生产锂离子阴极材料的方法

文档序号:6843486阅读:362来源:国知局
专利名称:生产锂离子阴极材料的方法
技术领域
本发明涉及锂离子电池。更特别,本发明涉及致密用于制造锂离子电池电极组合物的方法。
背景技术
锂离子电池通常包括阳极、电解液和包括以锂过渡金属氧化物形式锂的阴极。这样的锂过渡金属氧化物通常包括LiCoO2、LiNiO2和Li(NiCo)O2。已经提出作为代替LiCoO2的锂过渡金属氧化物是Liy[NixCo1-2xMnx]O2,其采用α-NaFeO2类型结构,被认为是Ni2+和Mn4+(1∶1)部分替换LiCoO2中的Co3+。在900℃制备的Liy[NixCo1-2xMnx]O2材料显示良好的电池性能,当在高压充电时与LiCoO2相比,在高温下似乎与电解质反应性更小。然而,以前报道样品的材料密度,因此得到的电极密度低于锂离子电池许多工业应用的要求。
Liy[NixCo1-2xMnx]O2,其中x为0.25~0.375,y为0.9~1.3,当在2.5V~4.4V之间循环时使用40mA/g的比电流,可输送约160mAh/g稳定的容量。因为镍和锰都比钴昂贵,Liy[NixCo1-2xMnx]O2似乎是有希望取代LiCoO2的组合物。然而,Liy[NixCo1-2xMnx]O2一个不希望的特征是它们的低密度,这种低密度是通过熟知的合成方法从氢氧化物开始随后在大约900℃热处理实现的。不希望的低电极密度最终导致实际锂离子电池的低容量。
使用通过更加控制的共沉淀随后在温度大于或等于1100℃下处理构成的合成可得到更致密的氧化物,缓慢冷却以保存电池性能。然而,这样的合成不完全适于工业应用,因为控制沉淀过程是困难的而且是昂贵的,归因子能量需要以实现高的热处理温度。同样,用这种方法合成的氧化物显示出高度第一循环不可逆容量,因此当用于电池组时限制了它们的有效容量。
本领域已知LiF可用于生产Li1+xMn2-x-yMyO4-zFz(其中0<x<=0.15,0<y<=0.3,0<z<=0.3,及M是Mg、Al、Co、Ni、Fe、Cr的至少一种金属),对于锂离子电极材料用作熔剂。现有技术公认该化合物具有尖晶石晶体结构。进一步本领域已知尖晶石结构需要化合物中锂∶过渡金属∶氧具有1∶2∶4的标称比例。LiF包含进入晶体结构,即该锂过渡金属氧化物的主相。
现有技术描述H3BO3在合成能用作正极活性物质的Li[(Nio.5Mno.5)1-x-yMxBy]O2(其中0<=x<=0.10,0<=y<=0.05,M是V,Al,Mg,Co,Ti,Fe,Cu,Zn的一种)中作为原料。在该化合物中Co的量达到合成锂材料中锂量的10原子%。现有技术没有教导增加该材料的密度,因为相信增加密度导致较低的电池性能。
本发明简述简而言之,一种生产Liy[NixCo1-2xMnx]O2的方法,其中0.025≤x≤0.45,0.9≤y≤1.3,包括混合[NixCo1-2xMnx](OH)2、LiOH或者Li2CO3,和碱金属氟化物(优选LiF)和硼化物(例如硼酸、氧化硼和/或硼酸锂)的一种或者两种,以下简称烧结试剂,然后加热该混合物足够时间以得到增浓的Liy[NixCo1-2xMnx]O2组合物,成品足够的致密的用于锂离子电池。这样增浓的组合物显示出最低可逆的体积比能量,特征在于以Wh/L测量为公式[1833-333x],其中x如上述定义,其中增浓化合物基本上没有F。优选x的值为0.05~0.45,y的值为1.0~1.1。
尽管致密的氧化物还可以使用包括在高温下(1100℃)的合成得到,但这样的热处理认为不适于工业应用,因为1100℃的加热对于没有要求约900℃加热的炉子施加了苛刻的约束。
在优选实施方式中,在合成Li[NixCo1-2xMnx]O2期间,在大约900℃的加热温度下通过使用烧结试剂增加密度,所述的烧结试剂包括约0.1~5.0wt%、优选约0.2~约3.0wt%、更优选约0.5~约1.0wt%的氟化锂和氧化硼的一种或两种。
该方法提供具有增加密度、低不可逆容量和增强阴极性能比如更大可逆的体积比能量优点的产品。有用的颗粒密度值在约3.3~约4.0克/厘米3范围之内,优选约3.4~约4.0g/cm3。
烧结温度在800℃~小于1100℃范围之内,优选850℃~1050℃,更优选到约900℃。较高的温度增加加工成本,更难获得适当的加工设备。
本发明的锂过渡金属氧化物具有层状α-NaFeO2结构,所述的结构需要锂∶过渡金属∶氧为1∶1∶2的标称比例。
附图简述

图1显示通过x-光衍射得到的作为x函数的Liy[NixCo1-2xMnx]O2的理论密度(XRD)。
图2a和2b图示说明对于x=0.25(图2a)和x=0.1(图2b)的组合物,在900℃制备的Liy[NixCo1-2xMnx]O2的颗粒密度(PD)作为LiF加入量的函数关系。
图3显示BET表面积和颗粒密度随x=0.1的Liy[NixCo1-2xMnx]O2中加入LiFwt%量的变化。
图4a和4b图示说明对于x=0.25(FIG 4a)和x=0.1(FIG 4b)的Liy[NixCo1-2xMnx]O2X-光衍射图样与LiF加入量的关系。
图5a、5b和5c图示说明B2O3加入量对于在900℃、3小时制备的x=0.1、0.25和0.375不同氧化物组合物的颗粒密度的影响。
优选实施方式的详细说明本发明包括生产足够致密的用于锂离子电池的电极组合物优选阴极组合物的锂过渡金属氧化物的方法。颗粒密度大于约3.3克/厘米3的组合物可使用含量为该混合物总重量至少约0.1wt%的选自碱金属氟化物(例如,LiF和/或KF;优选LiF)、硼化物(例如,硼酸、氧化硼和/或硼酸锂;优选B203)和其混合物的烧结试剂得到。高含量的烧结试剂比如约1.0wt%同样可产生较高的颗粒密度。可以理解当前体具有高表面积时,那么需要更大含量的烧结试剂以产生同样增加的颗粒密度。烧结试剂含量高达约5wt%、并且甚至达到约10wt%可产生益发甚至更高的颗粒密度。在含量为约3wt%及更高时,需要补充加热时间以从产品中除去杂质。存在于游离相中的杂质F是不希望的,因为它们的存在会减少可逆的体积比能量(RVE)。调节原料中化学计量的锂以补偿由于利用LiF作为烧结试剂加入的另外的锂。
本发明的锂过渡金属氧化物显示出已经发现用于增强电极性能的某些特征。这些特征包括增加的密度性能、不显著地增加不可逆容量及得到增加的包括RVE的电化学性质。所考虑的致密度性能是颗粒密度。颗粒密度是从具有已知体积模子(8毫米直径模具用于本发明实施例的测量)内放置的锂过渡金属氧化物的重量(500mg用于本发明实施例中的测量)计算的密度,其中锂过渡金属氧化物在大约48,000磅/平方英寸(330,000kPa)下进行按压。最后的计算给出每体积数量的重量或者密度。可比较颗粒密度和理论密度以确定金属锂氧化物的致密程度。理论密度(ThD)定义为如下ThD(g/ml)=[1024(MW)(N)]/[(CV)(NA)],其中1024是每毫升立方埃的数量,MW是表示为每摩尔克的该化合物的分子量,N是每晶胞的分子单元数量,CV是每晶胞表示为立方埃的晶胞体积,NA是阿伏伽德罗数(每摩尔6.023×1023分子单元)。晶胞是晶体结构小的重复物理单位。可以通过X-光衍射确定结构类型和晶格常数,同时一起给出晶胞体积。因为本发明材料具有α-NaFeO2结构类型,因此从如下的晶格常数a和c计算晶胞体积CV=(a2)(c)(cos(30°))本发明所考虑的电化学性质是可逆的体积比能量(RVE)。
RVE=(DSC1)(VaveD)(ED)(DSC1/CSC1).
RVE(可逆的体积比能量)(瓦-小时/升)是在第一次充电以后可循环的阴极每单位体积存储的电能量。本发明的RVE值优选在约1500~约2200Wh/L范围之内,更优选在约1750~约2200Wh/L范围内。
DSC1(首次放电比容量)(毫安-小时/克)是在首次放电期间每克阴极氧化物通过电池组的电荷量。
VaveD(伏)是在从电池组放电期间的平均电压。对于本发明的阴极材料的VaveD指阴极相对金属锂的电压,对于x=0.25和x=0.10各自的值3.85和3.91V接近VaveD的近似值,应该在计算RVE时进行如此的假定。
CSC1(首次充电比容量)(毫安-小时/克)是在首次充电期间每克阴极氧化物通过电池组的电荷量。
ED(电极密度)(克/毫升)是阴极的密度,应该认为是90%的颗粒密度。
本发明描述的电池组容量是在每克阴极氧化物40毫安下循环电池得到的容量。
本发明的锂过渡金属氧化物使用共沉淀方法制备以形成过渡金属氢氧化物(TMOH)。沉淀TMOH然后通过研磨与化合量的Li(OH)·H2O和烧结试剂混合。可以使用Li2CO3代替LiOH。研磨之后,形成片剂然后约3小时加热到约至少900℃并骤冷。在骤冷以后,磨碎片剂,使用得到的粉末制造阴极。尽管可制造片剂,应理解TMOH和锂盐的研磨混合物可经热处理,得到对于加热疏松粉末基本上同样的结果。
本发明更加特别地描述在下面的实施例中,所述的实施例意欲仅仅是举例说明,而不应理解为限制本发明。
实施例本发明的金属锂氧化物使用以下原料制备LiOH·H2O(98%+,Aldrich Chemical Co.,Milwaukee,WI),CoSO4·H2O(99%+,Sigma-AldrichCo.of Highland,Illinois),NiSO4·6H2O(98%,Alfa Aesar,Ward Hill,Massachusetts),和MnSO4·H2O(Fisher Scientific,Hampton,NewHampshire)。如果没有指明,化学制品就是从Aldrich Chemical Co.,Milwaulcee,WI得到。所有的百分数以重量计算。
致密本发明金属锂氧化物的方法包括两步步骤。第一步包括在搅拌的LiOH溶液中共沉淀过渡金属硫酸盐以得到共沉淀。应理解包括LiOH、NaOH和NH4OH的一种或多种的溶液能用作沉淀剂,导致同样的本发明描述的最后的密度增加。第二步骤包含混合共沉淀、化学计量的Li(OH)·H2O,和LiF和B2O3的一种或者两种(两种都可以从Aldrich Chemical Co.获得),形成颗粒加热该颗粒到至少约900℃。
在实施第一步中,100ml过渡金属硫酸盐(CoSO4·7H2O,NiSO4·6H2O和MnSO4·H2O)水溶液(总金属浓度等于1M)滴加进入搅拌的1M LiOH水溶液。使用由Liquid Metering Inc.of Acton,MA制造的化学品计量泵以等速和冲程进行1小时的共沉淀。通过计量足够量的1M LiOH保持pH控制为14,从而在共沉淀期间保持LiOH浓度恒定。产生的共沉淀是NixCo1-2xMnx(OH)2,其中x定义如上。过滤沉淀,用蒸馏水洗涤若干次,在120℃空气中干燥过夜,然后磨碎5分钟以使粉末解聚集。
干燥的沉淀然后(通过研磨)与化学计量的Li(OH)·H2O、选择量的LiF和B2O3(0、0.2、0.5、1、3、5wt%理论氧化物质量)(Aldrich ChemicalCo.)的一种或者两种混合,以在最后的氧化物中保持希望的化学计量的锂(1摩尔/过渡金属总的摩尔)。研磨之后,制造颗粒,在900℃加热,一些进行3小时,一些进行6小时,然后在铜板之间骤冷。骤冷颗粒以节省时间。颗粒可以用空气缓慢冷却,得到基本上同样的结果。一旦颗粒冷却,破碎并磨碎它们。
使用X-光衍(XRD)确定哪些结晶相存在于样品中,及那些相的结构特征。使用配备具有1度分散度的固定入口狭缝、固定0.2毫米接收狭缝(0.06度)、石墨衍射束单色仪和用于记录散射辐射的正比探测器的X-光衍射仪收集数据。在40kV和30mA的发生器设置下使用密封铜靶X-光源。使用Hill/Howard版本的Rietveld program Rietica使收集数据的曲线精细化。通常使用的结构模型是α-NaFeO2结构,Li在3a位,Ni、Co和Mn随机置于3b位氧原子置于6c位。其中Li和Ni交换位置假定为反位缺陷,作为Rietveld精细化的一部分计算轻微的反位缺陷程度。
通过在48,000psi(30,096kPa)的压力下用大约500mg磨碎的粉末制造8毫米直径的颗粒,得到对于每一设定烧结的颗粒密度(PD)。在压制以后测定颗粒的厚度和直径,然后计算密度。误差估计到0.08g/cm3。
为了导出颗粒密度和电极密度之间的关联,制作五个不同的Liy[NixCo1-2xMnx]O2试验电极,其中x和y定义如上。Liy[NixCo1-2xMnx]O2(90份)、特级S炭黑(5份)(MMM碳,Tertre,Belgium)和聚偏氟乙烯(PVDF)(5份)粘结剂结合制造电极材料。使用N-甲基吡咯烷酮将电极材料做成浆料,然后将浆料涂敷在铝箔上。涂敷在铝箔上的电极材料在马弗炉烘箱中干燥过夜以使蒸发NMP形成薄膜。在48,000psi(330,096kPa)下压制薄膜。通过用数字测微计测量薄膜厚度及测量薄膜已知区域的质量得到电极密度。当强制截距为零时五个不同的样品图示给出的斜率为0.89。因此能达到的电极密度认为是90%的颗粒密度。
为了实施电化学试验,制备Bellcore类型电池。Bellcore类型电池包括200~300毫米厚的PVDF/HFP基(聚偏二氟乙烯/六氟丙烯的共聚物)正极和负极和电解质隔板。
利用混合大约0.1(z)(wt)特级S炭黑和0.25(z)(wt)聚合物粘合剂的z克Liy[NixCo1-2xMnx]O2制备Bellcore类型电池,所述的聚合物粘合剂以商品名KYNAR FLEX 2801得到(Atofina Chemicals,Inc.ofPhiladelphia,PA)。向该混合物中加入3.1(z)(wt)丙酮和0.4(z)(wt邻苯二甲酸二丁酯(DBP),所述的邻苯二甲酸二丁酯通过Aldrich ChemicalCo.Milwaukee,Wisconsin得到,以溶解PVDF/HFP。需要搅拌和挥动几小时以溶解PVDF/HFP,以使炭黑块分裂。然后得到的浆料使用缺口试棒涂布机涂布到玻璃板上,以得到大约0.66毫米均一的厚度。在丙酮蒸发以后,得到的干膜剥离板,冲压为直径大约12毫米的圆盘。冲压圆盘(电极)在无水二乙醚中洗涤若干次以除去DBP。洗涤的电极在90℃干燥过夜之后使用。以标准2325(23毫米直径、2.5毫米厚度)硬币型电池元件形式制备电化学电池,单金属锂箔用作反电极和参考电极。在填充氩的手套箱中组装电池。用于分析的电解质是在碳酸亚乙酯-碳酸二乙酯(EC/DEC)(33/67)中1M的六氟磷酸锂(LiPF6)。使用2.5~4.4V之间恒定的40mA/g(相当于大约0.6mA/cm2)充电和放电电流测试电池。
图2a和2b图示说明对于x=0.25(图2a)和x=0.1(图2b)的Liy[NixCo1-2xMnx]O2组合物,颗粒密度与LiF加入量的关系。在两种情况下,颗粒密度随加入的LiF增加。对于x=0.1,颗粒密度从约3.3~约3.7克/厘米3准线性增加,直到加入1wt%的LiF。随LiF进一步加入值稳定在大约3.8-3.85克/厘米3。空心圆是指特殊处理。与Li/M=1/1化学计量相比,如在图2b由空心圆“1”指出的略微过剩锂的化学计量导致略微更高的颗粒密度,其中M是化合物中过渡金属的总量。在900℃另外处理3小时导致另外略微的颗粒密度增加,如在图2b中由空心圆“2”和“3”指出的样品所表明。
图3显示在Liy[NixCo1-2xMnx]O2,x=0.1(所有的样品从同样的共沉淀制备)情况下,BET表面积减少与LiF加入的关系,及颗粒密度增加与LiF加入关系之间的关联。数据显示在大约900℃制备的Liy[NixCo1-2xMnx]O2样品的比表面积随LiFwt%增加而减少,而密度增加。通常,具有更高比表面积的电极材料,由于增加了电解质和电极颗粒之间的界面面积,导致更不可靠的锂离子电池。较低的比表面积在电池热稳定性增加中是人们所关心的。
由Rietveld精细化得到的结构数据收集在表1中。就一切情况而论保存了α-NaFeO2构造类型,原料化合物的X-光图样和晶格常数通常是以前观察这些组合物得到的那些。
表1
括号中的值指测量值在最后位数字不可靠。
表1数据表明常数a和c不受LiF加入的影响,表明晶体结构尺寸基本上没有LiF。
图4a和4b图示说明不管LiF加入与否,对于其中x=0.25(图4a)和x=0.1(图4b)的两种组合物Liy[NixCo1-2xMnx]O2的所有样品具有类似的图样(LiFwt%注明在每一图样上),不同之处在于对于x=0.1的情况,在加入3和5wt%的LiF时,其中明显显现出一些杂质线(图4b)。对于x=0.25(图4a),晶格常数变化趋势是随LiF从0增加到1wt%(*在图4b表明杂质线)具有最小限度的增加。
表1同样列出了在锂层中的金属缺陷(Ni)量,计算为Rietveld精细化的一部分,所述的金属缺陷已知影响电池行为。就一切情况而论,象对于这些组合物期望的那样,该量是非常小的,注意到随LiF加入没有显著的变化。表2显示出在40mA/g、2.5~4.4V之间的x=0.25(0、0.5和1wt%LiF加入量)、x=0.1(0和1wt%LiF加入量)和x=0.1(0、0.2、0.5、1、3、3(+3小时)和5wt%LiF加入量)的Liy[NixCo1-2xMnx]O2的循环数据。
表2列出了其中x=0.1和0.25的锂过渡金属氧化物样品的LiFwt%、每一样品的颗粒密度、首次充电/放电能量、不可逆容量和RVE。
表2
PD=颗粒密度RVE=可逆的体积比能量表2数据表明,与没有LiF的那些相比,使用LiF可改进RVE值。组合物中的杂质导致RVE值明显的下降。在使用LiF的情况下,当循环时容量保留值保持稳定并具有良好的值。循环容量同样,改进了RVE。
比较表2与图1,优选本发明的锂过渡金属氧化物的颗粒密度至少为约72%,更优选它们的颗粒密度至少为约74%的理论密度。而且,已经发现本发明的锂过渡金属氧化物的可逆体积比能量由按Wh/L计量的公式[1833-333x]定义。
对于x=0.25,LiF加入影响Liy[NixCo1-2xMnx]O2氧化物密度增加到3.6克/厘米3,对于x=0.1,加入达到1wt%的LiF时影响密度增加到3.7克/厘米3。密度增高伴随有BET表面积减少。观察到几乎对材料结构没有影响。对于x=0.1的组合物直到包括LiF高达1wt%加入量,发现材料结构在晶格常数(a)和(c)(表1)和电池行为(表2)方面根本没有差别。在约3wt%的LiF加入量及超过约3wt%加入量时,显现出含一些过渡金属的“LiF杂质”,导致该氧化物的电池性能降低。人们发现加入3wt%LiF在大约900C另外的3小时处理导致不含杂质的材料,具有相同的如不含任何添加剂的晶格常数(a)和(c),具有如较低LiF加入量样品同样的电池行为,但是具有约3.9g/cm3的高密度。同样发现LiF加入量超过约10wt%被认为将氟加入到了过渡金属氧化物的结构中。使用其他碱金属氟化物比如KF作为烧结试剂,当使用上面描述的方法时可得到希望的颗粒密度值和RVE值。
图5a、5b和5c图示说明氧化硼加入量对于在900°、3小时制备的不同氧化物组合物颗粒密度的影响。对于每一组合物所有的样品从同样的共沉淀得到。图形显示对于3个组合物x=0.1(图5a)、x=0.25(图5b)和x=0.375(图5c),在900℃、3小时制备的氧化物的颗粒密度与B2O3加入量的关系。对于所有的组合物,颗粒密度随氧化硼含量增加而增加。
表3列出了其中x=0.1和0.25的锂过渡金属氧化物的B2O3wt%、每一样品的颗粒密度、首次充电/放电能量、不可逆容量和RVE。
表3
表3显示对于x=0.1,当B2O3从0~1wt%变化时,最后的RVE增加从1583~1692Wh/L。使用其他硼化物,比如硼酸和硼酸锂作为烧结试剂,当使用上面描述的方法时得到希望的颗粒密度值和RVE值。
尽管参考优选实施方式已经描述了本发明,但本领域普通技术人员会意识到在不背离本发明精神和范围的前提下可以有形式和细节的变化。
权利要求
1.一种生产Liy[NixCo1-2xMnx]O2,其中0.025≤x≤0.45、0.9≤y≤1.3的方法,该方法包括混合[NixCo1-2xMnx]OH2、LiOH或者Li2CO3,和作为烧结试剂的碱金属氟化物和硼化物的一种或者两种;和加热得到的混合物,直到得到足够致密的用于锂离子电池的组合物Liy[NixCo1-2xMnx]O2。
2.权利要求1的方法,其中将得到的混合物加热到至少约900℃。
3.权利要求1的方法,其中将得到的混合物加热至少约3小时。
4.权利要求1的方法,其中将得到的混合物加热至少约6小时。
5.权利要求1的方法,其中混合的烧结试剂量大约为得到混合物的约0.1~约5.0wt%。
6.权利要求1的方法,其中混合的烧结试剂量大约为得到混合物的约0.2~约3.0wt%。
7.权利要求5的方法,其中将得到的混合物加热约3小时。
8.权利要求1的方法,其中混合的烧结试剂量小于约得到混合物的10wt%。
9.权利要求1的方法,特征在于得到的致密组合物显示出按Wh/L计至少约[1833-333x]的可逆体积比能量,其中0.025≤x≤0.45。
10.权利要求1的方法,其中得到的致密组合物的颗粒密度至少为约72%的理论密度。
11.权利要求1的方法,其中得到的致密组合物的颗粒密度为约3.3~4.0g/cm3。
12.权利要求1的方法,其中所述的烧结试剂是碱金属氟化物。
13.权利要求12的方法,其中所述的烧结试剂是LiF。
14.权利要求1的方法,其中所述的烧结试剂是硼的化合物。
15.权利要求14的方法,其中所述的烧结试剂选自氧化硼、硼酸和硼酸锂。
16.一种由权利要求1的方法生产的锂过渡金属氧化物组合物,显示出按Wh/L计特征在于由公式[1833-333x]表示的最低可逆体积比能量,其中0.025≤x≤0.45。
17.一种用于锂离子电池的锂过渡金属氧化物,通式为Liy[NixCo1-2xMnx]O2,其中0.025≤x≤0.45,0.9≤y≤1.3,显示出按Wh/L计特征在于由公式[1833-333x]表示的最低可逆体积比能量。
18.权利要求16的锂过渡金属氧化物,显示出颗粒密度为至少约72%的理论密度。
19.权利要求17的锂过渡金属氧化物,显示出颗粒密度为至少约72%的理论密度。
20.权利要求19的锂过渡金属氧化物,所述的锂过渡金属氧化物形成为锂离子电池电极,所述电池电极的可逆体积比能量为约1500~约2200Wh/L。
全文摘要
一种生产Li
文档编号H01M4/131GK1778003SQ200480006971
公开日2006年5月24日 申请日期2004年3月10日 优先权日2003年3月14日
发明者杰弗里·R·达恩, 塞韦里内·茹阿诺, 凯文·W·埃伯曼 申请人:3M创新有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1