优选实施例中,双极板的燃料和氧化剂侧各包括一连串交替的通道和隆起部,在燃料侧的隆起部形成氧化剂通道,在氧化剂侧的隆起部形成燃料通道。这里,双极板的厚度是仅一个通道的深度和形成隆起部的材料的厚度之和。这明显地低于传统双极板的厚度。结果,燃料电池具有传统燃料电池约两倍的功率密度(kW/L)。
此双极板还明显轻于传统双极板。还参考图1,传统双极板包括位于相邻通道之间板材料的大实心区域,此相邻通道从接触一个MEA阳极的燃料侧表面延伸到接触另一个MEA阴极的氧化剂侧表面。因为燃料通道和氧化剂通道不对齐,此双极板不包括这样的大区域,因此通道位于由传统双极板中板材料占据的区域。结果,燃料电池具有传统燃料电池两至三倍的比功率(kw/kg)。
通过参考下述详细描述,结合附图本发明将更易理解,本发明的上述描述的和许多其他特点以及附带优点将变得更显而易见。
附图简述参考附图详细描述本发明的优选实施例。
图1是传统双极板的局部横截面图。
图2是根据本发明优选实施例的双极板组件的平面图。
图3是沿图2中的线3-3截取的局部截面图。
图4是根据本发明优选实施例的燃料电池组件的分解视图。
图5是在装配状态中图4中所示的燃料电池组件的局部截面图。
图6是根据本发明优选实施例的燃料电池组的透视图。
优选实施例的详细说明以下是目前所知实现本发明的最佳方式的详细描述。这种描述并不应理解为限制的含义,而仅仅是出于描述本发明的一般原理的目的。
正如图2和3中的例子所示,根据本发明的优选实施例的双极板组件10包括双极板12和框架14。双极板12和框架14可以是隔开的结构元件,此结构元件彼此可焊接、胶合或机械地压紧,如图所示,或者形成整体的单元。典型的双极板12包括具有一连串交替的氧化剂通道18和氧化剂侧隆起部20的氧化剂侧16,以及具有交替连续的燃料通道24和燃料侧隆起部26的燃料侧22。典型双极板12的这种结构使得相邻的氧化剂通道18和燃料通道24在横切于由此限定的燃料和氧化剂路径的方向彼此偏置。更具体地参考图3,典型的双极板12具有波纹状结构,在相邻的氧化剂通道18和燃料通道24之间基本上没有交叠,相邻通道由侧壁28隔离。
和其中燃料和氧化剂通道彼此对齐的传统双极板和燃料电池相比,氧化剂和燃料通道的偏置具有许多优点。例如,由于此双极板(图3)的厚度小于在传统双极板情况下(图1)的两个相对通道的组合深度和隔开相对通道的材料的厚度之和,因此此双极板的厚度远远小于传统双极板的厚度。结果,使用此双极板的燃料电池具有明显高于传统燃料电池的功率密度(kw/L)。由于此双极板没有传统双极板中的位于相对通道之间的大实心区域,所以它还明显轻于传统双极板。所减少的重量使得燃料电池具有明显高于传统燃料电池的比功率(kw/kg)。
虽然可以采用其它结构,每个通道在横截面上基本上是梯形。当双极板部分或局部弯曲时,可以选择采用基本为方型的横截面。然而,为了最好的收集电流,隆起部20和26(将与MEAs接触)应当基本上是平的,从而使收集电流的接触区域最大化。
如图2所示,典型的框架14包括围绕双极板12外围的框架构件30。在框架构件30中形成燃料进气和出气管道32和34、氧化剂进气和出气管道36和38、冷却剂进气和出气管道40和42。燃料和氧化剂进气和出气管道的相对位置可以如图所示的那样,或反之。每个管道优选包括多个加强构件44。燃料进气管道32通过一系列穿过框架构件30和氧化剂进气管道36一部分的进气管46连接到燃料通道24的入口端,而燃料通道的出口端通过一系列穿过框架构件和氧化剂出气管道38部分的出气管48连接到燃料出气管道34。同样,氧化剂进气管道通过一系列穿过框架构件30的一部分的进气管50连接到氧化剂通道18的入口端,而氧化剂通道的出口端通过一系列穿过框架构件另一部分的出气管52连接到氧化剂出气管道38。
进气和出气管46、48、50和52可以由金属、塑料或其它适当材料形成。优选为管子密封到框架构件30中。密封管子可以防止氧化剂与燃料混合,确保氧化剂只传送到双极板12的阴极侧。同样,燃料也不会和氧化剂混合,而且只传送到双极板12的阳极侧。可选择地是,氧化剂管50和52可以用形成在框架构件30中的通道代替,此框架构件30延伸到进气和出气管道36和38并从进气和出气管道36和38延伸出。这里,通道形成在框架构件30的阴极侧。
一系列装配孔54形成在位于框架构件30外围的突起56中。其它装配孔58位于框架构件30的拐角。在叠加装配期间装配孔用于便于双极板对齐。叠加装配时,机械紧固件插入到装配孔中将叠层固定在一起,以下进一步详细描述。
关于材料和制造,此双极板12优选为由铝、钛或钢形成,并利用加氢重整、冲制、弯曲、压印或其它普通金属成形工艺制成。双极板的表面应当用适于PEM燃料电池环境的防腐涂层覆盖,例如金、铂、钯、氮化钛或氮化钛铝。这些材料可以电化学沉积或蒸气沉积。其它保护涂层材料和工艺包括由喷射法施加导电涂料。框架14可以利用相同的材料、工艺和涂覆材料制造。可以选择的是,框架优选为可以用合适的塑料材料制成,例如注模、压模或浇注的聚碳酸酯、UltemTM、或环氧树脂。
虽然其它构造也在本发明的范围内,但是典型的双极板部件10如下配置。框架构件14约10.3英寸长、约9.6英寸宽(不包括突起56);双极板12约8.0英寸长、约8.0英寸宽。有50个间隔相等的氧化剂通道18和50个间隔相等的燃料通道24。每个通道的宽度约0.055英寸、深度是约0.02英寸,隆起部20和26的厚度是约0.01英寸。因此,所示双极板12的厚度是约0.03英寸。侧壁28约0.01英寸至约0.03英寸厚,与燃料或氧化剂通道相连的底面形成约100°的角。
为了确保燃料和氧化剂进气和出气管道之间的压力差足以从通道除去反应产物和冷凝的湿气,在反应物通道的入口处提供流量限制器。流量限制器可以通过减少进气管的尺寸(与出气管相比)来实现,应达到形成所需压力差的尺寸。在所述实施例中,例如,进气管46和50具有约0.007英尺的内径,出口管48和52具有约0.015英寸的内径。这种流量限制器的采用在当前共同申请的申请号为__、发明名称为“Fuel Cell Having Improved Condensation and ReactionProduct Management Capabilities”的专利申请中进行了更详细的描述,在此结合其内容作为参考。
此双极板12可以用于各种燃料电池器件。例如在图4和5中所示,此双极板的一种用途是用在PEM燃料电池组件60中。PEM燃料电池组件优选由一到十个单电池构成。在图4和5中所描述的典型实施例中,燃料电池组件60由5个单电池构成。更具体而言,典型的燃料电池组件60包括隔板62、冷却剂板64、六个双极板部件10(每个包括一个双极板12和框架14)和五个膜电极部件66,它们以所示的方式层叠。在多组件叠层中,典型地,底部双极板部件10将放置在相邻燃料电池组件的隔板上。在一些情况下,如叠层中包括底部组件的特定组件,或用于一个组件叠层的特定组件中,其底部隔板(没有显示)可以位于底部双极板部件10下面。
典型隔板62包括燃料管道、氧化剂管道、冷却剂管道以及对应于典型双极板部件10的装配孔的那些的装配孔。适当的材料包括与双极板12的涂层相同的材料以及石墨和导电塑料。典型的冷却剂板64还包括燃料管道、氧化剂管道、冷却剂管道以及与典型双极板部件10相应的那些装配孔。冷却剂板64的一面是平的,在另一面68上包括与冷却剂管道40和42相连通的冷却剂通道65。适合的冷却剂包括水、乙二醇和聚α-石蜡。
对于膜电极部件66,可以用传统的膜电极部件(MEAs)来实现本发明。例如,膜电解质可以由E.I.DuPont de Nemours&Co.的名为NAFIONTM或W.L.Gore.的名为Gore-SelectTM的全氟化硫磺酸聚合物形成。阳极和阴极膜可以由在NAFIONTM或聚四氟乙烯粘结剂中的催化剂颗粒形成。用于气体扩散层的适合材料包括由E-Tek生产的ELATTM和由W.L.Gore.生产的CarbelTM。在所述的实施例中,膜电极部件66包括在装配过程中所使用的接片70。可以选择,使用商业化的膜电极部件例如由W.L.Gore.(PrimeaTM)、E-Tek和DeGussa-Huls所出售的那些膜电极部件。
正如图6中的例子所示,根据本发明优选实施例的燃料电池叠层72包括端板74、在一百和二百之间的燃料电池组件60之间的集电器76、集电器78和由端板82及密封垫84组成的端板组件80。端板82提供有燃料入口和出口86和88,氧化剂入口和出口90和92,冷却剂入口和出口94和96。端口将燃料、氧化剂和冷却剂源(没显示)连接到燃料电池组件60中的管道。这里,燃料是氢气或重整产品,氧化剂是氧气或空气。典型的燃料电池叠层72还提供有正极集电器终端98和负极集电器终端100。各种元件可以用螺母和螺钉装置102或其它穿过各种元件中的装配孔的机械紧固件彼此固定。
虽然根据上面的优选实施例描述了本发明,但是对于本领域技术人员来说,对上述优选实施例进行的许多修改和/或补充是显而易见的。本发明的范围将扩展到所有这样的改进和/或补充。
权利要求
1.在包括至少两个膜电极部件(66)和在膜电极部件(66)之间的双极板(12)的燃料电池中,双极板(12)具有燃料侧(22)和氧化剂侧(16),燃料侧(22)包括一连串交替的燃料通道(24)和隆起部(26),燃料通道限定各燃料路径,氧化剂侧(16)包括一连串交替的氧化剂通道(18)和隆起部(20),氧化剂通道限定各氧化剂路径,其改进包括至少一些燃料通道(24)在横切于燃料和氧化剂路径的方向与相邻氧化剂通道(18)偏置。
2.根据权利要求1所述的燃料电池,其特征在于,在燃料侧(22)的隆起部(26)形成部分氧化剂通道(18),在氧化剂侧(16)的隆起部(20)形成部分燃料通道(24)。
3.根据权利要求1所述的燃料电池,其特征在于,燃料通道(24)和氧化剂通道(18)包括侧壁(28)。
4.根据权利要求3所述的燃料电池,其特征在于,侧壁(28)将燃料通道(24)与相邻的氧化剂通道(18)隔开。
5.根据权利要求3所述的燃料电池,其特征在于,侧壁(28)从燃料侧(22)的隆起部(26)延伸到氧化剂侧(16)的隆起部(20)。
6.根据权利要求1所述的燃料电池,其进一步包括可操作地连接到燃料通道(24)的燃料管道(32)以及可操作地连接到氧化剂通道(18)的氧化剂管道(36)。
7.根据权利要求6所述的燃料电池,其特征在于,燃料管道(32)和氧化剂管道(36)之一限定最外管道,燃料电池进一步包括从最外管道到相关联通道的连接器(46)。
8.根据权利要求1所述的燃料电池,其特征在于,双极板(12)是波状的。
全文摘要
一种包括燃料侧(22)和氧化剂侧(16)的燃料电池双极板(12),燃料侧(22)具有一系列限定各燃料路径的燃料通道(24),氧化剂侧(16)具有一系列限定各氧化剂路径的氧化剂通道(18)。至少一些燃料通道(24)在横切于燃料和氧化剂路径的方向与相邻的氧化剂通道(18)偏置。
文档编号H01M8/02GK1378710SQ00814108
公开日2002年11月6日 申请日期2000年8月16日 优先权日1999年8月16日
发明者J·杨, T·雷格 申请人:联合讯号公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1