通过在多孔材料上的sic∶h沉积提高金属阻挡性能的制作方法

文档序号:6980261阅读:218来源:国知局
专利名称:通过在多孔材料上的sic∶h沉积提高金属阻挡性能的制作方法
技术领域
本发明涉及密封电介质层的使用,该密封电介质层施加在多孔电介质层与金属扩散阻挡层之间。该密封电介质层封闭多孔电介质层表面和侧壁上的孔。本发明允许使用薄的金属扩散阻挡层,而不会在金属扩散阻挡层内生成针孔或者不会在多孔材料块体内发生扩散。
背景技术
传统上,物理汽相沉积(PVD)金属阻挡材料,如TaN,用于防止互连金属,特别是铜(Cu),扩散进入半导体器件上的电介质层内。小型化设计法则的趋势导致开始需要介电常数(DK)低于4-4.2(其典型地通过PECVD氧化物电介质膜实现)的电介质层。随着工业界开始使用低DK值的电介质层,结果需要一定量的孔隙率以获得低DK值,特别是DK小于2.6的膜(“多孔电解质膜”)。DK取决于孔隙率的量,还取决于树脂的性质。
有两类低电介质材料,旋压(spin-on)电介质和CVD电介质材料。旋压电介质可以分为两类有机和无机旋压电介质材料。目前,CVD电介质材料利用有机硅烷/有机硅氧烷(organooxysilane)前体作为活性剂(active agent),与氧化剂结合产生低k电介质膜。不管低DK膜是如何制得的,低DK膜具有一定量的孔隙率或分子内间隔。
低DK膜的孔隙率会给金属扩散阻挡(例如TaN层)带来问题,因为材料内部和/或顶部有孔。闭孔或者开孔材料之间没有差异,因为在镶嵌结构的构图期间,闭孔会腐蚀成开孔。开孔或闭孔类型的材料都对“针孔”形成的增加敏感,其中针孔形成于这些图形顶部上的金属扩散阻挡溅射层内。针孔形成会导致可靠性问题,并为金属互连与电介质的扩散和降解产生潜在的路径。由此,需要较厚的金属扩散阻挡以密封孔洞以及避免“针孔”。另一个问题是,在通过原子层化学汽相沉积(AL CVD)形成金属屏障的情况中,在开孔内,金属阻挡将沉积在低电介质块体的内部。非晶电介质材料不会导致针孔形成或者金属扩散阻挡层沉积在多孔材料主体内。
本发明涉及密封电介质层的使用,该电介质层施加在多孔电介质层与金属扩散阻挡层之间。该密封电介质层封闭多孔电介质层表面和侧壁上的孔。本发明允许使用薄金属扩散阻挡层(例如TaN),而不会在金属扩散阻挡层内生成针孔。
发明概要本发明涉及改进具有更大可靠性的集成电路。电路包括固态器件子组件,其典型地形成于硅衬底的上面或内部。由导电金属形成的金属布线将该器件连接在子组件内。在构图的多孔电介质膜上形成组分为SixCy:Hz的密封电介质层,其中x的原子百分数值为10-50,优选地为25-35,y的原子百分数值为1-66,优选地为30-40,z的原子百分数值为0.1-66,优选地为25-35;且x+y+z≥90原子%。密封电介质层的使用避免了在金属扩散阻挡层内形成针孔。
附图简述

图1是用单镶嵌技术形成的根据本发明半导体器件的部分剖面图。
图2是用双镶嵌技术形成的根据本发明半导体器件的部分剖面图。
图3是用减铝技术(subtractive aluminum technology)形成的根据本发明半导体器件的部分剖面图。
发明详述本发明是关于组成为SixCy:Hz的密封电介质层(“SixCyHz”膜)的使用,其中x的原子百分数值为10-50,优选地为25-35,y的原子百分数值为1-66,优选地为30-40,z的原子百分数值为0.1-66,优选地为25-35;且x+y+z≥90原子%。密封电介质层用于防止在金属扩散屏障内形成针孔,并防止金属原子扩散进多孔电介质层内。多孔电介质层典型地具有膜总孔隙率为10-60%,其中孔的连通度为0-100%。
密封电介质层在形成半导体器件中的使用增加了2个处理步骤,但是使用组群工具(cluster tool)会使成本效益显著增加,其中溅射或CVD/ALCVD金属阻挡组群中添加有CVD和腐蚀室。
密封电介质层的厚度典型地为8-12nm,但是可以处于1-50nm。密封电介质层的厚度取决于金属扩散阻挡的厚度(而后者又取决于步进覆盖(step coverage))、图形的纵横比和多孔电介质的性质。例如,如果使用10nm离子化金属等离子体(“IMP”)PVDTaN,那么在由氢硅倍半环氧乙烷(hydrogen silsesquioxane)树脂制造多孔电介质层的情况中将需要10nm的SixCy:Hz(根据美国专利No.6,231,989)。熟悉本技术领域的人能够容易地确定密封电介质层的厚度。
在本发明处理中使用的集成电路子组件并不苛刻,几乎任何在本技术领域中已知的和/或商业化生产的都能够使用。图1代表了通过单镶嵌技术制成的电路组件。如图所示,密封电介质层(1)密封和覆盖多孔电介质层(2)中的孔。如果没有使用腐蚀/CMP终止(3)和硬掩模(4),那么密封电介质层还将密封和覆盖多孔电介质层顶表面上的孔。去除互连开口(1A)底部和顶部的水平密封电介质层,然后将金属扩散阻挡(7)施加到互连开口(6)内的密封电介质层上。然后向互连开口(6)添加金属布线(5),在本实例中是铜(Cu),以填充开口。
然后通过用金属布线阻挡(8)覆盖金属布线(5)而形成另一个层。金属布线阻挡层(8)是本技术领域中所熟知的。例如,美国专利No.5,818,071公开了无定形碳化硅的金属布线阻挡层,在此引入作为参考。多孔电介质层(2)施加在金属布线阻挡(8)的上面。选择地,向多孔电介质施加腐蚀/CMP终止(3)和硬掩模(4),之后通过去除腐蚀/CMP终止(3)和牺牲硬掩模(1)、多孔电介质层(2)和金属扩散电介质阻挡(8)直至先前层的金属布线(5)而形成互连开口。然后施加密封电介质层(1)。去除互连开口(1A)顶部和底部的密封电介质层,然后在互连开口(6)内的密封电介质层上施加金属扩散阻挡(7)。然后向互连开口(6)添加金属布线(5),在本实例中是铜(Cu),以填充开口。重复进行分层(layering)处理直到形成所期望的层数。图(1)代表了两个单镶嵌水平,其中一个水平是完全处理,包括被金属布线(5)填充和化学机械抛光(CMP)。该处理过程限制于顶部水平上密封电介质层(例如SixCy:Hz)的构图和沉积(例如在顶层上不形成互连开口(6))。
图2表示了双镶嵌结构,其独立于构图方法(通孔优先,局部通孔,沟槽优先,双硬掩模构图等)。可见,多孔电介质层(2)被密封电介质(SixCy:Hz)层(1)密封和覆盖,以密封多孔电介质层(2)侧壁内的孔并防止金属扩散阻挡层(7)(未显示)内针孔的形成。在沉积CVD或ALCVD金属扩散阻挡(7)的情况下,密封电介质层(1)还会防止金属在连接时渗透通过孔。
图3表示了使用减Al技术(subtractive Al technology)形成的器件的部分剖面图。在使用减法技术时,密封电介质层(1)能够用于密封互连开口(6)壁(通道壁)的多孔电介质层(2)上的孔,从而防止在金属扩散阻挡层(7)(例如溅射Ti或Ti/TiN层)内形成针孔。在使用W栓塞技术形成通孔金属(via metal)(9)的情况下,金属扩散阻挡(7)内的针孔会导致WF6与Ti相互作用,该技术还能够用于热铝以实现可靠的互连金属流动。如果Ti没有覆盖互连开口(6)的侧壁和底部,那么互连金属就不会流动良好。
密封电介质层(1)将对所有3种所说明器件覆盖互连开口(6)的底部。密封电介质层(1A)的底部能够利用溅射或腐蚀,例如软溅射腐蚀或干腐蚀,加以去除,从而在所有金属互连之间建立良好的连接。这意味着密封电介质层(1)能够从多孔电介质层的顶部和互连开口(6)的底部加以去除。互连开口(6)的顶部上去除的金属可以比底部的多。例如,一些硬掩模(4)在溅射或腐蚀期间可能由于A/R依赖效应而去除掉。
本发明并不是仅限于将密封电介质层应用于所说明的结构中。可选择的结构,其中SixCy:Hz膜对集成电路中的构图结构进行密封,在这里也可以使用。其还可以用于平板显示器(FPD)、微系统和光学器件。
用于金属布线层的材料并不仅限于铜或铝互连。此外,金属布线层可以是银、金、合金、超导体及其他。
集成电路子组件上的电介质密封层通常与金属扩散阻挡一起使用,其取决于互连结构的类型和/或所使用的金属。用于沉积密封电介质层的方法在本技术领域中是熟知的。所使用的具体方法并不至关重要。这些工艺的实例包括等离子体增强汽相沉积(PECVD),低压化学汽相沉积(LPCVD),亚大气压化学汽相沉积(SACVD),化学汽相沉积技术如传统CVD、光化学汽相沉积、电子回旋加速共振(ECR)、喷射汽相沉积等,和各种物理汽相沉积技术如溅射、电子束蒸发等。这些处理包括或者向汽化物质施加额外的能量(以热、等离子体等形式)从而产生期望的反应,或者将能量聚焦在材料的固体样品上从而使其沉积。
适合于形成SixCy:Hz密封电介质层的材料在本技术领域中也是熟知的。前体可以是能够提供Si、C和H元素的单一化合物,例如烷基硅烷、硅杂环丁烷(silacyclobutane)或聚碳硅烷(polycarbosilane)。或者前体是能够提供Si、C和H元素的化合物混合物,例如硅烷和有机化合物(例如甲烷)。优选的前体是烷基硅烷,更优选的的是三甲基硅烷。
虽然众所周知,在SixCy:Hz膜内会存在少量的氧气,但是并不倾向于将氧添加到SixCy:Hz膜内。
此外可以预期,在此处可以使用组成为SiaObCc:Hd的密封电介质层,其中a的原子百分数值为10-33,优选的为18-20,b的原子百分数值为1-40,优选的为18-21,c的原子百分数值为1-66,优选的为31-38,而d的原子百分数值为0.1-66,优选的为25-32,且a+b+c+d≥90原子%;且C/Si<0.5,H/C>0.5。SiaObCcHd膜具有低介电常数层,从而降低了对有效介电常数的负电影响。或者,密封电介质层能够由SixCy:Hz层和SiaObCc:Hd层构成,从而保证多孔材料不会降解。
为了提供组成为SiaObCc:Hd的密封电介质层,在沉积室内可以存在受控数量的氧。氧可以通过所使用的氧提供气体的类型或者氧提供气体的使用量而加以控制。如果沉积室内存在太多的氧,会产生化学计量与SiO2相近的氧化硅膜,介电常数会高于所期望的,并且不能在不降解多孔电介质层的情况下获得密封性能。氧提供气体包括空气、臭氧、氧气、一氧化二氮和一氧化氮,但不限于此,优选的是一氧化二氮。氧提供气体的数量典型地小于5体积的氧提供气体/每体积含硅化合物,更优选的为0.01-4.5体积的氧提供气体/每体积含硅化合物。熟悉本技术领域的人员能够容易地根据氧提供气体的类型和沉积条件确定氧提供气体的数量。
除了氧提供气体之外,氧气可以通过使用含氧的含硅化合物而引入,例如2,4,6,8-四甲基环四硅氧烷(2,4,6,8-tetramethyl-cyclotetrasiloxane),2,4,6,8,10-五甲基环五硅氧烷(2,4,6,8,10-penta-methylcyclopentasiloxane)。
此外,可以预期,这里可以使用组成为SieNfCg:Hh的密封电介质层,其中e的原子百分数值为10-33,优选的为18-20,f的原子百分数值为1-50,g的原子百分数值为1-66,优选的为31-38,而h的原子百分数值为0.1-60,优选的为25-32,且e+f+g+h≥90原子%;且C/Si<0.5,H/C>0.5。为了生成组成为SieNfCg:Hh的密封电介质层,在沉积室内可以存在受控数量的氮。氮可以通过所使用氮提供气体的类型或者氮提供气体的使用量而加以控制。
可用于制造密封电介质层的含硅化合物包括硅烷、有机硅烷、聚碳硅烷(polycarbosilane)、环硅氧烷和线性硅氧烷,但不限于此。有用的含硅化合物在美国专利No.6,162,742中有详细的公开,由于其讲授了含硅化合物而引用在此作为参考。含硅化合物典型的包含具有表达式R-Si的单元,其中R基团从氢原子、氟原子、去氧氟乙酰胺基团或有机金属基团中选择。R优选的为烷基,更优选为甲基。Si原子可以与附加的R基团(有机金属硅烷)、其它的Si原子通过碳氢化合物基团(polycarbosilane)键合,或者通过O原子(siloxane)与其它的Si原子键合。优选的含硅化合物是接近室温下为气态或液态或者能够在大约10托以上的真空度下挥发的化合物。
用于制造密封电介质层的含硅化合物的实例包括但不限于硅烷、四氟硅烷、三氟甲基三氟硅烷(trifluoromethyltrifluorosilane)、甲基硅烷、二甲基硅烷、三甲基硅烷、四甲基硅烷、二硅烷甲烷(disilanomethane)、二(甲基硅烷)甲烷(bis(methylsilano)methane)、1,2-二硅烷乙烷(1,2-disilanoethane)、1,2-二(甲基硅烷)乙烷(1,2-bis(methylsilano)ethane)、2,2-二硅烷丙烷(2,2-disilanopropane)、1,3,5-三硅烷-2,4,6-三甲基亚甲基,1,3,-二甲基硅氧烷(1,3,5-trisilano-2,4,6-trimethylene,1,3-dimethylsiloxane)、1,3-二(硅烷亚甲基)二硅氧烷(1,3-bis(silanomethylene)disiloxane)、bis(1-methyldisiloxanyl)propane、2,4,6,8-四甲基环四硅氧烷(2,4,6,8-tetramethylcyclotetrasiloxane)、2,4,6,8,10-五甲基环五硅氧烷(2,4,6,8,10-pentamethylcyclopentasiloxane)、1,3,5,7-四硅烷-2,6-二羟-4,8-二亚甲基(1,3,5,7-tetrasilano-2,6-dioxy-4,8-dimethylene)、四炔丙基硅烷(tetrapropargylsilane)、四乙炔基硅烷(tetraethynylsilane)、苯基硅烷(phenylsilanes)、silacyclobutane(H2SiC3H6)及衍生物如1,1-二氟硅杂环丁烷(1,1-difluorosilacyclobutane)、1-甲基硅杂环丁烷(1-methylsilacyclobutane)、1,1-二甲基硅杂环丁烷(1,1-dimethylsilacyclobutane)、1,1-乙基甲基硅杂环丁烷(1,1-ethylmethylsilacyclobutane)、1-丁基硅杂环丁烷(1-butylsilacyclobutane)、2,4-二甲基硅杂环丁烷(2,4-dimethylsilacyclobutane)、3,3-二乙基硅杂环丁烷(3,3-diethylsilacyclobutane)和3,3-乙基丙基硅杂环丁烷(3,3-ethylpropylsilacyclobutane)、1,3-乙硅杂环丁烷(1,3-disilacyclobutane)及衍生物如1,1,3,3-四氟-1,3-乙硅杂环丁烷(1,1,3,3-tetrafluoro-1,3-disilacyclobutane)、1-甲基-1,3-乙硅杂环丁烷(1-methyl-1,3-disilacyclobutane)、1,3-二甲基-1,3-乙硅杂环丁烷(1,3-dimethyl-1,3-disilacyclobutane)、1,1-乙基甲基-1,3-乙硅杂环丁烷(1,1-ethylmethyl-1,3-disilacyclobutane)、1-丁基-1,3-乙硅杂环丁烷(1-butyl-1,3-disilacyclobutane)、2,4-二甲基-1,3-乙硅杂环丁烷(2,4-dimethyl-1,3-disilacyclobutane)、2,2-二乙基-1,3-乙硅杂环丁烷(2,2-diethyl-1,3-disilacyclobutane)和2,4-乙基丙基-1,3-乙硅杂环丁烷(2,4-ethylpropyl-1,3-disilacyclobutane)。两种或者更多种含硅化合物的组合能够用于提供期望性质的组合,例如介电常数、氧化物含量、疏水性、膜应力和等离子体腐蚀性能。
当含硅化合物不含有足以产生所期望膜的碳时,碳可以通过使用碳氢化合物如甲烷而引入。
其他的元素,如氟(F),也可以引入到密封电介质层中,只要这些元素不会重大地改变膜的密封性能。
下面表示了图1、2和3中所确定的元素。这些元素并不仅限于这些图中具体的设计。
1密封电介质层。SixCy:Hz,其中x的原子百分数值为10-50,优选的为25-35,y的原子百分数值为1-66,优选的为30-40,z的原子百分数值为0.1-66,优选的为25-35,且x+y+z≥90原子%;或者SiaObCc:Hd,其中a的原子百分数值为10-33,优选的为18-20,b的原子百分数值为1-40,优选的为18-21,c的原子百分数值为1-66,优选的为31-38,d的原子百分数值为0.1-60,优选的为25-32,且a+b+c+d≥90原子%,且C/Si<0.5、H/C>0.5;或者SieNfCg:Hh,其中e的原子百分数值为10-33,优选的为18-20,f的原子百分数值为1-50,g的原子百分数值为1-66,优选的为31-38,h的原子百分数值为0.1-60,优选的为25-32,且e+f+g+h≥90原子%,且C/Si<0.5、H/C>0.5。
2多孔电介质层。孔隙率为10-60%,其中连通度为1-100%。可以由如下材料制得,即多孔SiLKTM、MesoELKTM、XLKTM、NanoglassTM、JSR-LKDTM、ZirconTM材料,以及通过CVD方法,如OrionTM。制造的方法在本技术领域中是熟知的。
3腐蚀终止。典型的材料为氮化硅、碳化硅、SiO2。本领域技术人员能够根据对多孔材料的腐蚀选择性知道哪些材料适合。
4牺牲硬掩模。典型的材料为氮化硅、碳化硅、SiO2。本领域技术人员能够根据对下层材料的腐蚀选择性知道哪些材料适合。
5金属布线。由如下材料制得,即铜、铝、银、金、合金、超导体和其他导电金属。金属布线能够通过CVD、物理汽相沉积(PVD)或者电化学沉积技术或者它们的组合而制造。
6互连开口。有时称作通孔或沟槽。通过去除布线金属上的所有层并暴露布线金属表面的至少一部分而制得。形成互连开口的方法在本技术领域中是熟知的。
7金属扩散阻挡。用于形成金属扩散阻挡的材料是人们所熟知的,如Ta、TaN、Ti、TiN、TiSiN、WN、WCN或其组合。金属扩散阻挡可以通过本技术领域中熟知的技术而施加,如溅射(也就是PVD)、化学汽相沉积(CVD)或原子层化学汽相沉积(ALCVD)。
8金属布线阻挡。用于形成金属布线阻挡的典型材料是SiC、SiN、SiCN。制造该层的方法是本技术领域所熟知的。
9通孔金属。该金属用于连接各个金属布线层。该金属可以与用于形成金属布线(6)的金属相同,也可以不同。通孔金属的实例包括Cu、W、Al,但不限于此。
10互连金属是布线金属和/或通孔金属。
可以相信,密封层为金属扩散阻挡层提供了比多孔电介质层所提供的更好的表面。
下面提供了非限制性实例,从而熟悉本技术领域的人员能够更容易地理解本发明。
实例对照实例120nm的TaN膜通过PVD沉积在半导体器件的沟槽和侧壁上,该半导体器件上具有多孔低k电介质层,其通过美国专利No.6,231,989的方法制造而成。然后,该器件在1%的HF、SEM内进行20”浸渍试验(dip test)。SEM结果显示,阻挡层中出现了高密度的针孔,使得酸能够容易地扩散并腐蚀低K层。椭圆光度法孔隙率估计显示有甲苯吸附。进一步的估计显示,需要厚度为至少30nm的TaN膜才能密封多孔层。
实例1利用三甲基硅烷通过PECVD在半导体器件的沟槽和侧壁上沉积10nm的SiC膜,该半导体器件上具有多孔低K电介质层,其通过美国专利No.6,231,989的方法制造而成。用和对照实例1中相同的处理在SiC层上形成10nm的TaN膜。然后,将所得到的器件在1%的HF、SEM内进行1’浸渍试验。HF、SEM结果显示在低K层中没有腐蚀,椭圆光度法孔隙率估计显示没有甲苯吸附,这表明孔被密封了。
权利要求
1.一种集成电路,具有(i)固态器件子组件(ii)金属布线,其由导电金属形成,其中金属布线连接该子组件内的器件(iii)多孔电介质层,其在导电金属上形成,其中该多孔电介质层含有孔(iv)互连开口,其形成在多孔电介质层中(v)密封电介质层,其覆盖互连开口内的多孔电介质的孔(vi)金属扩散阻挡,其位于互连开口内,其中该密封电介质层选自(1)SixCyHz,其中x的原子百分数值为10-50,y的原子百分数值为1-66,z的原子百分数值为0.1-66,且x+y+z≥90原子%;(2)SiaObCcHd,其中a的原子百分数值为10-33,b的原子百分数值为1-40,c的原子百分数值为1-66,d的原子百分数值为0.1-60,a+b+c+d≥90原子%,且C/Si<0.5、H/C>0.5;或者(3)SieNfCgHh,其中e的原子百分数值为10-33,f的原子百分数值为1-50,g的原子百分数值为1-66,h的原子百分数值为0.1-60,e+f+g+h≥90原子%,且C/Si<0.5、H/C>0.5。
2.权利要求1中的集成电路,其中密封电介质层是SixCyHz,其中x的原子百分数值为10-50,y的原子百分数值为1-66,z的原子百分数值为0.1-66,且x+y+z≥90原子%。
3.权利要求2中的集成电路,其中密封电介质层是SixCyHz,其中x的原子百分数值为25-35,y的原子百分数值为30-40,z的原子百分数值为25-35。
4.权利要求1中的集成电路,其中密封电介质层是SiaObCcHd,其中a的原子百分数值为10-33,b的原子百分数值为1-40,c的原子百分数值为1-66,d的原子百分数值为0.1-60,a+b+c+d≥90原子%,且C/Si<0.5、H/C>0.5。
5.权利要求4中的集成电路,其中密封电介质层是SiaObCcHd,其中a的原子百分数值为18-20,b的原子百分数值为18-21,c的原子百分数值为31-38,d的原子百分数值为25-32。
6.权利要求1中的集成电路,其中密封电介质层是SieNfCgHh,其中e的原子百分数值为10-33,f的原子百分数值为1-50,g的原子百分数值为1-66,h的原子百分数值为0.1-60,e+f+g+h≥90原子%,且C/Si<0.5、H/C>0.5。
7.权利要求6中的集成电路,其中密封电介质层是SieNfCgHh,其中e的原子百分数值为18-20,f的原子百分数值为1-50,g的原子百分数值为31-38,h的原子百分数值为25-32。
8.权利要求1中的集成电路,其中多孔电介质层的总孔隙率为10-60%,孔之间的连接度是0-100%。
9.权利要求1中的集成电路,其中金属扩散阻挡从Ta、TaN、Ti、TiN、TiSiN、WN、WCN或其组合中选择。
10.权利要求1中的集成电路,其中金属布线由铜、铝、银、金、合金或超导体制成。
11.权利要求1中的集成电路,其中互连开口具有侧壁,并且密封电介质层在互连开口的侧壁上。
12.一种覆盖和密封互连开口内多孔内层电介质的孔的方法,其中互连开口具有顶、底和侧壁,其中该方法包括(A)在互连开口中施加密封电介质层;(B)从互连开口的顶部和底部去除密封电介质;(C)在互连开口中施加金属扩散阻挡,至少覆盖该密封电介质层;其中该密封电介质层选自(1)SixCyHz,其中x的原子百分数值为10-50,y的原子百分数值为1-66,z的原子百分数值为0.1-66,且x+y+z≥90原子%;(2)SiaObCcHd,其中a的原子百分数值为10-33,b的原子百分数值为1-40,c的原子百分数值为1-66,d的原子百分数值为0.1-60,a+b+c+d≥90原子%,且C/Si<0.5、H/C>0.5;或者(3)SieNfCgHh,其中e的原子百分数值为10-33,f的原子百分数值为1-50,g的原子百分数值为1-66,h的原子百分数值为0.1-60,e+f+g+h≥90原子%,且C/Si<0.5、H/C>0.5。
13.权利要求12中的方法,其中密封电介质层是SixCyHz,其中x的原子百分数值为10-50,y的原子百分数值为1-66,z的原子百分数值为0.1-66,且x+y+z≥90原子%。
14.权利要求13中的方法,其中密封电介质层是SixCyHz,其中x的原子百分数值为25-35,y的原子百分数值为30-40,z的原子百分数值为25-35。
15.权利要求12中的方法,其中密封电介质层是SiaObCcHd,其中a的原子百分数值为10-33,b的原子百分数值为1-40,c的原子百分数值为1-66,d的原子百分数值为0.1-60,a+b+c+d≥90原子%,且C/Si<0.5、H/C>0.5。
16.权利要求15中的方法,其中密封电介质层是SiaObCcHd,其中a的原子百分数值为18-20,b的原子百分数值为18-21,c的原子百分数值为31-38,d的原子百分数值为25-32。
17.权利要求12中的方法,其中密封电介质层是SieNfCgHh,其中e的原子百分数值为10-33,f的原子百分数值为1-50,g的原子百分数值为1-66,h的原子百分数值为0.1-60,e+f+g+h≥90原子%,且C/Si<0.5、H/C>0.5。
18.权利要求17中的方法,其中密封电介质层是SieNfCgHh,其中e的原子百分数值为18-20,f的原子百分数值为1-50,g的原子百分数值为31-38,h的原子百分数值为25-32.
19.权利要求12中的方法,其中多孔电介质层的总孔隙率为10-60%,孔之间的连接度是0-100%。
20.权利要求12中的方法,其中金属扩散阻挡从Ta、TaN、Ti、TiN、TiSiN、WN、WCN或其组合中选择。
全文摘要
密封电介质层(1)施加在多孔电介质层(2)与金属扩散层(7)之间。密封电介质层封闭多孔电介质层表面和侧壁上的孔。本发明允许使用薄的金属扩散阻挡层,而不会在金属扩散阻挡层产生针孔。密封电介质层是组成为Si
文档编号H01L23/532GK1596466SQ02813274
公开日2005年3月16日 申请日期2002年6月25日 优先权日2001年7月2日
发明者赫曼·玫宁, 威廉·K.·韦德纳, 弗朗西斯卡·亚科皮, 斯蒂芬尼·玛尔霍特里 申请人:陶氏康宁公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1