负极以及电池的制作方法

文档序号:6901873阅读:305来源:国知局

专利名称::负极以及电池的制作方法
技术领域
:本发明涉及在负极集电体上具有负极活性物质层的负极以及包4舌该负才及的电池。
背景技术
:近年来,已经广泛使用便携式电子装置,例如组合摄像机(磁带录傳4几)、移动电话、以及笔记本式个人计算才几,并且非常需要求减少它们的尺寸和重量以及实现它们的长寿命。因此,已经开发了作为用于便携式电子装置电源的电池,尤其是能够提供高能量密度的轻JM匕二次电池。特别地,利用锂的嵌入和脱嵌用于充电和放电反应的二次电池(所谓的锂离子二次电池)是才及其有前景的,因为相比于铅电池和镍镉电池,这样的二次电池可以提供更高的能量密度。锂离子二次电池具有正才及、负才及以及电解液。负才及在负才及集电体上具有负才及活性物质层。作为包含在负极活性物质层中的负极活性物质,已经广泛使用诸如石墨的碳材料。近年来,随着高性能和多功能便携式电子装置的开发,要求进一步改善电池容量。因此,已经考虑使用硅、锡等代替碳材料。由于硅的理论容量(4199mAh/g)和锡的理论容量(994mAh/g)显著高于石墨的理i仑容量(372mAh/g),因此期4寺电池容量可以由jH^皮大大;也文善。然而,在使用硅等作为负极活性物质的情况下,嵌入锂的负极活性物质在充电时被高度活化。因此,电解液易于分解,并且锂易于被钝化。从而,当重复充电和放电时放电容量降低,因此很难获得充足的循环特性。因此,在使用硅等作为负极活性物质的情况下,也已经发明了各种装置以改善循环特性。具体地说,已经提出了在电解液中包含全氟聚醚的纟支术(例如,参见日本未审查专利申请7〉开第2002-305023号和第2006-269374号),以及在负才及的表面上i殳置含全氟聚醚的涂层的4支术(例如,参见日本未审查专利申诮v^开第2004-265609号)。此外,已经4是出了负^l用高分子材料如偏二氟乙烯的均聚物或共聚物包覆的技术(例如,参见日本未审查专利申请乂>开第2006-517719号)。
发明内容近年来,便携式电子装置的高性能和多功能被日益开发,并且电力消耗z顿向于增加。因此,频繁重复二次电;也的充电和》文电,由此循环特性倾向于容易^^皮降低。所以,期望进一步改善二次电池的循环特性。考虑到上述问题,在本发明中,期望提供一种能够改善循环特性的负才及以及电池。才艮据本发明的实施方式,提供了一种在设置于负才及集电体的负极活性物质层上包括涂层的负极,其中,所述涂层包含选自由具有化学式1或化学式2所示结构的氟树脂组成的组中的至少一种。化学式1m和n表示比率,并且m+n为1。根据本发明的实施方式,提供了一种电池,包括彼此相对的正极和负极,并且两者之间具有隔膜;以及电解液,其中,正极、负极、隔膜以及电解液中的至少一种包含选自由具有化学式1或化学式2所示结构的氟^f脂组成的组中的至少一种。h和k表示比率,并且h+k为l。化学式2化学式1{o—CF2—CF2^^0—CFh和k表示比率,并且h+k为l。化学式2{。—卜CF2^(0-CF2^CF3m和n表示比率,并且m+n为l。根据本发明实施方式的负极,由于设置在负极活性物质层上的涂层包含选自由具有化学式1或化学式2所示结构的氟树脂组成的组中的至少一种,因此可以改善电化学稳定性。这同样适用于以下情况,在本发明实施方式的电池中正才及、负极、隔膜以及电解液中的至少一种包含选自由具有化学式1或化学式2所示结构的氟树脂组成的组中的至少一种。因此,根据本发明实施方式的电池,即使当重复进4亍充电和》文电时,也可以防止电解液的分解反应。结果,可以改善循环4争寸生。通过以下描述,本发明的其它和进一步的目的、特征以及优点^^皮更充分;也呈王见。图2A和图2B是示出了图1所示的负才及的剖^L结构的SEM照片及其示意图3A和图3B是示出了图1所示的负极的另一剖视结构的SEM照片及其示意图;图4是示出了包括根据本发明实施方式的负极的第一电池的结构的剖—见图5是沿图4所示的第一电池的线V-V的剖—见图6是示出了图5所示的电池元件的放大部分的剖视图7是示出了包括才艮据本发明实施方式的负才及的第二电池的结构的剖3见图8是示出了图7所示的螺旋巻绕电极体的放大部分的剖视图9是示出了包4舌才艮据本发明实施方式的负才及的第三电池的结构的剖4见图10是沿图9所示的螺旋巻绕电极体的线X-X的剖视图;图ll是示出了图10所示的螺S走巻绕电4及体的;^大部分的剖教L图12是示出了实施例1-1中的负极的表面结构的SEM照片;图13是示出了实施例1-5中的负极的表面结构的SEM照片;图14是示出了负极活性物质中的氧含量与放电容量保持率之间的相互关系的曲线图15是示出了第二含氧区域的数量与放电容量保持率之间的相互关系的曲线图;图16是示出了负极集电体的表面的十点平均粗糙度与放电容量寸呆持率之间的相互关系的曲线图;以及图17是示出了摩尔比与方文电容量保持率之间的相互关系的曲线图。具体实施例方式在下文中,将参照附图详细地描述本发明的实施方式。图l示出了根据本发明实施方式的负极的剖视结构。负极例如用于如电池的电化学装置。该负才及具有有一对表面的负极集电体1、设置在该负极集电体1上的负极活性物质层2、以及设置在负极活性物质层2上的涂层3。负极集电体1优选由具有良好的电化学稳定性、良好的导电性、以及良好的机械强度的金属材料制成。作为这样的金属材料,例如,可以列举铜(Cu)、镍(Ni)、不锈钢等。特别地,铜是优选的,因为由此可以获得高的导电性。尤其是,上述金属材料优选包含一种或多种不与电极反应物形成金属间化合物的金属元素。当与电极反应物形成金属间化合物时,当才喿作电化学装置时(例如,当电池充电和》文电时),受到由于负极活性物质层2的膨胀和收缩引起的应力的影响,可能发生集电性降低并且负极活性物质层2与负极集电体1分离。作为上述金属元素,例如,可以列举铜、镍、钛(Ti)、铁(Fe)、铬(Cr)等。上述金属材料优选包含一种或多种与负极活性物质层2合金化的金属元素。从而,改善负极集电体1和负极活性物质层2之间的接触特性,因此,负极活性物质层2几乎不会与负极集电体1分离。作为不与电才及反应物形成金属间化合物而与负才及活性物质层2合金化的金属元素,例如,在负极活性物质层2包含硅作为负极活性物质的情况下,可以列举铜、镍、铁等。根据强度和导电性,这些金属元素是优选的。负极集电体1可以具有单层结构或多层结构。在负极集电体l具有多层结构的情况下,优选与负极活性物质层2邻近的层由与负极活性物质层2合金化的金属材料制成,而不与负才及活性物质层2邻近的层由其它金属材料制成。负极集电体1的表面优选^皮粗糙化。从而,由于所谓的糙面效应,可以改善负极集电体1和负极活性物质层2之间的接触特性。在这种情况下,至少将与负极活性物质层2相对的区域中的负极集电体1的表面相4造化就足够了。作为粗4造化方法,例如,可以列举通过电解处理等形成细颗并立的方法。电解处理是一种通过在电解槽中由电解法在负极集电体l的表面上形成细颗粒而提供凹凸度的方法。由电解处理^是供的铜箔通常称为"电解铜箔"。负极集电体1的表面的十点平均粗糙度Rz并没有特别限制,4旦是优选为1.5pm以上6.5nm以下,因为由此能进一步改善负极集电体1与负极活性物质层2之间的接触特性。更具体地说,如果十点平均粗糙度Rz小于1.5则存在不能获得充分的接触特性的可能性。同时,如果十点平均粗糙度Rz大于6.5Kim,则存在在负才及活性物质层2中包含许多孔,乂人而表面积^皮增大的可能性。负极活性物质层2包含作为负极活性物质的一种或多种能够嵌入和脱嵌电极反应物的负极材料,并且根据需要还可以包含其他材料如导电剂和粘结剂。负极活性物质层2可以设置在负极集电体1的两个面上,或者可以^f又i殳置在负才及集电体1的单个面上。作为能够嵌入和脱嵌电极反应物的负极材料,例如,可以列举能够嵌入和脱嵌电4及反应物并包含金属元素和准金属元素中的至少一种作为构成元素的材料。优选使用这样的负极材料,因为由此可以获得高能量密度。这样的负极材料可以是金属元素或准金属元素的单质、合金、或化合物;或可以至少部分具有其一种或多种相。在本发明中,除了由两种或多种金属元素构成的合金以外,"合金"还包括含有一种或多种金属元素以及一种或多种准金属元素的合金。而且,"合金,,可以包含非金属元素。其结构包括固溶体、共晶(低共熔混合物)、金属间化合物、以及它们的两种或多种共存的结构。作为这样的金属元素或这样的准金属元素,例如,可以列举能够与电极反应物形成合金的金属元素或准金属元素。具体地说,可以列举镁(Mg)、硼(B)、铝(Al)、镓(Ga)、铟(In)、硅、锗(Ge)、锡、铅(Pb)、铋(Bi)、镉(Cd)、银(Ag)、锌、铪(Hf)、锆(Zr)、钇(Y)、把(Pd)、铂(Pt)等。特别地,优选使用硅和锡中的至少一种,并且更优选使用硅,由于硅和锡具有高的嵌入和脱嵌电极反应物的能力,从而可以提供高能量密度。作为包含石圭和4易中的至少一种的负才及材冲牛,例如,可以列举石圭的单质、合金、或化合物;锡的单质、合金、或化合物;或至少部分具有其一种或多种相的材^K可以单独^f吏用其中的每一种,或者可以通过混合^f吏用其中的多种。作为石圭的合金,例如,可以列举包含选自由4易、4臬、铜、4失、4古、4孟、4辛、铟、4艮、4太、锗、铋、、4弟(Sb)、以及4各纟且成的组中的至少一种作为除了硅以外的第二元素的合金。作为硅的化合物,例如,可以列举包含氧或碳(C)的化合物,并且》圭的化合物可以包含除了硅以外的上述第二元素。可以列举的石圭的合金或化合物的实侈']包4舌SiB4、SiB6、Mg2Si、Ni2Si、TiSi2、MoSi2、CoSi2、NiSi2、CaSi2、CrSi2、Cu5Si、FeSi2、MnSi2、NbSi2、TaSi2、VSi2、WSi2、ZnSi2、SiC、Si3N4、Si2N20、SiOv(0<vS2)、SnOw(0<wS2)、LiSiO等。作为锡的合金,例如,可以列举包含选自由硅、镍、铜、铁、钴、锰、锌、铟、4艮、钬、锗、铋、、锑、以及4各组成的组中的至少一种作为除了锡以外的第二元素的合金。作为锡的化合物,例如,可以列举包含氧或碳的化合物,并且可以包含除了锡以外的上述第二元素。锡的合金或化合物的实例包括SnSi03、LiSnO、Mg2Sn等。尤其是,作为包含石圭和锡中的至少一种的负才及材料,例如,包含除了作为第一元素的锡之外的第二元素和第三元素的负极材料是优选的。作为第二元素,可以列举选自由钴、铁、镁、钛、钒(V)、铬、锰、镍、铜、锌、镓、锆、铌(Nb)、钼、银、铟、铈(Ce)、4会、钽(Ta)、鴒(W)、铋、、以及^圭组成的组中的至少一种。作为第三元素,可以列举选自由硼、碳、铝、以及磷(P)组成的组中的至少一种。在包含第二元素和第三元素的情况下,可以改善循环特性。特别地,包含锡、钴、以及碳作为构成元素的含SnCoC材料是优选的,其中碳含量为9.9wt。/o以上29.7wt。/o以下,而钴占锡和钴总和的比率(Co/(Sn+Co))为30wt。/。以上70wt。/。以下。在这样的组成范围内,可以获得高能量密度。含SnCoC材料可以才艮据需要进一步包含其它元素。作为其它元素,例^口,石圭、4失、4臬、4各、4因、银、4者、4太、4目、4吕、石粦、4家、铋、等是优选的。可以包含其两种或多种,因为由此可以获得更高的效果。含SnCoC材料具有包含锡、钴、以及碳的相。这样的相优选具有低结晶性结构或非晶态结构。而且,在含SnCoC材料中,作为属元素结合。从而防止锡等的凝聚或结晶。含SnCoC材料可以例如通过混合每一元素的原料,在电炉、高频感应炉、电弧熔化炉等中溶解所得的混合物,然后使所得物凝固而形成。另外,含SnCoC材料可以通过诸如气体雾化和水雾化的各种雾化方法,各种辊压方法,或使用机械化学反应的方法如机械合金化方法和机械研磨方法来形成。特另'J地,含SnCoC材料优选通过4吏用才几械化学反应的方法来形成,因为由此负极活性物质可以具有低的结晶性结构或非晶态结构。对于使用机械化学反应的方法,例如,使用诸如行星式球磨机和超微磨碎机的制造装置。作为用于4企查元素结合状态的测量方法,例如,可以使用X射线光电子能谱法(XPS)。在XPS中,在石墨的情况下,在进行了能量校正使得在84.0eV获得金原子的4f轨道(Au4f)的峰的装置中,观测到碳的ls轨道(Cls)的峰位于284.5eV。在表面污染碳的情况下,观测到峰位于284.8eV。同时,在碳元素的更高电荷密度的情况下,例如,在石友与金属元素或准金属元素结合的情况下,在小于284.5eV的区域中》见测到Cls的峰。即,在小于284.5eV的区域中观测到含SnCoC材料的Cls的合成波的峰的情况下,在含SnCoC材料中包含的至少部分碳键合了作为其它元素的金属元素或准金属元素。在XPS中,例如,Cls的峰用于校正光谱能量轴。由于表面污染碳通常存在于表面上,所以表面污染碳的Cls峰设定在284.8eV,其用作能量基准。在XPS中,获得作为包括表面污染碳的峰和含SnCoC材料中碳的峰形式的Cls的峰波形。因此,例如,通过借助于商购软件分析波形,分离表面污染碳的峰和含SnCoC材料中碳的峰。在波形分析中,存在于最低束缚能量侧的主峰的位置设定为能量基准(284.8eV)。使用硅的单质、合金、或化合物;锡的单质、合金、或化合物;或至少部分具有其一种或多种相的材料作为负极材料的负极活性物质层2通过例如气相沉积法、液相沉积法、喷涂法、涂覆法、烧成法、或这些方法中的两种以上的组合来形成。在这种情况下,负才及集流体1和负才及活性物质层2优选在其界面的至少部分上合金化。具体地"i兌,在它们的界面上,负才及集流体1的元素可以扩散到负极活性物质层2中;或负极活性物质层2的元素可以扩散到负极集流体l中;或者这些元素可以彼此扩散。从而,可以防止由于在充电和放电过程中负极活性物质层2的膨胀和收缩引起的破坏,并且可以改善负极集流体1和负极活性物质层2之间的电子传导性。作为气相沉积法,例如,可以列举物理沉积法或4匕学沉积法。具体地说,可以列举真空蒸发法、溅射法、离子镀法、激光消融法、热CVD(化学气相沉积)法、等离子体CVD法等。作为液相沉积法,可以使用如电镀和无电电镀的已知技术。涂覆法是例如一种这中,并用所得物涂覆负极集流体。烧成法是例如一种这样的方法,负极集电体通过涂覆法来涂覆,然后在高于粘结剂等的熔点的温度下进4于热处理。对于烧成法,也可以采用已知的4支术,例如,空气烧成法、反应烧成法、以及热压烧成法。除了上述负极材料外,作为能够嵌入和脱嵌电极反应物的负极材料,例如,可以列举碳材料。作为碳材料,例如,可以列举石墨化爿碳、(002)面的间距为0.37nm以上的非石墨化^^、(002)面的间距为0.34nm以下的石墨等。更具体地说,可以列举热解碳、焦炭、玻璃化碳纤维、有机高分子化合物烧成体、活性炭、炭黑等。其中,焦炭包括沥青焦炭、针状焦炭、石油焦炭等。有机高分子化合物烧成体通过在适当的温度下烧成和石灰化酚树脂、吹喃树脂等而获得。在碳材料中,伴随电极反应物的嵌入和脱嵌的晶体结构变化非常小。因此,通过使用碳材料,可以获得高能量密度并且可以获得优异的循环特性。此外,碳材料还用作导电剂,因此优选使用碳材料。碳材料的形状可以是纤维状、球形、粒状以及鳞片状中的任何一种。而且,作为能够嵌入和脱嵌电极反应物的负极材料,例如,可以列举能够嵌入和脱嵌电极反应物的金属氧化物、高分子化合物等。作为金属氧化物,例如,可以列举氧化铁、氧化钌、氧化钼等。作为高分子化合物,例如,可以列举聚乙炔、聚苯胺、聚吡咯等。不用说,作为能够嵌入和脱嵌电极反应物的负极材料,可以使用除了上述材津+之外的材津牛。而且,可以通过混合,4吏用指定的两种以上的上述一系列能够嵌入和脱嵌电极反应物的负极材料。负^l活性物质优选包含氧作为构成元素,因为由此可以防止负极活性物质层2的膨胀和收缩。在负极活性物质具有硅的情况下,氧的至少部分优选与硅的一部分键合。键合状态可以是以一氧化硅、二氧化硅的形式,或者以其他亚稳态的形式。负极活性物质中的氧含量优选为3原子数%以上40原子数%以下,因为由此可以获得更高的效果。具体地说,如果氧含量小于3原子数%,则存在不能充分地抑制负极活性物质层2的膨胀和收缩的可能性。同时,如果氧含量大于40原子数%,在电阻可能过度增加。当在电化学装置中负极与电解液一起使用时,负极活性物质层2不包括由电解液等的分解形成的涂层。即,当计算负;f及活性物质中的氧含量时,上述涂层中的氧不包括在计算中。为了4吏负才及活性物质包含氧,例如,当通过气相沉积法沉积负极活性物质时可以将氧气连续地引入到室中。尤其是,当期望的氧含量不仅通过引入氧气而获得时,可以将液体(例如,水蒸汽等)引入到室中作为氧的供应源。而且,负极活性物质优选包含选自由铁、钴、镍、铬、钛、以及钼组成的组中的至少一种金属元素作为构成元素。乂人而,可以改善负极活性物质的粘合特性,防止负极活性物质层2的膨胀和收缩,并且可以降低负极活性物质的电阻。负极活性物质中的金属元素含量可以随意i殳定。然而,在负才及用于电池的情况下,金属元素的过高含量是不实用的,因为在这样的情况下,必需增加负极活性物质层2的厚度以获得期望的电池容量,从而容易引起负极活性物质层2与负极集电体1的分离以及负极活性物质层2的损坏。为了4吏负才及活性物质包含上述金属元素,例如,当通过作为气相沉积法的蒸发法来沉积负才及活性物质时,可以4吏用混合有金属元素的蒸发源,或者可以4吏用多个蒸发源。而且,优选负才及活性物质具有含氧区域,在该含氧区域中,负极活性物质在厚度方向上具有氧,并且在含氧区域中的氧含量大于在其他区域中的氧含量。从而,可以防止负极活性物质层2的膨胀和收缩。含氧区域以外的区域有可能包含氧或不包含氧。不用说,当含氧区域以外的区域也具有氧时,其氧含量低于含氧区域中的氧含量。在这种情况下,为了进一步抑制负极活性物质层2的膨胀和收缩,优选含氧区域以外的区域也具有氧,并且负才及活性物质包括第一含氧区域(具有更^f氐的氧含量的区域)和比第一含氧区域具有更高的氧含量的第二含氧区域(具有更高的氧含量的区域)。在这种情况下,优选第二含氧区域夹在第一含氧区域之间。更优选第一含氧区域和第二含氧区域交替并反复地层叠。乂人而,可以获得更高的效果。第一含氧区域中的氧含量优选尽可能小。第二含氧区域中的氧含量例如类似于在上述负极活性物质包含氧的情况下的氧含量。为了使负极活性物质包括第一含氧区域和第二含氧区域,例如,当通过气相沉积法沉积负极活性物质时,氧气可以被间歇地引入到室中或者改变引入到室中的氧气量。不用说,当期望的氧含量不能仅仅通过引入氧气而获得时,可以将液体(例如,水蒸气等)引入到室中。有可能第一含氧区域的氧含量与第二含氧区域的氧含量的差别明显,或者第一含氧区域的氧含量与第二含氧区域的氧含量的差别不明显。尤其是,在上述氧气的引入量连续变化时,氧含量也可以连续变化。在氧气的引入量间歇变化的情况下,第一含氧区域和第二含氧区域变成所谓的"层"。同时,在氧气的引入量连续变化时,第一含氧区域和第二含氧区域变成"层状(lamellarstate)"而不是"层"。在后者的情况下,负极活性物质中的氧含量以高低起伏的状态分布。在这种情况下,优选氧含量在第一含氧区域和第二含氧区域之间递增或连续变化。在氧含量快速变化的情况下,可能降低离子扩散特性,也可能增加电阻。尤其是,负极活性物质可以由多个颗粒构成。在负极活性物质通过诸如气相沉积法的沉积方法形成的情况下,负极活性物质可以具有通过单个沉积步骤形成的单层结构,或者可以具有通过多个沉积步-骤形成的多层结构。然而,在沉积步骤中,为了防止在伴随高温的蒸发方法等沉积负极活性物质时负极集电体1的热损伤,负极活性物质优选具有多层结构。当负才及活性物质的沉积步骤^皮分成几个步骤(负极活性物质顺序形成并沉积)时,与负才及活性物质通过单个沉积步^^形成的情况相比,负才及集电体1暴露在高温下的时间被缩短。而且,负极活性物质优选连接于负才及集电体1,因为由此可以提高负极活性物质层2与负极集电体1的接触强度。为了使负极活性物质与负极集电体1连接,例如,通过气相沉积法等在负极集电体1上沉积负极活性物质,负极活性物质从负极集电体1的表面开始在负极活性物质层2的厚度方向上生长。在这种情况下,优选通过气相沉积法来沉积负才及活性物质,并且如上所述,负才及集电体1和负极活性物质层2至少在之间的界面上被合金化。在负才及活性物质由多个颗粒构成的情况下,负极活性物质层2优选包含不与电极反应物合金化的金属材料以及负极活性物质。由于负极活性物质均与之间的金属材料彼此结合,因此可以防止负极活性物质层2的膨胀和收缩。在这种情况下,特别是当负极活性物质通过气相沉积法等而沉积时,同才羊可以获^/寻高粘结特性。金属材料具有不与电极反应物合金化的金属元素。作为这样的金属元素,例如,可以列举选自由4失、#、4臬、《辛以及铜组成的组中的至少一种。不用说,金属材料还可以包含除了上述金属元素外的金属元素。本发明中的"金属材料"是一种广义术语,因此金属材料可以是单质、合金以及化合物中的一种,只要该金属材料包含不与电极反应物合金化的金属元素。每单位面积的负才及活性物质的摩尔凄tMl与每单位面积的金属材料的摩尔数M2之间的摩尔比M2/M1没有特别限制,但是优选1/15以上7/1以下。,人而,可以大大防止负才及活性物质层2的膨月长和收缩。将通过负才及活性物质由多个颗粒构成并在其颗粒中具有多层结构的情况下的实例来描述负才及的详细结构。图2A和图2B示出了图1所示的负才及集电体1和负才及活性物质层2的部分放大剖视图。图2A是扫描电子显微镜(SEM)照片(二次电子图像),而图2B是图2A所示的SEM图像的示意图。在负才及活性物质由多个颗粒(负才及活性物质颗粒201)构成的情况下,在负极活性物质层2中产生多个间隙和空隙。更具体地说,在负极集电体1的粗糙表面上,存在多个突起(例如,由电解处理形成的细颗4立)。在这种情况下,通过i^如气相沉4只法的沉积方法在负极集电体l的表面上沉积负极活性物质几次,以形成负极活性物质的层叠体,从而对于上述每一个突起,负极活性物质颗粒201在厚度方向上递增性生长。根据多个负极活性物质颗粒201的密集结构、多层结构以及表面结构,产生多个间隙202和203以及多个空隙204。对于上述每一突起,当负才及活性物质颗4立201生长时,间隙202在彼此邻近的各个负极活性物质颗粒201之间产生。当负极活性物质颗粒201具有多层结构时,间隙203在各层之间产生。当纤维状细突起(未示出)在负极活性物质颗粒201的表面上产生时,在突起之间产生空隙204。空隙204可能在负才及活性物质颗粒201的整个表面上产生,也可能在其部分表面上产生。在每次形成负极活性物质颗粒201时,上述纤维状细突起在负极活性物质颗粒201的表面上产生。因此,空隙204不仅在负极活性物质颗粒201的最上表面(暴露面)上产生,而且可以在每一层之间产生。图3A和图3B示出了负才及集电体1和负才及活性物质层2的另一剖4见结构,并且示出了对应于图2A和图2B的SEM照片和示意图。负极活性物质层2在间隙202和203以及空隙204中具有不与上述电极反应物合金化的金属材料205。多个负极活性物质颗粒201与之间的金属材料205接合,从而可以防止负极活性物质层2的膨胀和收缩。在这种情况下,间隙202和203以及空隙204中的至少一个可以具有金属才才冲+205,并且特别是所有间隙202和203以及空隙204优选均具有金属材并+205,因为由此可以获得更高的效果。金属材料205侵入到位于邻近的负极活性物质颗粒201之间的间隙202中。更具体地i兌,在负才及活性物质颗粒201通过气相沉积法等形成的情况下,如上所述,对存在于负极集电体1的表面上的每一突起生长负才及活性物质颗粒201,因此在负极活性物质颗粒201之间产生间隙202。间隙202引起负极活性物质层2的粘结特性降<氐。因此,为了改善粘结特性,将金属材并牛205填充到上述间隙202中。在这种情况下,填充间隙202的一部分就足够了,^f旦是优选更大的填充量,因为由此可以进一步改善负才及活性物质层2的粘结特性。金属材料205的填充量优选为20%以上,更优选40%以上,并且更优选80%以上。金属材料205侵入到负极活性物质颗粒201的间隙203中。更具体地i兌,在负才及活性物质颗粒201具有多层结构的情况下,间隙203在各层之间产生。与上述间隙202—样,间隙203也引起负极活性物质层2的粘结特性降低。因此,为了改善粘结特性,将金属材料205填充在上述间隙203中。在这种情况下,填充间隙的一部分就足够了,4旦是优选更大的填充量,因为由此可以进一步改善负极活性物质层2的粘结特性。而且,为了防止在负才及活性物质颗冲立201的最上层的暴露面上产生的纤维状细突起(未示出)对电化学装置性能的不利影响,用金属材料205覆盖突起。更具体地说,在负极活性物质颗粒201通过气相沉积法等形成的情况下,纤维状细突起在其表面上产生,因此空隙204在突起之间产生。空隙204引起负极活性物质的表面积增加,因此在表面上形成的不可逆涂层的量也增加,可能导致电核_反应的进程降低。因此,为了避免电极反应的进程降低,用金属材料205来填充上述空隙204。在这种情况下,填充空隙204的一部分至少就足够了,但是优选更大的填充量,因为由此可以大大防止电极反应的进程的降低。金属材料205散布在负极活性物质颗粒221的暴露面(最上面)的描述是指上述细突起存在于金属材料205散布的区域中。不用说,金属材料205不一定是散布在负极活性物质颗粒201的表面上,也可以覆盖其整个表面。侵入到间隙203中的金属材料205具有用来填充在各层中的空隙204中的功能。更具体地说,在负极活性物质多次沉积的情况下,对于每一次沉积,上述细突起就在其表面产生。因此,金属材料205不仅填充在各层的间隙203中,而且填充在各层的空隙204中。金属材料205通过例如气相沉积法和液相沉积法中的至少一种而形成。特别地,金属材料205优选通过液相沉积法形成。从而,金属材料205容易侵入间隙202和203以及空隙204中。作为气相沉积法,例如,可以列举类似于形成负极活性物质的方法。而且,作为液相沉积法,例如,可以列举诸如电镀法和化学镀法的镀覆法。特别地,电镀法是优选的,因为由此金属材料205更易于侵入到间隙202和203以及空隙204中。尤其是,金属材料205优选具有结晶性,因为与金属材料205不具有结晶性(无定形状态)的情况相比,整个负极的电阻降低,并且电极反应物在负极中容易嵌入和脱嵌。而且,在这种情况下,在电化学装置的初始操作时(例如,在电池的初始充电时),电极反应物^皮均匀地嵌入和脱嵌,并且在负才及中几乎不会产生局部应力,因此可以抑制褶皱的发生。在图2A和图2B以及图3A和图3B中,已经乡合出了负才及活性物质具有多层结构,并且间隙202和203两者均存在于负极活性物质层2中的情况的描述,因此负极活性物质层2在间隙202和203中具有金属材料205。同时,在负极活性具有单层结构,并且仅间隙202存在于负极活性物质层2中的情况下,负极活性物质层2仅在间隙202中具有金属材料205。不用说,在这两种情况下,由于空隙204存在于负极活性物质层2中,因此负极活性物质层2在空隙204中具有金属材料205。作为导电剂,例如,可以列举碳材3阵如石墨、炭黑、乙炔黑、以及科琴黑(Ketjenblack)。可以单独使用这样的碳材料,或者可以通过混合使用它们中的多种。导电剂可以是金属材料、聚合物等,只要该材料具有导电性。作为粘结剂,例如,可以列举合成橡胶,如丁苯橡胶、氟化橡胶以及三元乙丙橡胶;或高分子材料,如聚偏二氟乙烯等。可以单独使用其中的一种,或者可以通过混合4吏用它们中的多种。涂层3包含选自由具有化学式1或化学式2所示结构的氟树脂(在下文中,简称为"氟树脂")组成的组中的至少一种。当将具有化学式1或化学式2所示结构的氟树脂设置在负极活性物质层2上作为涂层时,由此可以改善负极的化学稳定性。涂层3可以设置在负极集电体1的两个面上,或者可以^f义没置在单个面上。氟树脂的结构可以通过例如借助于XPS检查涂层3中的元素4建合状态来确定。化学式1<formula>formulaseeoriginaldocumentpage36</formula>h和k表示比率,并且h+k为1。化学式2<formula>formulaseeoriginaldocumentpage37</formula>m和n表示比率,并且m+n为l。可以任意设定化学式1所示的h和k之间的比率(h:k)。特别地,h〉k是优选的,因为由此可以进一步改善涂层3的化学稳定性。这同样类似地适用于化学式2所示的m和n之间的比率。氟树脂总体上可以具有任何结构,只要该氟树脂具有化学式1或化学式2所示的结构。即,氟树脂的末端可以为全氟基团如全氟烷基,或者可以为任何其他各种基团。当氟树脂的末端是全氟烷基时,氟树脂是所谓的全氟聚醚。作为全氟烷基,例如,可以列举三氟甲基(-CF3)等。然而,也可以列举除了三氟甲基以外的全氟烷基。尤其是,氟树脂总体上优选具有化学式3所示的结构。在这种情况下,氟树脂通过末端的Rl和R2固定在负极活性物质层2(负极活性物质)的表面上。因此,与其末端是全氟基团的情况相比,涂层3与负极活性物质层2的接触强度增加。在这种情况下,负极活性物质优选包含选自由硅的单质、合金和化合物,以及锡的单质、合金和化合物组成的组中的至少一种。从而,氟初于脂牢固地固定在负极活性物质的表面上,并且因此大大增加涂层3的接触强度。化学式3<formula>formulaseeoriginaldocumentpage37</formula>X为4匕学式1或4b学式2所示的结构。Rl和R2中的至少一种为能够固定在负极活性物质层的表面上的基团。化学式3所示的R1和R2中的至少一种可以是任何基团,只要该基团可以固定在负极活性物质的表面上。"固定,,是指与其末端为全氟烷基的情况相比,负极活性物质与涂层3之间的相互作用(接触力)增强的状态。这样的状态包括,例如,吸附、粘结、附着等。作为Rl和R2中的至少一种,例如,可以列举羟基(-OH)、西旨基(-COOR)、硅烷基(-SiR3)、烷氧基硅烷基(-Si(OR)3)、磷酸酯基(-H2P04)、氨基(-NR2)、酰胺基(-CONR2)、氰基(-CCEN)、异氰酸酯基(-N二C:O)等,因为由此可以增大涂层3的接触强度。上述各基团中的R可以为任何基团,只要它为一价基诸如氢和烷基。更具体地说,R1和R2中的至少一种具有化学式4所示的结构。当化学式4中的p为0或1时,在某些情况下包括桥氧基(-O-),并且在某些情况下不包括。这同样适用于R3(q)至R4(r)。化学式11中的R7和R8可以是相同的或不同的。这同样适用于化学式12至14以及4匕学式16所示的R9至R18。化学式4p、q以及r是0或l。R3是化学式5所示的二价连接基,R4是化学式6或化学式7所示的二价连接基,以及R5是化学式8至化学式17所示的一^f介基。化学式5和An是1以上的整数,化学式6n是1以上的整数,化学式7-c-IIo化学式8{o—CH2—CH2^~OHn是0至10的整数。化学式9—0_CH2—CH—CH2—OHOH化学式10<formula>formulaseeoriginaldocumentpage40</formula>R6是氢、10以下石友数的烷基或-CH2-CN。化学式11R7和R8是氢或20以下碳ft的烷基,化学式12<formula>formulaseeoriginaldocumentpage40</formula>R9至R11是氢、卣素、10以下碳凄t的烷基、IO以下碳数的亚烷基或10以下碳数的烷氧基。化学式13<formula>formulaseeoriginaldocumentpage40</formula>R12和R13是氢、羟基、卣素或10以下碳数的烷基e4t学式14R14和R15是氢或10以下碳数的烷基。化学式15——N=C=0化学式16R16_C—R17R18R16至R18是氪或卣素。化学式17—C三N特别地,化学式8或化学式9所示的结构或化学式12所示的结构(在R9至R11为烷氧基的情况下)是优选的,并且化学式12所示的结构是更优选的,因为由此可以获得更高的效果。在化学式8以及化学式10至化学式14中限定碳数的原因如下。如果碳数过大,则在溶剂等中的溶解度变低。在这种情况下,当涂层3通过诸如浸渍法的液相沉积法而形成时,很难艮好再现地控制形成量(涂覆量)。作为化学式3和化学式4所示的Rl和R2的具体实例,例如,可以列举化学式18(1)至化学式20(7)所示的基团。4b学式18<formula>formulaseeoriginaldocumentpage42</formula>化学式19<formula>formulaseeoriginaldocumentpage42</formula><formula>formulaseeoriginaldocumentpage43</formula>化学式4所示的结构(化学式5至化学式17所示的结构)与化学式18(1)至化学式20(7)所示的一系列基团之间的相互关系将描述如下。化学式18(1)至18(4)所示的基团是其中p、q以及r为O,并且R5为化学式12(R9至R11为烷氧基)的基团。化学式19(1)所示的基团是其中p和q为0,r为l,R4为化学式6(n为1),并且R5为化学式8(n为0)的基团。化学式19(2)所示的基团是其中p和q为0,r为1,R4为化学式6(n为1),并且R5为化学式8(n为2)的基团。化学式19(3)所示的基团是其中p和q为0,r为1,R4为4匕学式6(n为1),并且R5为4匕学式9的基团。化学式19(4)所示的基团是其中p、q和r为O,并且R5为化学式10(R6为曱基)的基团。化学式19(5)所示的基团是其中p和q为0,r为1,R4为4匕学式6(n为1),并且R5为4匕学式13(R12和R13为氢)的基团。化学式19(6)所示的基团是其中p和q为0,r为1,R4为4匕学式7,以及R5为^:学式8(n为0)的基团。化学式19(7)所示的基团是其中p、q和r为0,并且R5为化学式11(R7和R8为氢)的基团。化学式20(1)所示的基团是其中p、q和r为0,并且R5为化学式11(R7为氢,而R8为十八烷基)的基团。化学式20(2)所示的基团是其中p牙口q为0,r为1,R4为4b学式6(n为1),并且R5为化学式14(R14和R15为氢)的基团。化学式20(3)所示的基团是其中p和q为O,r为l,R4为4匕学式6(n为1),并且R5为4匕学式15的基团。化学式20(4)所示的基团是其中p、q和r为O,并且R5为化学式10(R6为-CHrCN)的基团。化学式20(5)所示的基团是其中p和r为1,q为0,R4为4匕学式6(n为1),并且R5为化学式17的基团。化学式20(6)所示的基团是其中p和r为0,q为1,R3为化学式5(n为1),并且R5为化学式8(n为0)的基团。化学式20(7)所示的基团是其中p和q为0,r为l,R4为化学式6(n为1),并且R5为化学式16(R16至R18为氢)的基团。特别地,具有化学式18(1)至18(4)或化学式19(1)至19(3)所示结构的氟树脂是优选的,并且具有化学式18(1)至18(4)所示结构的氟树脂是更优选的,因为在电极反应中涂层3的存在电极反应物很难4皮消库毛,由此可以改善电才及反应效率。涂层3可以通过例如浸渍法、涂覆法、喷涂法等而形成。具体地说,由浸渍法代表的液相沉积法是优选的,因为可以容易地形成具有足够膜厚度的涂层3。然而,涂层3可以通过其他方法而形成。尤其是,当包含氟树脂的涂层3设置在负极活性物质层2上时,涂层3的表面优选具有电极反应物的氟化物(在下文中,简称为"氟化物")。氟化物防止负极活性物质层2的膨胀和收缩并使负极活性物质的表面积保持较小。由此,可以进一步改善负极的化学稳定性。氟化物在电极反应中(例如,在电池的充电和放电中)通过电极反应物与氟初于脂中的氟之间的反应而形成。例如,在负才及用于包含4里作为电极反应物的电池的情况下,氟化物包括氟化锂。氟化物可以以膜的状态或以颗粒的状态形成在涂层3的表面上。在氟化物形成在涂层3的表面上的情况下,存在这样的倾向,氟化物的形成几乎在一次电极反应(第一次电极反应)中完成,并且氟化物几乎不通过随后的电极反应(第二次电极反应和以后的电才及反应)形成。因此,如果氟化物在涂层3的表面上产生,则可以确定是否在负极发起了电极反应,而与负极的历史(到此为止在负极中重复的电极反应的次数)无关。换句话说,当氟化物在涂层3的表面上产生时,意味着在负极中已经发生了电极反应。上述"一次电极反应"意味着,在负4及用于电池时在充电和》文电的情况下,在通常的(实际的)条件下对电池进行充电和放电的情形,但并不意味着在诸如过充电的特殊条件下对电池进行充电和放电的情形。例如,通过以下步艰i来形成负才及。首先,制备由电解铜箔等制成的负极集电体1。之后,通过气相沉积法等在负极集电体1的表面上沉积负极活性物质以形成负极活性物质层2。当通过气相沉积法来沉积负^l活性物质时,可以通过l个沉积步骤来形成单层结构,或者通过多个沉积步骤来形成多层结构。尤其是,在负极活性物质形成为多层结构的情况下,可以在负极集电体1相对于蒸发源往复运动的同时,多次沉积负极活性物质,也可以使负极电集体l相对蒸发源保持固定,反复打开和关闭遮挡板的同时,多次沉积负极活性物质。最后,制备其中氟树脂溶解于溶剂等中的溶液。之后,将形成有负极活性物质层2的负极集电体l浸渍到溶液中,取出并干燥以形成涂层3。从而,完成负极的制备。根据该负极,设置在负极活性物质层2上的涂层3包含选自具有化学式1或化学式2所示结构的氟树脂中的至少一种。因此,与没有设置涂层3的情况相比,可以改善负极的化学稳定性。当负极活性物质包含高度活性的硅或锡时,这样的作用特别显著。结果,该负极有助于改善使用该负极的电化学装置的循环特性。尤其是,当氟树脂具有化学式3所示的结构时,更特别地,当氟树脂具有氟树脂的末端(R1,R2)为羟基等的结构时,或者当氟树脂具有化学式4所示的结构时,与末端为全氟烷基的情况相比,可以4是高涂层3与负才及活性物质层2的4妄触强度,因此可以获得更高的效果。而且,当在涂层3的表面上存在电才及反应物的氟化物时,可以进一步改善负极的化学稳定性,因此可以获得更高的效果。而且,当负极活性物质具有氧并且负极活性物质中的氧含量在3原子凄"/。以上40原子凄t。/o以下时,或者当负才及活'l"生物质包含选自由铁、钴、镍、钛、铬以及钼组成的组中的至少一种时,或者当负极活性物质在厚度方向上具有含氧区域(其中存在氧并且其氧含量高于其他区域的区域)时,可以获得更高的效果。而且,当负极集电体1的表面的十点平均粗糙度Rz为1.5pm以上6.5pm以下时,可以改善负才及集电体1与负才及活性物质层2之间的接触特性,因此可以获得更高的效果。此外,当负极活性物质层2具有不与电极反应物合金化的金属材料以及负才及活性物质时,可以改善负才及活性物质的粘结特性并且可以防止负极活性物质层2的膨胀和收缩,因此可以获得更高度的岁文果。在这种情况下,当金属材并+通过液相沉积法而形成时,可以获得更高的效果。而且,当负极活性物质与金属材料之间的摩尔比M2/M1为1/15以上7/1以下时,可以获4寻更高的凌文果。接着,在下文中,将给出上述负极的使用实例的描述。作为电4匕学装置的实例,本文中采用电池。负才及如下用于电池。本文描述的电池例如,包括「二波此相对的正才及和负才及,并且两者之间具有隔膜,以及电解液。电池是锂离子二次电池,其中负极容量基于作为电极反应的锂的嵌入和脱嵌来表达。正极在正极集电体上具有正4及活性物质层。电解液包含溶剂和电解质盐。在二次电池中,正极、负极、隔膜、以及电解液中的至少一种构成部分包含选自具有化学式1或化学式2所示结构的氟树脂中的至少一种。因此,可以改善包含氟树脂的构成部分的化学稳定性,并且由此可以防止电解液的分解反应。在正极和负极包含氟树脂的情况下,如同对上述负极描述的那样,包含氟树脂的涂层设置在正极活性物质层或负极活性物质层上。在电解液包含氟树脂的情况下,氟树脂分散在溶剂中。在这种情况下,全部氟树脂可以溶解于溶剂中,或者仅其部分可以溶解于其中。在隔膜具有氟树脂的情况下,包含氟树脂的涂层设置在其单个面或两个面上。包含氟树脂的构成部分可以仅是正极、负极、隔膜以及电解液中的一种。然而,优选正4及、负极、隔膜以及电解液中的两种包含氟树脂,并且更优选其全部包含氟树脂,因为由此可以大大防止电解液的分解反应。特别地,当限于由包含氟树脂的两种构成部分构成的组合时,负极和隔膜的组合是优选的,因为由此可以获得更高的效果。在正极、负极、隔膜以及电解液中的仅一种包含氟树脂时,优选正极、负极或隔膜包含氟树脂,并且更优选负极包含氟树脂,因为由jt匕可以大大防止分解反应。二次电池的类型(电池结构)没有特别限制。在下文中,将对采耳又方形二次电池、圆柱形二次电池、以及层压膜型二次电池作为电池结构的实例,负极包含氟树脂的情况对二次电池给出详细描述。第一电池图4和图5示出了第一电池的剖-观结构。图5示出了沿图4所示的线V-V的剖一见图。如上所述,该电池是锂离子二次电池,其中负极22的容量基于作为电极反应物的锂的嵌入和脱嵌来表示。在该二次电池中,在电池壳11内主要包含具有扁平螺旋巻绕结构的电池元件20。电池壳11例如是方形包装件。如图5所示,方形包装件在长度方向具有横截面为矩形或近似矩形(包括部分曲线)的形状。方形包装件不4又构成矩形形4犬的方形电池,而且构成椭圆形形爿犬的方形电池。即,方形包装件是指具有底部的矩形容器状部件,或具有底部的椭圓形容器状部件,其分别具有矩形形状的开口或通过由直线连接圆弧而形成的近似矩形形状(椭圓形形状)的开口。图5示出了电池壳11具有矩形;境截面形状的情况。包^^舌电池壳11的电池结构^皮称为方形结构。电池壳ll由例如含铁、铝(A1)、或它们的合金的金属材料制成。电池壳11还可以具有作为电才及端子的功能。在这种情况下,通过利用电池壳11的刚性(几乎不变形的特性)以抑制充电和放电时二次电池膨胀,刚性的4失比铝更优选。在电池壳11由铁制成的情况下,例如,4失可以^皮镀镍(Ni)等。电池壳ll具有中空结构,其中电池壳11的一端封闭,而电池壳11的另一端是敞开的。在电池壳11的开口端,连4妄绝纟I4反12和电池盖13,乂人而在电池壳11的内部4皮密封。绝》彖板12位于电池元4牛20和电池盖13之间,并且垂直于电池元4牛20的螺^走巻绕外周面"i殳置,并且由例如聚丙烯等制成。电池盖13由例如类似于电池壳11的材料制成,并且如电池壳11也具有作为电极端子的功能。在电池盖13的外侧,i殳置作为正4及端子的端子才反14。端子4反14用置于两者之间的绝缘层16与电池盖13电绝缘。绝缘层16由例如聚对苯二甲酸丁二酯等制成。在电池盖13的大致中心,设置通孔。将正极销15插入到通孔中使得正极销电连接至端子板14,并且用两者之间的垫圏17与电池盖13电绝纟彖。垫圈17由例如绝缘材料制成,并且其表面用沥青涂敷。在电池盖13的边缘附近,设置裂开阀18和注入孔19。裂开阀18电连接至电池盖13。当由于内部短路、外部加热等而使电池的内压力变至一定水平或更大时,裂开阀18乂人电池盖13分离以释》文内压力。注入孔19通过由例如不锈钢钢5求制成的密封件19A密封。电池元件20通过层叠正极21和负极22以及两者之间的隔膜23,然后对所得的层叠体进行螺旋巻绕而形成。根据电池壳11的形状,电池元件20是扁平的。将由铝等制成的正极引线24连接至正极21的末端(例如,其内末端)。将由镍等制成的负极引线25连接至负极22的末端(例如,其外末端)。正极引线24通过焊接至正极销15的末端而电连接至端子板14。焊接负极引线25,并且电连4妄至电池壳11。图6示出了图5所示的螺^走巻绕电才及体20的力文大部分。在正才及21中,例如,正才及活性物质层21Bi殳置在具有一》寸面的带形正极集电体21A的两个面上。正极活性物质层21B可以设置在正极集电体21A的两个面上,或者仅设置在正极集电体21A的单个面上。正极集电体21A由例如金属材料(诸如铝、4臬以及不锈钢)制成。正才及活性物质层21B包含作为正才及活性物质的一种或多种能够嵌入和脱嵌锂的正极材料。根据需要,正极活性物质层21B可以包含其他材料如粘结剂和导电剂。粘结剂和导电剂的细节类似于那些针对上述负极描述的情况。作为能够嵌入和脱嵌4里的正4及材^K例如,含锂化合物是优选的,因为由此可以获得高能量密度。作为含锂化合物,例如,可以列举含锂和过渡金属元素的复合氧化物,或含锂和过渡金属元素的磷酸盐化合物。尤其是,包含选自由钴、镍、锰以及铁组成的组中的至少一种作为过渡金属元素的化合物是优选的,因为由此可以获得更高的电压。其化学式例如表示为L^M102或LiyM2P04。在该式中,Ml和M2表示一种或多种过渡金属元素。X和y的值才艮据电池的充电和》文电状态而变化,并且通常在0.05^x^1.10和0.05Sy《1.10的范围内。作为含锂和过渡金属元素的复合氧化物,例如,可以列举锂钴复合氧化物(LixCo02)、锂镍复合氧化物(LixNi02)、锂4臬钴复合氧化物(LixNi!.zCoz02(z<l))、4里4臬钴4孟复合氧化物(LixNi(Lv-w)CovMnw02)(v+w<l))、具有尖晶石结构的锂锰复合氧化物(LiMri204)等。特别地,含钴的复合氧化物是优选的,因为由此可以获得高容量并且可以获得优异的循环特性。作为含锂和过渡金属元素的磷酸盐化合物,例如,可以列举锂铁磷酸盐化合物(LiFeP04)、锂铁锰磷酸盐化合物(LiFe!-JVInuP04(u〈l))等。此夕卜,作为上述正极材料,例如,可以列举氧化物如二氧化钛、氧4b钒、以及二氧4b4孟;二石克4b物如二好"匕4太和石l/f匕钼;石危属元素化物如硒化铌;硫磺;导电聚合物如聚苯胺和聚p塞吩。负才及22具有类似于上述负才及的结构。例如,在负才及22中,负极活性物质层22B和涂层22C设置在具有一对面的带形负极集电体22A的两个面上。负极集电体22A、负极活性物质层22B、以及涂层22C的结构分别类似于上述负极中的负极集电体1、负极活性物质层2、以及涂层3的结构。在负极22中,能够嵌入和脱嵌锂的负极活性物质的充电容量优选大于正极21的充电容量。隔膜23将正极21与负极22分开,并且使作为电极反应物的离子通过,同时防止由于两个电极的接触而引起的电流短路。隔膜23由例如由合成树脂(如聚四氟乙烯、聚丙烯、以及聚乙烯)制成200810175218.5的多孔膜、陶瓷多孔膜等制成。隔膜23可以具有层叠有如上述多孔膜的两种或更多种多孔膜的结构。使作为液体电解质的电解液浸渍到隔膜23中。电解液包含例如溶剂和溶解于其中的电解质盐。溶剂包含例如一种或多种非水溶剂如有4几溶剂。非水溶剂包括例如石友酸酯;容剂如,友酸亚乙酯、石灰酸亚丙酯、>暖酸亚丁酯、碳酸二甲酯、石灰酸二乙酯、石友酸曱乙酯、以及碳酸甲丙酯。乂人而,可以获得优异的容量特性、优异的循环特性、以及优异的保存特性。特别地,高粘度溶剂如碳酸亚乙酯和碳酸亚丙酯与低粘度溶剂如碳酸二曱酯、碳酸曱乙酯、以及碳酸二乙酯的混合物是优选的。从而,可以改善电解质盐的离解特性和离子迁移率,并且由此可以获得更高的效果。溶剂优选包含化学式21所示的具有卣素作为构成元素的链状>碳酸酯以及化学式22所示的具有卣素作为构成元素的环状石友酸酯中的至少一种。从而,在负极22的表面上形成稳定的保护膜(涂层),并且可以防止电解液的分解反应,因此可以改善循环特性。化学式21R25R21—R26是氬、卣素、》克基、或卣-克基。R21R26中的至少一个为卣素或卤代^克基。<formula>formulaseeoriginaldocumentpage52</formula>4匕学式22R34R31R34是氪、卣素、》克基、或卣》克基。R31R34中的至少一个为卣素或卣代烷基。化学式21中的R21R26可以是相同的或不同的。这同样适用于4匕学式22中的R31~R34。R21~R26和R31~R34中描述的"卣代烷基,,是通过用卣素取代烷基中的至少部分氢而获得的基团。卤素的类型没有特别限制,<旦是例如,可以列举选自由氟、氯和溴组成的组中的至少一种。特别地,氟是优选的,因为由此可以获得更高的效果。不用说,还可以使用其他卣素。卤素的凄t量,两种比一种更优选,并且可以为三种以上,因为由此可以改善形成〗呆护力莫的能力并且可以形成刚性和稳、定性更好的寸呆护力莫。因此,可以大大防止电解液的分解反应。作为化学式21所示的具有卣素的链状石灰酸酯,例如,可以列举碳酸氟曱酯甲酯、碳酸二(氟曱基)S旨、碳酸二氟曱酯曱酯等。可以单独4吏用其中的一种,或者可以通过混合4吏用其中的多种。作为化学式22所示的具有卣素的环状碳酸酯,例如,可以列举化学式23(1)至24(9)所示的化合物。即,可以列举化学式23(1)的4-氟-l,3-二氧戊环-2-酮、化学式23(2)的4-氯-l,3-二氧戊环-2-酮、化学式23(3)的4,5-二氟-1,3-二氧戊环-2-酮、化学式23(4)的四氟-1,3-二氧戊环-2-酮、化学式23(5)的4-氟-5-氯-l,3-二氧戊环-2-酮、化学53n/\0式23(6)的4,5-二氯-1,3-二氧戊环-2-酮、4匕学式23(7)的四氯-1,3-二氧戊环-2-酮、化学式23(8)的4,5-二(三氟曱基)-1,3-二氧戊环-2-酮、化学式23(9)的4-三氟曱基-l,3-二氧戊环-2-酮、化学式23(10)的4,5-二氟-4,5-二曱基-1,3-二氧戊环-2-酮、化学式23(11)的4-曱基-5,5画二氟画1,3-二氧戊环-2画酉同、化学式23(12)的4-乙基-5,5-二氟-1,3-二氧戊环-2-酮等。而且,可以列举化学式24(1)的4-三氟甲基-5-氟-1,3-二氧戊环-2-酉同、化学式24(2)的4-三氟甲基-5-曱基-l,3-二氧戊环-2-酮、化学式24(3)的4-氟-4,5-二曱基-l,3-二氧戊环-2-西同、化学式24(4)的4,4-二氟-5-(1,1-二氟乙基)-1,3-二氧戊环-2-酮、化学式24(5)的4,5-二氯-4,5-二甲基-1,3-二氧戊环-2-酮、化学式24(6)的4-乙基-5-氟-l,3-二氧戊环-2-酮、化学式24(7)的4-乙基-4,5-二氟-1,3-二氧戊环-2-酮、化学式24(8)的4-乙基-4,5,5-三氟-1,3-二氧戊环-2-酮、化学式24(9)的4-氟-4-甲基-l,3-二氧戊环-2-酮等。可以单独佳L用其中的一种,或者可以通过混合^f吏用其中的多种。<formula>formulaseeoriginaldocumentpage54</formula>特别地,4-氟-l,3-二氧戊环-2-酮或4,5-二氟-1,3-二氧戊环-2-酉同是优选的,并且4,5-二氟-l,3-二氧戊环-2-S同是更优选的。尤其是,作为4,5-二氟-1,3-二氧戊环-2-酮,反式异构体比顺式异构体更优选,因为反式异构体更易于获得并且提供高的效果。而且,溶剂优选包含具有不饱和4定的环状-灰酸酯,因为由此可以改善循环特性。作为具有不饱和键的环状碳酸酯,例如,可以列举碳酸亚乙烯酯、碳酸乙烯基亚乙酯等。可以通过混合使用它们中的多种。而且,溶剂优选包含石黄内酯(环状^t酸酯),因为由此可以改善循环特性并且可以防止二次电池的溶胀。作为磺内酯,例如,可以列举丙磺酸内酯、丙烯磺酸内酯等。可以通过混合使用其中的多种。此外,溶剂优选包含酸酐,因为由此可以改善循环特性。作为酸酐,例如,可以列举琥珀酸酐、戊二酸酐、马来酸酐、石黄基苯甲酉臾酐、石黄基丙酸酐(sulfopropionicacidanhydride)、磺基丁酉臾酐(sulfo<formula>formulaseeoriginaldocumentpage55</formula>butyricacidanhydride)、乙烷二石黄酸酐、丙烷二磺酸酐、苯二石黄酸酐等。可以通过混合4吏用其中的多种。特别地,^黄基苯酸酐或石黄基丙酸酐是优选的,因为由此可以获得充分的效果。溶剂中酸酐的含量例如为0.5wt。/。以上3wt。/。以下。电解质盐包含例如一种或多种轻金属盐如锂盐。作为锂盐,例如,可以列举六氟磷酸锂、四氟硼酸锂、高氯酸锂、六氟砷酸锂等,因为由此可以获得优异的容量特性、优异的循环特性、以及优异的<呆存特性。特别地,六氟磷酸锂是优选的,由于可以降4氐内阻,因而可以获得更高的效果。组成的组中的至少一种。因此,在这样的化合物与上述六氟磷酸锂等一起4吏用的情况下,可以获得更高的效果。化学式25中的R41和R43可以是相同的或不同的。这同才羊适用于化学式26中的R51至R53以及4b学式27中的R61和R62。化学式25X41为短周期型周期表中的1A族元素或2A族元素或者铝。M41为过渡金属,短周期型周期表中的3B族元素、4B族元素、或5B族元素。R41为卣素。Y41为-OC-R42画CO画、-OC-CR432-、或-OC-CO-。R42为亚烷基、卤代亚烷基、亚芳基、或卤代亚芳基。R43为烷基、卤代烷基、芳基、或卤代芳基。a4是l4的整数。b4是0、2或4的整凄史。c4、d4、m4、以及n4是l3的整数。n4+d44匕学式26<formula>formulaseeoriginaldocumentpage57</formula>X51是短周期型周期表中的1A族元素或2A族元素。M51为过渡金属元素,短周期型周期表中的3B族元素、4B族元素、或5B族元素。Y51为-OC-(CR512)b5-CO-、-R532C-(CR522)c5-CO-、-R532C-(CR522)c5-CR532-、-R532C-(CR522)c5-S02-、-02S-(CR522)d5-S02-、或隱OC画(CR522)d5画S02-。R51和R53是氩、烷基、卤素、或卤代烷基。R51和R53各自中的至少一个是卤素或卤烷基。R52是氢、烷基、卣素、或卣4戈烷基。a5、e5、以及n5为1或2的整凄t。b5和d5为1~4的整凄t。c5为0~4的整凄t。f5和m5为1~3的整凄t。化学式27<formula>formulaseeoriginaldocumentpage57</formula>X61为短周期型周期表中的1A族元素或2A族元素。M61为过渡金属元素,短周期型周期表中的3B族元素、4B族元素、或5B族元素。Rf为碳数在1~10范围内的氟化烷基或碳数在1~10范围内的氟4匕芳基。Y61为-OC画(CR6l2)d6-CO-、-R622C-(CR612)d6-CO-、-R622C-(CR612)d6-CR622-、-R622C-(CR612)d6-S02-、-02S-(CR612)e6-S02-、或-OC-(CR6l2)e6國S02-。R61为氢、烷基、卣素、或卣代烷基。R62为氢、烷基、囟素、或卣代烷基,并且它们<formula>formulaseeoriginaldocumentpage58</formula>中的至少一个是卣素或卣代烷基。a6、f6、以及n6为1或2的整数。b6、c6、以及e6为1~4的整凄史。d6为0~4的整凄t。g6和m6为1~3的整数。作为化学式25所示的化合物,例如,可以列举化学式28(1)至28(6)所示的化合物。作为化学式26所示的化合物,例如,可以列举化学式29(1)至29(8)所示的化合物。作为化学式27所示的化合物,例如,可以列举化学式30所示的化合物等。不用说,化合物并不限于化学式28(1)至化学式30所示的化合物,并且化合物可以是其他化合物,只要这样的化合物具有化学式25至化学式27所示的结构。4匕学式28化学式29<formula>formulaseeoriginaldocumentpage58</formula><formula>formulaseeoriginaldocumentpage59</formula>4匕学式30<formula>formulaseeoriginaldocumentpage59</formula>电解质盐可以包含选自由化学式31至化学式33所示的化合物组成的组中的至少一种。从而,在这样的化合物与上述六氟石粦酸锂一起4吏用的情况下,可以获得更高的效果。化学式31中的m和n可以是相同的或不同的。这同样适用于化学式33中的p、q以及r。化学式31LiN(CmF2m+1S02)(CnF2n+1S02)m和n是l以上的整凄t。化学式32R71是碳数在2~4范围内的直链/支链的全氟亚烷基。化学式33LiC(CpF2p+1S02)(CqF2q+1S02)(CrF2r+1S02)p、q以及r是1以上的整凄欠。作为化学式31所示的链状化合物,例如,可以列举二(三氟甲磺酰基)亚胺锂(LiN(CF3S02)2)、二(五氟乙磺酰基)亚胺锂(LiN(C2F5S02)2)、(三氟甲磺酰基)(五氟乙石黄酰基)亚胺锂(LiN(CF3S02)(C2F5S02))、(三氟曱石黄酰基)(七氟丙磺酰基)亚胺锂(LiN(CF3S02)(C3F7S02))、(三氟曱磺酰基)(九氟丁磺酰基)亚胺锂(LiN(CF3S02)(C4F9S02))等。可以单独-使用其中的一种,或者可以通过混合4吏用其中的多种。作为化学式32所示的环状化合物,例如,可以列举化学式34-1至34-4所示的化合物。即,化学式34-1所示的1,2-全氟乙二石黄酰基亚胺锂、化学式34-2所示的1,3-全氟丙二磺酰基亚胺锂、化学式34-3所示的1,3-全氟丁二石黄酰基亚胺锂、化学式34-4所示的1,4-全氟丁二石黄酰基亚胺4里等。可以单独4吏用其中的一种,或者可以通过混合使用其中的多种。特别地,1,2-全氟乙二磺酰基酰亚胺锂是优选的,因为由此可以获得充足的效果。4b学式34<formula>formulaseeoriginaldocumentpage60</formula><formula>formulaseeoriginaldocumentpage61</formula>(4)作为化学式33所示的链状4匕合物,例如,可以列举三(三氟曱磺酰基)曱基锂(LiC(CF3S02)3)等。电解质盐对溶剂的含量优选为0.3mol/kg以上3.0mol/kg以下。如果在上述范围之外,则存在离子传导性显著降低的可能性。例如,可以通过以下步骤来制造二次电池。首先,形成正极21。首先,将正极活性物质、粘结剂、以及导电剂进行混合以制备正极混合物,将该正极混合物分散在有机溶剂中以形成糊状正极混合物浆料。随后,通过刮刀、刮条涂布机等,用该正极混合物浆料均匀地涂布正极集电体21A的两个面,使其干燥。最后,通过辊压机等对涂层进行压制成型,如果有必要同时进行加热,以形成正极活性物质层21B。在这种情况下,可以对涂层压制成型几次。而且,通过与形成上述负极相同的步骤,通过在负极集电体22A的两个面上形成负才及活性物质层22B和涂层22C而形成负极22。4妄着,通过4吏用正才及21和负才及22而形成电池元件20。首先,通过焊4妄等^f吏正4及引线24连4妄至正才及集电体21A,并且通过焊4妄等使负极引线25连接至负极集电体22A。随后,将正极21和负极22与两者之间的隔膜23—起层叠,并且在长度方向上进行螺旋巻绕。最后,形成扁平形状的螺旋巻绕体。如下来装配二次电池。首先,在将电极元件20容纳在电池壳11内之后,将绝缘板12设置在电池元件20上。随后,通过焊接等将正极引线24连接至正极销15,并且通过焊接等将负才及引线25连接至电池壳11。之后,通过激光焊接等使电池盖13固定在电池壳ll的开口端。最后,将电解液从注入孔19注入到电池壳11中,并且浸渍到隔膜23中。之后,通过密封件19A密封注入孔19。从而完成图4至图6所示的二次电池的制备。在二次电池中,例如,当充电时,4里离子乂人正极21中脱嵌,并通过浸渍到隔膜23中的电解液嵌入到负极22中。同时,例如,当放电时,锂离子从负极22中脱嵌,并通过浸渍到隔膜23中的电角芊、液嵌入到正才及21中。才艮据方形二次电池,由于负才及22具有类似与上述负极的结构,因此即使当重复充电和放电时也可以防止电解液的分解反应。因此,可以改善循环特性。在这种情况下,当负才及22包含对获得高容量有利的石圭时,可以改善循环特性。因此,可以由此获得比在负极包含其他负极材料如碳材料的情况下更高的效果。尤其是,当电池壳11由刚性金属制成时,与电池壳由柔软膜制成的情况相比,当负极活性物质层22B膨胀和收缩时,负极22几乎不会损坏。因此,可以进一步改善循环特性。在这种情况下,当电池壳11由比铝更具刚性的4失制成时,可以获得更高的效果。此二次电池的除了上述效果之外的效果类似于上述负4及的那些效果。第二电池图7和图8示出了第二电池的截面结构。图8示出了图7所示的螺旋巻绕电极体40的放大部分。电池是锂离子二次电池,其中,负极42的容量基于作为电极反应物的锂的嵌入和脱嵌来表示,如上所述。该电池主要包括其中正极41和负极42与两者之间的隔膜43—起螺旋巻绕的螺旋巻绕电极体40、以及在大致中空的圆柱体形状的电池壳31内的一对绝*彖4反32和33。包4舌电池壳31的电池结构.是所谓的圆柱形二次电池。电池壳31由例如类似于上述第一电池中电池壳11的金属材料制成。电池壳31的一端去于闭,而其另一端是敞开的。一^"绝續^反32和33设置为夹住两者之间的螺旋巻绕电极体40,并设置成在与螺旋巻绕外周面垂直的方向延伸。在电池壳31的开口端,电池盖34、以及i殳置在电池盖34内侧的安全阀机构35和PTC(正温度系数)装置36通过用垫圈37嵌塞而连4妄。乂人而电池壳31的内部;故密封。电池盖34由例如类似于电池壳31的材料制成。安全阀机构35通过中间的PTC装置36电连接至电池盖34。在安全阀机构35中,当由于内部短路、外部加热等而4吏内压力变至一定水平或更大时,盘^U反35A弹起以切断电池盖34与螺旋巻绕电极体40之间的电连接。当温度升高时,PTC装置36增加电阻,从而限制电流以防止由大电流引起的异常热产生。垫圏37由例如绝缘材料制成,并且其表面用沥青涂敷。中心销44可以4翁入螺S走巻绕电才及体40的中心。在螺S走巻绕电极体40中,将由铝等制成的正极引线45连接至正极41,而将由镍等制成的负极引线46连接至负极42。正极引线45通过焊接至安全阀才几构35而电连接至电池盖34。焊4妄负4及引线46,/人而电连4妻至电池壳31。正极41具有例如这样的结构,正极活性物质层41B设置在带形正极集电体41A的两个面上。负极42具有类似于上述负极的结构,例如,其中负才及活性物质层42B和涂层42Ci殳置在带形负极集电体42A的两个面上的结构。正极集电体41A、正极活性物质层41B、负极集电体42A、负极活性物质层42B、涂层42C和隔膜43的结构,以及电解液的组成分别类似于上述第一电池中的正才及集电体21A、正才及活性物质层21B、负极集电体22A、负极活性物质层22B、涂层22C和隔膜23的结构,以及电解液的组成。例如,可以如下来制造二次电池。首先,例如,通过分别类似于形成上述第一电池中正极21和负才及22步艰《的步驶《,通过在正才及集电体41A的两个面上形成正拟_活性物质层41B而形成正才及41,以及通过在负才及集电体42A的两个面上形成负极活性物质层42B和涂层42C而形成负极42。随后,将正极引线45连接至正极41,而将负极引线46连接至负极42。随后,将正极41和负极42与两者之间的隔膜43—起进行螺旋巻绕,从而形成螺旋巻绕电极体40。将正极引线45的末端连接至安全阀才几构35,而将负^l引线46的末端连4妄至电池壳31。之后,将螺旋巻绕电极体40夹在一对绝續4反32和33之间,并容纳在电池壳31内。接着,将电解液注入到电池壳31中,并浸渍到隔膜43中。最后,在电池壳31的开口端,通过用垫圏37嵌塞而固定电池盖34、安全阀才几构35、以及PTC装置36。乂人而完成图7和图8所示的二次电池的制备。在此二次电池中,例如,当充电时,4里离子乂人正才及41中脱嵌,并经过浸渍到隔月莫43中的电解液而嵌入到负才及42中。同时,例如,当放电时,锂离子从负极42中脱嵌,并经过浸渍到隔膜43中的电解液而嵌入到正4及41中。根据圆柱形二次电池,负极42具有类似于上述负极的结构。因此,可以改善循环特性。除了上述效果之外,此二次电池的效果类似、于第一电池的那些岁丈果。第三电池图9示出了第三电池的分解透^f见结构。图10示出了沿图9所示的线X-X的4黄截面。该电池是如上所述的4里离子二次电池,其中负极54的容量基于作为电极反应物的锂的嵌入和脱嵌来表示。在该电池中,将其上连接有正极引线51和负极引线52的螺旋巻绕电极体50容纳在膜包装件60内。包括包装件60的电池结构是所谓的层压膜型结构。例如,正极引线51和负极引线52分别从包装件60的内部至外部以相同的方向引出。正才及引线51由例如金属材^j"如铝制成,而负极引线52由例如金属材料如铜、镍、以及不锈钢制成。金属材料为薄板状或网孔状。包装件60由铝层压膜制成,其中,例如将尼龙膜、铝箔、以及聚乙烯膜以该次序粘结在一起。包装件60具有例如其中两片矩形铝层压膜的各自的外缘部通过熔合或粘合剂彼此粘结使得聚乙烯膜和螺;旋巻绕电才及体504皮此相对的结构。将用于防止外部空气进入的粘合膜61插入到包装件60与正极引线51、负极引线52之间。粘合膜.61由对正极引线51和负极引线52具有接触特性的材料制成。这样的材料的实例包括,例如,聚烯烃;^于脂如聚乙烯、聚丙嫦、改性聚乙烯、以及改性聚丙烯。包装件60可以由具有其它层压结构的层压膜、聚合物膜如聚丙烯膜、或金属膜代替上述铝层压膜制成。图11示出了图10所示的螺:旋巻绕电才及体50的》文大部分。在螺旋巻绕电极体50中,正极53和负极54与两者之间的隔膜55和电解质56—起层叠,然后螺旋巻绕。其最外周部由保护带57保护。正极53具有例如这样的结构,正极活性物质层53B设置在具有一对相反面的正才及集电体53A的两个面上。负才及54具有类々乂于上述负才及的结构,例如,具有其中负才及活性物质层54B和涂层54Ci殳置在带形负极集电体54A的两个面上的结构。正才及集电体53A、正极活性物质层53B、负极集电体54A、负极活性物质层54B、涂层54C以及隔膜55的结构分别类似于上述第一电池的正极集电体21A、正极活性物质层21B、负极集电体22A、负极活性物质层22B、涂层22C以及隔膜23的那些结构。电解质56是含有电解液和保持电解液的高分子4匕合物的所谓凝胶电解质。凝胶电解质是优选的,因为由此可以获得高离子传导性(例如,在室温下为lmS/cm以上),并且可以防止液体泄漏。作为高分子化合物,例如,可以列举聚丙烯腈、聚偏二氟乙烯、聚偏二氟乙烯和聚六氟丙烯的共聚物、聚四氟乙烯、聚六氟丙烯、聚环氧乙烷、聚环氧丙烷、聚石粦腈、聚石圭氧烷、聚乙酸乙烯酯、聚乙烯醇、聚曱基丙烯酸曱酯、聚丙烯酸、聚曱基丙烯酸、丁苯橡胶、丁腈橡胶、聚苯乙烯、聚碳酸酯等。可以单独使用这些高分子化合物中的一种,或者可以通过混合使用其中的多种。特别地,作为高分子化合物,优选使用聚丙烯腈、聚偏二氟乙烯、聚六氟丙烯、聚环氧乙烷等,因为这样的化合物是电化学稳定的。电解液的组成类似于第一电池中电解液的组成。然而,在这种情况下,溶剂是指很宽的概念,不仅包括液体溶剂而且包括能够离解电解质盐的具有离子传导性的溶剂。因此,当使用具有离子传导性的高分子化合物时,溶剂也包括这样的高分子化合物。代替其中电解液由高分子化合物保持的凝月交电解质56,可以直接使用电解液。在这种情况下,电解液浸渍到隔膜55中。例如,可以通过以下三种制造方法来制造包括凝胶电解质56的二次电;也。在第一种制造方法中,首先,例如,通过类似于制造第一电池的方法的步艰《,通过在正才及集电体53A的两个面上形成正4及活性物质层53B而形成正极53,以及通过在负才及集电体54A的两个面上形成负极活性物质层54B和涂层54C而形成负极54。随后,制备包含电解液、高分子化合物、以及溶剂的前体溶液。在用该前体溶液涂布正才及53和负才及54之后,4吏溶剂4军发以形成凝月交电解质56。随后,将正极引线51焊接至正极集电体53A,而将负极引线52焊接至负极集电体54A。接着,将设置有电解质56的正极53和负极54与两者之间的隔膜55—起层叠以获得层叠体。之后,将该层叠体在长度方向上螺旋巻绕,将保护带57粘附至其最外周部以形成螺旋巻绕电极体50。最后,例如,在将螺旋巻绕电极体50夹在两片膜包装件60之间后,通过热熔合等方式连接包装件60的外缘部,以封入螺旋巻绕电才及体50。此时,将粘合膜61插入到正才及引线51、负极引线52和包装件60之间。从而,完成图9至图11所示的二次电池的制备。在第二种制造方法中。首先,将正极引线51焊接至正极53,而将负极引线52焊接至负极54。之后,将正极53和负极54与两者之间的隔膜55—起层叠并螺旋巻绕。将保护带57粘附至其最外周部,从而形成作为螺旋巻绕电4及体50的前体的螺S走巻绕体。随后,在将螺旋巻绕体夹在两片膜包装件60之间后,将除了一边之外的最外周部通过热熔合等方式进行粘合以获得袋形状态,并且将螺旋巻绕体容纳在袋状包装件60内。随后,制备含有电解液、作为用于高分子化合物原料的单体、聚合引发剂、以及其它材料如聚合抑制剂(如果需要)的用于电解质的组成物质,将其注入到袋状包装件60内。之后,将包装件60的开口通过热熔合等方式密封。最后,使单体热聚合以获得高分子化合物。从而,形成凝胶电解质56。因此,完成该二次电池的制备。在第三种制造方法中,除了首先使用两面均用高分子化合物涂覆的隔力莫55之外,以与上述第二种制造方法相同的方式形成螺"走巻绕体并容纳在袋状包装件60中。作为涂覆隔膜55的高分子化合物,例如,可以列举含偏二氟乙烯作为组分的聚合物,即,均聚物、共聚物、多元共聚物等。具体地说,可以列举聚偏二氟乙烯;含偏二氟乙烯和六氟丙烯作为组分的二元共聚物;含偏二氟乙烯、六氟丙烯、以及三氟氯乙烯作为组分的三元共聚物等。作为高分子化合物,除了含有偏二氟乙烯作为组分的上述聚合物外,还可以包含其他一种或多种高分子化合物。随后,将电解液注入到包装件60中。之后,通过热熔合等方式密封包装件60的开口。最后,加热所得物,同时将重物施加至包装件60,并且使隔膜55通过中间的高分子化合物与正极53和负极54接触。从而,使电解液浸渍到高分子化合物中,并且4吏高分子化合物月交凝化以形成电解质56。因此,完成该二次电池的制备。在第三种制造方法中,与第一种制造方法相比,抑制了二次电池的溶胀。此外,在第三种制造方法中,与第二种制造方法相比,作为高分子化合物原料的单体、溶剂等几乎不会保留在电解质56中,并且高分子化合物的形成步骤被很好地控制。因此,在正极53/负极54/隔膜55与电解质56之间可以获得充分的接触特性。才艮据层压膜型二次电池,负极54具有类似于上述负极的结构。因此,可以改善循环特性。除了上述效果之外,此二次电池的效果类4以于第一电^也的那些步文果。实施例将详细地描述本发明的实施例。实施例l画l通过以下步骤来制造图9至图11所示的层压^I莫型二次电池。然后,制造作为锂离子二次电池的二次电池,其中负极54的容量基于锂的嵌入和脱嵌来表达。首先,形成正才及53。首先,将石灰酸4里(Li2C03)和石友酸钴(CoC03)以0.5:1的摩尔比进行混合。之后,将混合物在空气中在90(TC下烧制5小时。从而,获得锂钴复合氧化物(LiCo02)。随后,将91质量份的作为正极活性物质的锂钴复合氧化物、6质量份的作为导电剂的石墨、以及3质量份的作为粘结剂的聚偏二氟乙烯进行混合以获得正极混合物。之后,将该正极混合物分散到N-曱基-2-p比咯烷酮中以获得糊状正才及混合物浆^"。最后,用该正才及混合物浆料对由带形铝箔(厚度12jam厚)制成的正极集电体53A的两个面均匀地进行涂布,使其干燥。之后,通过辊压机对所得物进行压制成型以形成正^L活性物质层53B。接着,形成负极54。首先,制备由电解铜箔制成的负极集电体54A(厚度18(am,十点平均粗糙度Rz:3.5pm)。随后,使用偏向式电子束蒸发源,通过电子束蒸发法将作为负极活性物质的硅沉积在负极集电体54A的两个面上,乂人而形成包含多个颗粒状负极活性物质的负极活性物质层54B。当形成负极活性物质层54B时,使用具有99%纯度的硅作为蒸发源,沉积速率为100nm/sec,并且负极活性物质形成为具有单层结构(厚度7.5(am)。而且,将氧气以及水蒸气(如果需要)连续地引入到室中,使得负极活性物质中的氧含量为3原子数%。最后,将具有化学式1所示结构的氟树脂分散在Galden溶剂中以制备2wt。/。溶液。将其上形成有负极活性物质层54B的负极集电体54A浸渍到溶液中30秒,取出,并干燥以形成涂层54C。当形成涂层54C时,作为具有化学式3和化学式4所示结构的氟杉t脂(X-化学式l),可以^使用其中末端(R1和R2)具有化学式18(1)所示结构的氟树脂。接着,在混合作为溶剂的碳酸亚乙酯(EC)和碳酸二乙酯(DEC)后,将作为电解质盐的六氟磷酸锂(LiPF6)溶解于其中以制备电解液。溶剂(EC:DEC)的组成重量比为50:50。电解液中电解质盐的浓度为1mol/kg。接着,通过4吏用正极53、负极54以及电解液来组装二次电池。首先,将由铝制成的正极引线51焊接至正极集电体53A的一端,而将由镍制成的负极引线52焊接至负极集电体54A的一端。随后,将正极53、其中由多孔聚乙烯作为主要成分构成的膜夹在由多孔聚丙烯作为主要成分构成的膜之间的3层隔膜55(厚度23fim)、负极54、以及上述聚合物隔膜55以该顺序层叠。将所得的层叠体在长度方向上螺旋巻绕,通过由胶粘带制成的保护带57固定螺旋巻绕体的端部,从而形成作为螺旋巻绕电纟及体50的前体的螺旋巻绕体。随后,将该螺旋巻绕体夹在由3层层压膜(总厚度100pm)制成的包装件60之间,在该3层层压膜中,从外侧开始层叠尼龙膜(厚度30pm)、铝箔(厚度40nm)、以及非拉伸聚丙烯(厚度30jam)。之后,将除了包装件的一侧边缘之外的外缘部彼此进行热熔合。从而,将螺旋巻绕体容纳在袋形状态的包装件60内。随后,通过包装件60的开口注入电解液,使电解液浸渍到隔膜55中,>^人而形成螺^走巻绕电才及体50。最后,在真空气氛下通过热熔合对包装件60的开口进行密封,乂人而,完成层压膜型二次电池的制备。实施例1-2至1-4以与实施例1-1中相同的方式进行操作,不同之处在于使用其中Rl和R2具有化学式18(2)所示结构的氟树脂(实施例1-2)、其中Rl和R2具有化学式18(3)所示结构的氟树脂(实施例1-3)、或者其中Rl和R2具有化学式18(4)所示结构的氟树脂(实施例1-4)代替其中Rl和R2具有化学式18(1)所示结构的氟树脂。实施例1-5至1-11以与实施例1-1中相同的方式进行操作,不同之处在于使用其中Rl和R2具有化学式19(1)所示结构的氟树脂(实施例1-5)、其中Rl和R2具有化学式19(2)所示结构的氟树脂(实施例1-6)、其中Rl和R2具有化学式19(3)所示结构的氟树脂(实施例1-7)、其中Rl和R2具有化学式19(4)所示结构的氟树脂(实施例1-8)、其中Rl和R2具有化学式19(5)所示结构的氟树脂(实施例1-9)、其中Rl和R2具有化学式19(6)所示结构的氟树脂(实施例1-10)、或者其中Rl和R2具有化学式19(7)所示结构的氟树脂(实施例1-11)代替其中Rl和R2具有化学式18(1)所示结构的氟树脂。实施例1-12至1-16以与实施例1-1中相同的方式进行操作,不同之处在于使用其中Rl和R2具有化学式20(1)所示结构的氟树脂(实施例1-12)、其中Rl和R2具有化学式20(2)所示结构的氟树脂(实施例1-13)、其中Rl和R2具有化学式20(3)所示结构的氟树脂(实施例1-14)、其中Rl和R2具有化学式20(4)所示结构的氟树脂(实施例1-15)、或其中Rl和R2具有化学式20(5)所示结构的氟初于脂(实施例1-16)代替其中Rl和R2具有化学式18(1)所示结构的氟树脂。实施例1-17以与实施例l-l中相同的方式进行操作,不同之处在于使用其中Rl和R2为三氟甲基的氟树脂代替其中Rl和R2具有化学式18(1)所示结构的氟树脂。t匕4交侈寸1以与实施例1-1中相同的方式进行操作,不同之处在于没有形成涂层54C。当才企测实施例1-1至1-17以及比4交例1的二次电池的循环特性时,获得了表1所示的结果。在检测循环特性中,首先,为了使电池状态稳定,在23。C下实施充电和》文电1次。之后,在相同的气氛下实施充电和;故电以测量第二次的方文电容量。随后,在相同的气氛下对二次电池进4于充电和放电99次,从而测量第101次的放电容量。之后,计算放电容量保持率(%)=(第101次的放电容量/第2次的放电容量)xioo。在充电时,在3mA/cm2的恒电流密度下实施充电直到电池电压达到4.2V,然后在4.2V的恒电压下持续进行充电直到电流密度达到0.3mA/cm2。在》文电时,在3mA/cm2的恒电流密度下实施》文电直到电;也电压达到2.5V。将用于^r测循环特性的步骤和条件类似地应用于下面一系列实施例和比4交例。表1负极活性物质硅(电子束蒸发法)十点平均相4造度Rz:3.5nm负极活性物质中的氧含量3原子数%<table>tableseeoriginaldocumentpage73</column></row><table>如表l所示,当4吏用具有化学式1所示结构的氟树脂并且负极活性物质形成为单层结构时,在其中形成包含氟树脂的涂层54C的实施例1-1至1-7中,;改电容量^f呆持率明显高于没有形成涂层54C的比较例1。在这种情况下,在末端具有化学式18(1)等所示的结构的实施例1-1至1-16中,放电容量保持率明显高于末端为三氟曱基的实施例1-17。实施例1-1至1-16的放电容量保持率倾向于超过80%。因此,证实了,在本发明的二次电池中,当在负极活性物质层54B上i殳置包含具有化学式1所示结构的氟树脂的涂层54C时,可以改善循环特性。在这种情况下,还证实了,当氟树脂具有化学式3或化学式4所示的结构时,进一步改善循环特性。以与实施例1-1和1-5至1-9相同的方式进行操作,不同之处在于负极活性物质形成为6层结构。在负极集电体54A相对蒸发源以100nm/s的沉积速度往复运动的同时,顺序i也沉积石圭。实施例3-1至3-6以与实施例1-1和1-5至1-9相同的方式进行操作,不同之处在于负才及活性物质通过类似于实施例2-1至2-6的步骤形成为12层结构。实施例4-1至4-6以与实施例1-1和1-5至1-9相同的方式进行操作,不同之处在于负极活性物质通过类似于实施例2-1至2-6的步骤形成为24层结构。比较例2以与比较例1相同的方式进行操作,不同之处在于与在实施例2-1至2-6中一样,负极活性物质形成为6层结构。比举交例3以与比较例1相同的方式进行操作,不同之处在于与在实施例3-1至3-6中一样,负极活性物质形成为12层结构。比较例4以与比较例1相同的方式进行操作,不同之处在于与在实施例4-1至4-6中一样,负极活性物质形成为24层结构。当才企测实施例2-1至2-6、3-1至3-6、和4-1至4-6以及比4交例2至4的二次电池的循环特性时,获得了表2至表4所示的结果。表2负极活性物质硅(电子束蒸发法)十点平均相4造度Rz:3.5pm负才及活性物质中的氧含量3原子凄史%<table>tableseeoriginaldocumentpage75</column></row><table><table>tableseeoriginaldocumentpage76</column></row><table>1-1、2-1、3-1以及4-l之间进4亍比4交时,存在这才羊的趋势,即,在负极活性物质具有多层结构的情况下的i文电容量保持率高于负极活性物质具有单层结构的情况下的放电容量保持率,并且随着层数的增加,放电容量保持率变得更大。因此,证实了,在本发明的二次电池中,当负才及活性物质形成为多层结构时,同才羊可以改善循环特性。还证实了,当负极活性物质层的数量增加时,进一步改善循环特性。实施例5-1至5-7以与实施例1-1、1-5至1-9以及l-17相同的方式进4亍才喿作,不同之处在于使用具有化学式2所示结构的氟树脂(XH匕学式2)代替化学式1所示的结构。比较例5以与比较例1相同的方式进行操作,不同之处在于如在实施例5-1至5-7中一样,使用具有化学式2所示结构的氟树脂。当才企测实施例5-1至5-7以及比较例5的二次电池的循环特性时,获得了表5所示的结果。表5负极活性物质硅(电子束蒸发法)<table>tableseeoriginaldocumentpage78</column></row><table>如表5所示,当使用具有化学式2所示结构的氟树脂时,同样可以获得类似于表1的结果。即,在其中形成包含氟树脂的涂层54C的实施例5-1至5-7中,放电容量保持率明显高于没有形成涂层54C的比4交例5。在这种情况下,当末端(Rl和R2)具有4匕学式18(1)等所示的结构时,放电容量保持率明显高于末端为三氟曱基的情况。前者的放电容量保持率倾向于超过80%。因此,证实了,在本发明的二次电池中,当在负才及活性物质层54B上i殳置包含具有化学式2所示结构的氟树脂的涂层54C时,可以改善循环特性。在这种情况下,还证实了,当氟树脂具有化学式3或化学式4所示的结构时,进一步改善循环特性。作为上述一系列实施例和比较例的代表,当观察用于实施例1-1和1-5的二次电池的负极54的表面时,获得了图12和图13中所示的结果。图12和图13分别是示出了实施例1-1和1-5的负^L54的剖视结构的SEM照片。在观察负极54的表面时,除了用于检测循环特性的二次电池外,还制造用于4企查电4及反应物的氟化物的生成状态的二次电池。对后者的二次电池进4于充电和》文电30次,然后分解。随后,取出负极54,并通过SEM观察其表面。如图12和图13所示,在实施例1-1和实施例1-5两者中,只见察到了多个颗粒状负极活性物质,并且在其表面上观察到了作为电极反应物的锂的氟化物(氟化锂)。在这种情况下,在实施例l-l(图12)中,氟化物呈现为分成多个部分的涂层状态。同时,在实施例1-5(图13)中,氟化锂呈现为多个颗粒的状态。氟化锂的这样的差别可能是由氟树脂的类型(在末端处存在的基团的不同)而引起的。因此,证实了,在本发明的二次电池中,当在形成包含氟树脂的涂层54C之后进4亍充电和方文电时,在涂层54C的表面上产生涂层状或颗粒状的氟化锂。实施例6-1至6-4以与实施例l-l、1-5、1-6以及l-8相同的方式进行操作,不同之处在于通过烧结法替电子束沉积法来形成负才及活性物质层54B。如下形成负极活性物质层54B。首先,将90质量份的作为负极活性物质的硅粉末(平均颗粒直径6(am)和IO质量份的作为粘结剂的聚偏二氟乙烯进行混合以获得负极混合物。之后,将该负极混合物分散在N-曱基-2-p比咯烷酮中以获得糊状负极混合物浆料。随后,用该负极混合物浆料均匀地涂覆负极集电体54A的两个面,然后通过辊压^a对这样的所得涂层进行压制成型。最后,在真空气氛下在220。C下加热涂层12小时。上述平均颗粒直径是所谓的中值粒径。这将同样适用于以下的描述。t匕4交侈'J6以与比较例1相同的方式进行操作,不同之处在于与实施例6-1至6-4中一样,通过烧结法来形成负极活性物质层54B。当才企测实施例6-1至6-4以及比4交例6的二次电池的循环特性时,获得了表6所示的结果。表6负极活性物质硅(烧结法)十点平均粗4造度Rz:3.5pm<table>tableseeoriginaldocumentpage80</column></row><table>如表6所示,当负才及活性物质层54B通过烧结法而形成时,同样获得了类似于表1的结果。即,在形成了包含氟树脂的涂层54C的实施例6-1至6-4中,;故电容量保持率高于没有形成涂层54C的比较例6。因此,证实了,在本发明的二次电池中,当负极活性物质层54B通过烧结法而形成时,同样可以改善循环特性。实施例7-1至7-4以与实施例l-l、1-5、1-6以及l-8相同的方式进行操作,不同之处在于通过使用包含锡的合金代替硅作为负极活性物质来形成负极活性物质层54B。如下形成负极活性物质层54B。首先,通过气体雾化法来形成粉末状的锡-钴合金(原子数比为Sn:Co=80:20)。之后,将所得的锡-钴合金粉碎并分级直到平均颗粒直径变成15pm。随后,将75质量份的作为负极活性物质的锡-钴合金粉末、20质量份的作为导电剂的鳞片状石墨、以及5质量份的作为增稠剂的羧曱基纤维素进行混合以获得负极混合物。之后,将该负极混合物分散在纯水中以获得负极混合物浆料。最后,用该负极混合物浆料均匀地涂覆负才及集电体54A的两个面,然后通过辊压才几对这样的所得涂层进行压制成型。通过俄歇电子能谱仪(AES)来分析完成的负极54。结果,证实了,负极集电体54A和负极活性物质层54B在两者之间的至少部分界面中被合金化。k匕專交侈'J7以与比4交例1相同的方式进4亍才喿作,不同之处在于与实施例7_1至7_4中一样,通过使用锡-钴合金作为负极活性物质来形成负4l活性物质层54B。当检测实施例7-1至7-4以及比4交例7的二次电池的循环特性时,获得了表7所示的结果。表7<table>tableseeoriginaldocumentpage81</column></row><table>如表7所示,当负极活性物质层54B通过使用锡-钴合金而形成时,同样获得了类似于表1的结果。即,在形成了包含氟树脂的涂层54C的实施例7-1至7-4中,放电容量保持率高于没有形成涂层54C的比较例7。因此,证实了,在本发明的二次电池中,当使用包含锡的合金作为负极活性物质时,同样可以改善循环特性。实施例8-1至8-3以与实施例l-l、1-5以及l-6相同的方式进行操作,不同之处在于通过使用碳材料代替硅作为负极活性物质来形成负极活性物质层54B。如下形成负才及活性物质层54B。将作为负才及活性物质的87质量份的中间相碳樣"求(MCMB:平均颗粒直径25nm)和3质量份作为负极活性物质的石墨、以及IO质量份作为粘结剂的聚偏二氟乙烯进行混合以获得负极混合物。之后,将该负极混合物分散在N-甲基-2-p比咯烷酮中以获得糊状负极混合物浆料。之后,用该负极混合物浆料均匀地涂覆负极集电体54A的两个面,干燥,然后通过辊压一几对这样的所得涂层进4于压制成型。比较例8以与比较例1相同的方式进行操作,不同之处在于与实施例8-1至8-3中一样,通过使用碳材料作为负极活性物质来形成负极活性物质层54B。当才企测实施例8-1至8-3以及比4交例8的二次电池的循环特性时,获得了表8所示的结果。表8负极活性物质MCMB('凃覆法)十点平均相4造度Rz:3.5pm<table>tableseeoriginaldocumentpage82</column></row><table>如表8所示,当负才及活性物质层54B通过4吏用石友材津+而形成时,同样获得了类似于表1的结果。即,在形成了包含氟树脂的涂层54C的实施例8-1至8-3中,;改电容量保持率高于没有形成涂层54C的比较例8。因此,证实了,在本发明的二次电池中,当使用碳材料作为负才及活性物质时,同才羊可以改善循环特性。实施例9-1至9-6以与实施例4-1相同的方式进行操作,不同之处在于负极活性物质中的氧含量从3原子数°/。变为2原子数%(实施例9-1)、10原子数%(实施例9-2)、20原子数%(实施例9-3)、30原子数%(实施例9-4)、40原子I"/q(实施例9-5)、或45原子#:%(实施例9-6)。当检测实施例9-1至9-6的二次电池的循环特性时,获得了表9和图14所示的结果。<table>tableseeoriginaldocumentpage83</column></row><table>如表9所示,在负极活性物质中的氧含量不同的实施例9-1至9-6中,如同实施例4-l一样,放电容量保持率明显高于比较例4。在这种情况下,如表9和图14所示,随着氧含量增加,放电容量保持率倾向于先增加然后变成几乎恒定。如果氧含量小于3原子数%,则放电容量保持率倾向于大幅降低。然而,如果氧含量大于40原子数%,则虽然;改电容量保持率倾向于增加,^旦电池容量倾向于降低。因此,证实了,在本发明的二次电池中,当改变负极活性物质中的氧含量时,同冲羊可以改善循环特性。而且,证实了,如果氧含量为3原子数°/。以上,则进一步改善特性,并且如果氧含量为3原子凄史%以上40原子凄史%以下,则可以确^呆电;也容量。实施例10-1至10-6以与实施例4-1相同的方式进行操作,不同之处在于通过使用99%纯度的石圭和99.9°/。纯度的金属元素作为蒸发源来沉积包含石圭和金属元素两者的负极活性物质。作为金属元素,可以使用铁(实施例10-1)、钴(实施例10-2)、镍(实施例10-3)、4各(实施例10-4)、钛(实施例10-5)、或钼(实施例10-6)。调节金属元素的蒸发量使得负极活性物质中的金属元素含量为5原子数%。当才企测实施例10-1至10-6的二次电池的循环特性时,获得了表10所示的结果。表10负极活性物质硅(电子束蒸发法)十点平均相4造度Rz=3.5pm负才及活性物质中的氧含量3原子凄史%<table>tableseeoriginaldocumentpage85</column></row><table>如表10所示,在负极活性物质包含金属元素和石圭的实施例10-1至10-6中,放电容量保持率高于负极活性物质不包含金属元素的实施例4-1。因此,证实了,在本发明的二次电池中,当负极活性物质包含金属元素时,进一步改善循环特性。实施例11-1至11-3以与实施例4-1相同的方式进4亍才喿作,不同之处在于将氧气等间歇地引入到室中的同时,沉积负极活性物质,使得第一含氧区域和具有的氧含量高于第一含氧区域的第二含氧区域通过沉积石圭而交替地层叠,代替通过将氧气等连续地引入到室的同时,沉积硅而使负极活性物质包含氧。第二含氧区域中的氧含量为3原子数%,而其凄t量为6(实施例11-1)、12(实施例11-2)、或24(实施例11-3)。当检测实施例11-1至11-3的二次电池的循环特性时,获得了表11和图15所示的结果。表11负极活性物质硅(电子束蒸发法)十点平均相4造度Rz=3.5nm负极活性物质中的氧含量3原子数%<table>tableseeoriginaldocumentpage86</column></row><table>如表ll和图15所示,在负4l活性物质具有第一和第二含氧区域的实施例11-1至11-3中,放电容量保持率高于负极活性物质不包含第一和第二含氧区域的实施例4-1。在这种情况下,随着第二含氧区域数量增加,放电容量保持率倾向于更高。因此,证实了,在本发明的二次电池中,当负极活性物质具有第一和第二含氧区域时,改善循环特性。而且,i正实了,随着第二含氧区i或凄t量增加,进一步改善特性。实施例12-1以与实施例1-1相同的方式进行操作,不同之处在于代替电子束蒸发法,通过RF》兹控溅射法来形成负才及活性物质层54B(厚度6.2pm)。此时,使用99.99%纯度的硅作为耙,并且沉积速度为0.5nm/s。实施例12-2以与实施例1-1相同的方式进行操作,不同之处在于代替电子束蒸发法,通过CVD法来形成负才及活性物质层54B(厚度6.3jam)。此时,分别使用硅烷和氩气作为原料和激发气,沉积速度和基板温度分另'J为1.5nm/s和200。C。当检测实施例12-1和12-2的二次电池的循环特性时,获得了表12所示的结果。表12负极活性物质硅(电子束蒸发法)十点平均粗4造度Rz=3.5(im负才及活性物质中的氧含量3原子凄史%<table>tableseeoriginaldocumentpage87</column></row><table>如表12所示,在形成负^L活性物质层54B的方法不同的实施例12-1和12-2中,如同实施例1-1一样,放电容量保持率高于比较例1。在这种情况下,在使用电子束蒸发法的情况下比使用溅射法和使用CVD法的情况下,放电容量保持率倾向于增加。因此,证实了,在本发明的二次电池中,当改变形成负极活性物质层54B的方法时,同才羊可以改善循环净争性。而且,i正实了,当4吏用蒸发法时,进一步改善特性。实施例13-1至13-7以与实施例4-1相同的方式进行操作,不同之处在于负极集电体54A的表面的十点平均啦Uf造度Rz乂人3.5}xm改为1(实施例13-1)、1.5,(实施例13-2)、2.5,(实施例13-3)、4.5,(实施例13-4)、5.5(am(实施例13-5)、6.5jam(实施例13-6)、或7(实施例13-7)。当检测实施例13-1至13-7的二次电池的循环特性时,获得了表13和图16所示的结果。表13负极活性物质硅(电子束蒸发法)十点平均相4造度Rz=3.5jam负极活性物质中的氧含量3原子数%<table>tableseeoriginaldocumentpage88</column></row><table>如表13所述,在十点平均粗糙度Rz不同的实施例13-1至13-7中,如同实施例4-l一样,放电容量保持率大大高于比较4。在这种情况下,如表13和图16所示,随着十点平均粗糙度Rz增大,放电容量保持率倾向于先增加然后降低,并且如果十点平均粗糙度Rz为小于1.5pm或大于6.5jam,则放电容量保持率倾向于急剧降低。因此,证实了,在本发明的二次电池中,如果改变负极集电体54A的表面的十点平均粗4造度Rz,则同样可以改善循环特性。而且,i正实了,如果十点平均啦Uf造度Rz为1.5|am以上6.5|am以下,则进一步改善循环特性。实施例14-1以与实施例4-1相同的方式进4亍才喿作,不同之处在于通过以下步-骤来制造图4至图6所示的方形二次电池代卢,层压膜型二次电池。首先,形成正才及21和负才及22。之后,将由铝制成的正^L引线24焊接至正极集电体21A,而将由镍制成的负极引线25焊接至负极集电体22A。随后,将正才及21、隔膜23、以及负极22以该次序进行层叠,并且在长度方向上螺旋巻绕,然后形成为扁平状。乂人而,形成电池元件20。随后,将电池元件20容纳在由铝制成的电池壳11内。之后,将绝缘板12设置在电池元件20上。随后,将正极引线24和负极引线25分别焊接至正极销15和电池壳11。之后,通过激光焊接使电池盖13固定至电池壳11的开口端。最后,将电解液通过注入孔19注入到电池壳11中。之后,通过密封件19A密封注入孑L19,乂人而完成方形电池的制备。实施例14-2以与实施例14-1相同的方式进行操作,不同之处在于使用由4失制成的电池壳ll代卢齐由铝制成的电池壳11。当检测实施例14-1和14-2的二次电池的循环特性时,获得了表14所示的结果。负极活性物质硅(电子束蒸发法)十点平均湘4造度Rz=3.5fim负极活性物质中的氧含量3原子数%<table>tableseeoriginaldocumentpage90</column></row><table>如表14所示,在电池结构不同的实施例14-1和14-2中,如同实施例4-1一样,放电容量保持率同样高于比较例4。在这种情况下,实施例14-1和14-2的》文电容量{呆持率令页向于高于实施例4-1,并且在电池壳11由铁制成的情况下的放电容量保持率高于电池壳11由铝制成的情况。因此,i正实了,在本发明的二次电池中,当电池结构改变时,同样可以改善循环特性。而且,证实了,在电池结构为方形的情况下,与电池结构为层压膜型的情况相比,进一步改善循环特性,并且^f吏用由铁制成的电池壳11的情况下进一步改善循环特性。尽管在这里对包装件由金属材料制成的圓柱形二次电池没有给出具体实施例,但是很显然,在这样的圓柱形二次电池中也可以获得类似的效果,因为与在层压膜型二次电池中相比,在包括由金属材冲+制成的包装件的方形二次电池中可以改善循环特性和溶胀特性。实施例15-1以与实施例14-1相同的方式进行操作,不同之处在于使用作为化学式22所示的具有卣素的环状石友酸酯的4-氟-l,3-二氧戊环-2酮(FEC)代替EC作为溶剂。实施例15-2以与实施例15-1相同的方式进行操作,不同之处在于作为电解质盐,力口入四氟硼酸锂(LiBF4),并且加入石黄基苯曱酸酐(SBAH)作为酸酐。在电解液中的六氟硼酸锂的浓度保持为1mol/kg时,电解液中的四氟硼酸4里的浓度i殳定为0.05mol/kg。而且,:容剂中SBAH的含量为1wt%。此处"Wt%"是指整个溶剂为100wt。/。的情况下的单位。这同才羊将适用于以下描述。实施例15-3以与实施例15-2相同的方式进行才乘作,不同之处在于加入碳酸亚丙酯(PC)作为溶剂。溶剂(PC:FEC:DEC)的组成重量比为20:30:50。实施例15-4以与实施例15-3相同的方式进行操作,不同之处在于加入作为化学式22所示的具有卣素的环状石友酸酯的4,5-二氟-1,3-二氧戊环-2-酉同(DFEC)作为溶剂。溶剂(PC:FEC:DFEC:DEC)的组成重量比为30:10:10:50。实施例15-5以与实施例15-3相同的方式进行操作,不同之处在于使用DFEC代替FEC作为溶剂。溶剂(PC:DFEC:DEC)的组成重量比为40:10:50。当对于实施例15-1至15-5的二次电池才企测循环特性时,获得了表15所示的结果。表15负极活性物质硅(电子束蒸发法)十点平均相4造度Rz=3.5nm负极活性物质中的氧含量3原子数%<table>tableseeoriginaldocumentpage92</column></row><table>5如表15所示,在电解液包含其他溶剂(FEC等)、其他电解质盐(四氟硼酸锂)、或酸酐(SBAH)的实施例15-1至15-5中,放电容量保持率高于电解液不包含上述物质的实施例4-1。在这种情况下,当溶剂包含DFEC时,与溶剂包含FEC的情况相比,力文电容量保持率倾向于更高。因此,证实了,在本发明的二次电池中,当10改变溶剂的组成和电解质盐的类型时,同样可以改善循环特性。还证实了,当向电解液中加入其他溶剂、其他电解质、或酸酐时,进一步改善循环特性。而且,i正实了,当在溶剂中包含4匕学式22所示的具有卣素的环状碳酸酯时,改善循环特性。此外,证实了,随着卤素的数量增加,进一步改善特性。在溶剂包含化学式21所示的具有囟素的链状碳酸酯的情况下的结果在本文中并没有示出。然而,化学式21所示的具有囟素的链状石友酸酯具有与化学式22所示的具有卣素的环状石友酸酯相同的功能。因此,显而易见的是,当溶剂包含化学式21所示的具有卣素的链状碳酸酯时,可以获得相似的结果。这同样适用于使用相同/不同类型的两种石友酸酯的混合物的情况。实施例16-1以与实施例4-1相同的方式进4亍才喿作,不同之处在于形成包含金属材料和负极活性物质的负极活性物质层54B。当形成金属材料时,在负极集电体54A的两个面上沉积负极活性物质,然后,通过电镀法在两个面上生长钴镀力莫。作为电镀液,4吏用钴电镀液(NipponKojundoKagakuCo.,Ltd.制造)。电流密度在2A/dm2至5A/dn^的范围内,并且电镀速率为10nm/s。而且,每单位面积的负极活性物质的摩尔数M1与每单位面积的金属材料的摩尔数M2之间的摩尔比M2/M1为1/20。实施例16-2至16-11以与实施例16-1相同的方式进4亍才喿作,不同之处在于摩尔比M2/M1为1/15(实施例16-2)、1/10(实施例16-3)、1/5(实施例16-4)、1/2(实施例16-5)、1/1(实施例16-6)、2/1(实施例16-7)、3/1(实施例16-8)、5/1(实施例16-9)、7/1(实施例16-10)、或8/1(实施例16-11),而不是1/20。实施例16-12至16-15以与实施例16-5相同的方式进行操作,不同之处在于使用铁电镀液(实施例16-12)、镍电镀液(实施例16-13)、锌电镀液(实施例16-14)、或铜电镀液(实施例16-15)代替钴电镀液作为电镀液。电流密度在使用铁电镀液的情况下在2A/dm2至5A/dm2的范围内,在使用镍电镀液的情况下在2A/dm2至10A/dm2的范围内,在4吏用锌电镀液的情况下在1A/dm2至3A/dm2的范围内,以及在使用铜电镀液的情况下在2A/dm2至8A/dm2的范围内。所有上述一系列电镀液由NipponKojundoKagakuCo.,Ltd.制备。当才全测实施例16-1至16-15的二次电池的循环特性时,获得了表16和图17所示的结果。表16负极活性物质硅(电子束蒸发法)十点平均相4造度Rz=3.5|am负极活性物质中的氧含量3原子数%<table>tableseeoriginaldocumentpage94</column></row><table>如表16所示,在形成了金属材料的实施例16-1至16-15中,放电容量保持率高于没有形成金属材料的实施例4-1。在这种情况下,如表16和图17所示,随着摩尔比M2/M1变得更大,》文电容量保持率倾向于先增加后降低,并且如果摩尔比M2/M1小于1/15或大于7/1,则》文电容量<呆持率倾向于大幅降{氐。而且,当对具有不同金属类型的实施例16-5和16-12至20-15进行相互比较时,与使用铁、镍、锌、或铜的情况相比,在使用钴的情况下放电容量保持率倾向于更高。因此,证实了,在本发明的二次电池中,当形成了不与电极反应物反应的金属材料时,改善循环特性。还证实了,如果摩尔比为1/15以上7/l以下,则当4吏用钴作为金属材料时,进一步改善循环特性。实施例17-1以与实施例1-1相同的方式进行操作,不同之处在于代替负极54,在正极53中包含氟树脂。当在正极53中包含氟树脂时,通过类^f以于形氟树脂的涂层,实施例17-2以与实施例1-1相同的方式进行操作,不同之处在于代替负极54,在隔膜55中包含氟树脂。当在隔膜55中包含氟树脂时,通过类似于形成涂层54C的步骤而在隔"莫55的两个面上形成包含氟杉于脂的涂层。实施例17-3以与实施例1-1相同的方式进行操作,不同之处在于代替负极54,在电解液中包含氟树脂。当在电解液中包含氟树脂时,将氟树脂分散在电解液中,同时将分散量调节为与在上述涂层中的含量相同。实施例17-4以与实施例1-1相同的方式进行:操作,不同之处在于通过类似于实施例1-1和17-2的步骤,在负才及54和隔膜55两者中包含氟树脂。当检测实施例17-1至17-14的二次电池的循环特性时,获得了表17所示的结果。表17负极活性物质硅(电子束蒸发法)十点平均相4造度Rz:3.5jam负极活性物质中的氧含量3原子数%负极活性物质层涂层含氟树脂的位置(含有形式)放电容量保持率(%)负极活性物质层的数量(层)XRl和R2实施例1-1负极(涂层)88实施例17-1正极(涂层)80实施例17-21化学式1化学式18(1)隔膜(涂层)81实施例17-3电解液(分散)74实施例17-4负极+隔膜91比專交例11---45如表17所示,在正极53、隔膜55、或电解液中包含氟树脂或者在负极54和隔膜55两者中包含氟树脂的实施例17-1至17-4中,如同负极54中包含氟树脂的实施例1-1一样,放电容量保持率显著高于比较例1。在这种情况下,对在不同位置包含氟树脂的实施例1-1和17-1至17-3之间进行比较时,存在这样的趋势,即,在正极53或隔膜55中包含氟树脂时,与在电解液中包含氟树脂的情况相比,方文电容量保持率更高;并且在负极54中包含氟树脂时,;汶电容量保持率比上述情况的更高于。而且,在不同位置包含氟树脂的的实施例1-1、17-2和17-4之间进4亍比4交时,存在这才羊的趋势,即,在负极54和隔膜55两者中均包含氟树脂时,放电容量保持率高于在负极54和隔膜55之一中包含氟树脂的情况。虽然此处没有给出具体实施例,但显而易见的是,由于在负极54和隔膜55两者中均包含氟树脂时,放电容量保持率显著地高,所以在正才及53、负才及54、隔月莫55、以及电解液中的两种以上中包含氟树脂时,放电容量保持率同样可以显著地4艮高。因此,在本发明的二次电池中,i正实了,当在正才及53、负招_54、隔膜55、以及电解液中的至少一种中包含氟树脂时,改善循环特性。在这种情况下,还证实了,当在负极54中包含氟树脂时,进一步改善循环特性。此外,证实了,在正极53、负极54、隔膜55、以及电解液中的两种以上中包含氟树脂时,进一步改善特性。由上述表1至表17以及图14至图17的结果显而易见的是,在本发明的二次电池中,证实了,在正才及、负4及、隔膜、以及电解液中的至少一种中包含选自由具有化学式1或化学式2所示结构的氟树脂组成的组中的至少一种时,可以改善循环特性。特别地,证实了,当在负极中包含上述氟树脂时,可以获得优异的循环特性,而与诸如负极集电体和负极活性物质层的结构、电解液的组成,以及电池结构的类型无关。在这种情况下,证实了,当使用诸如硅和锡钴合金的材料(可以嵌入和脱嵌4里并具有金属元素和准金属元素中的至少一种的材料)时,与使用诸如MCMB的碳材料作为负极活性物质的情况下相比,放电容量保持率大幅增加,因此在前一情况下可以获得更高的效果。这样的结果可能是由以下事实引起的即,使用有利于获得高容量的硅等作为负极活性物质时,与使用碳材料的情况相比,电解液更易于分解,因此可以显著地发4军电解液的分解抑制效果。已经参照实施方式和实施例描述了本发明。然而,本发明并不限于上述实施方式和上述实施例中描述的方面,并且可以进4于各种变形。例如,在上述实施方式和上述实施例中,作为电;也类型,已经给出了负极容量基于锂的嵌入和脱嵌来表达的锂离子二次电池的描述。然而,本发明的电池并不一定限于此。本发明可以类合:u也应用于这样的二次电池,即,其中通过将能够嵌入和脱嵌锂的负极材料的充电容量设置为比正极的充电容量更小的值,使负极容量包括与锂的嵌入和脱嵌有关的容量以及与锂的析出和溶解有关的容量,并且负极容量表示为这些容量的总和。而且,在上述实施方式和上述实施例中,已经刈M乍为电池结构的方型、圓柱型、或层压膜型二次电池的具体实施例以及电池元件具有螺旋巻绕结构的电池的具体实施例给出了描述。然而,本发明可以类似地应用于具有其它结构的电池(如石更币型电池和纽扣型电池)、或电池元件具有其它结构如层压结构的电池。而且,在上述实施方式和上述实施例中,已经给出了使用锂作为电才及反应物的情况的描述。然而,作为电才及反应物,可以4吏用其它1A族元素如钠(Na)和钟(K)、2A族元素如镁(Mg)和钙(Ca)、或其它轻金属如铝。在这些情况下,同样可以使用上述实施方式中描述的负极材料作为负极活性物质。而且,在上述实施方式和上述实施例中,关于本发明的负4及或电池中的负极活性物质的氧含量,由实施例的结果导出的其数值范围已经描述为适当的范围。然而,这样的描述并没有完全排除氧含量可以超出上述范围的可能性。即,上述适当的范围是用于获得本发明效果的特别优选的范围。因此,只要可以获得本发明的效果,氧含量在某种程度上可以超出上述范围。除了上述氧含量以外,这同样适用于摩尔比M2/M1等。本领域^支术人员应当理解的是,才艮据设计要求和其它因素,可以在所附权利要求书的范围内或其等同范围内进行各种修改、组合、子《且合以及变4匕。权利要求1.一种负极,包括位于设置在负极集电体上的负极活性物质层上的涂层,其中,所述涂层包含选自由具有化学式1或化学式2所示结构的氟树脂组成的组中的至少一种,化学式1其中,h和k表示比率,并且h+k为1;化学式2其中,m和n表示比率,并且m+n为1。2.根据权利要求1所述的负极,其中,所述氟树脂具有化学式3所示的结构,化学式3<formula>formulaseeoriginaldocumentpage2</formula>其中,X为4匕学式1或化学式2所示的结构,并且R1和R2中的至少一个是能够固定在所述负极活性物质层的表面上的基团。3.根据权利要求2所述的负极,其中,化学式3所示的Rl和R2中的至少一种是羟基、酯基、硅烷基、烷氧基硅烷基、磷酸酯基、氨基、酰胺基、氰基或异氰酸酯基。4.根据权利要求2所述的负极,其中,化学式3所示的Rl和R2中的至少一种具有4匕学式4所示的结构,化学式4<formula>formulaseeoriginaldocumentpage3</formula>其中,p、q以及r是0或l,R3是化学式5所示的二价连接基,R4是化学式6或化学式7所示的二价连接基,以及R5是化学式8至化学式17所示的一价基,化学式5<formula>formulaseeoriginaldocumentpage3</formula>其中,n是1以上的整数;化学式6<formula>formulaseeoriginaldocumentpage3</formula>其中,n是1以上的整数;化学式7<formula>formulaseeoriginaldocumentpage3</formula>化学式8<formula>formulaseeoriginaldocumentpage3</formula>其中,n是O至lO的整凄t;化学式9—0—CH2—CH—CH2—OHOH4匕学式10—C—0——R6IIO其中,R6是氢、10以下碳数的烷基或-CH2-CN;4t学式11—C—<II、8o其中,R7和R8是氢或20以下碳数的烷基;化学式12R9—Si—R10Rll其中,R9至Rll是氢、卣素、10以下碳数的烷基、10以下碳数的亚烷基或10以下碳数的烷氧基;化学式13R1201—0—P—O—R13IIO其中,R12和R13是氢、羟基、囟素或10以下碳数的烷基;化学式14其中,R14和R15是氢或IO以下碳数的烷基;化学式15—n=c=0化学式16RI6—C—R17R18其中,R16至R18是氢或卣素;化学式17—C三N5.根据权利要求1所述的负极,其中,所述负极活性物质层包含含有选自由硅(Si)的单质、合金以及化合物,和锡(Sn)的单质、合金以及化合物组成的组中的至少一种的负极活性物质。6.根据权利要求5所述的负极,其中,所述负极活性物质包含氧,并且所述负才及活性物质中的氧含量为3原子凄t。/。以上40原子凄"/q以下。7.根据权利要求5所述的负极,其中,所述负极活性物质在厚度方向上具有包含氧的含氧区域,并且所述含氧区域中的氧含量高于其他区域中的氧含量。8.根据权利要求5所述的负极,其中,所述负极活性物质具有选自由4失(Fe)、4古(Co)、镍(Ni)、4各(Cr)、4太(Ti)以及钼(Mo)组成的组中的至少一种金属元素。9.根据权利要求5所述的负极,其中,所述负极活性物质由多个颗粒构成。10.才艮据^K利要求9所述的负极,其中,所述负极活性物质的颗粒在所述颗粒内具有多层结构。11.根据权利要求9所述的负极,其中,所述负极活性物质连接于所述负极集电体。12.根据权利要求9所述的负极,其中,所述负极活性物质通过气相沉积法形成。13.根据权利要求IO所述的负极,其中,所述负极活性物质层在贝合金化的金属材料。14.根据权利要求13所述的负极,其中,所述负极活性物质层在所述负极活性物质的颗粒的暴露面上具有所述金属材料。15.根据权利要求13所述的负极,其中,所述负极活性物质层在所述负4L活性物质的颗并立内的间隙中具有所述金属材4+。16.根据权利要求13所述的负极,其中,所述金属材料具有选自由纟失、4古、4臬、4争(Zn)以及4同(Cu)纟且成的组中的至少一种金属元素。17.根据权利要求13所述的负极,其中,所述金属材料通过液相;冗积、法形成。18.根据权利要求13所述的负极,其中,每单位面积的所述负极活性物质的摩尔数Ml与每单位面积的所述金属材料的摩尔凄史M2之间的摩尔比M2/M1为1/15以上7/1以下。19.根据权利要求1所述的负极,其中,所述负极集电体的表面的十点平均相4造度Rz为1.5|Lim以上6.5pm以下。20.—种电池,包4舌4皮此相对的正极和负极,并且两者之间具有隔膜;以及电解液,其中,所述正才及、负才及、隔月莫以及电解液中的至少一种包含选自由具有化学式18或化学式19所示结构的氟树脂组成的纟且中的至少一种,4t学式18<formula>formulaseeoriginaldocumentpage7</formula>其中,h和k表示比率,并且h+k为l;化学式19<formula>formulaseeoriginaldocumentpage7</formula>其中,m和n表示比率,并且m+n为l。21.根据权利要求20所述的电池,其中,所述氟树脂具有化学式20所示的结构,4匕学式20R1—X—R2其中,X为4匕学式18或4匕学式19所示的结构,并且R1和R2中的至少一种是能够固定在所述负极的表面上的基团。22.根据权利要求21所述的电池,其中,化学式20中所示的R1和R2中的至少一种是羟基、酯基、硅烷基、烷氧基硅烷基、磷酸酯基、氨基、酰胺基、氰基或异氰酸酯基。23.根据权利要求21所述的电池,其中,化学式20中所示的R1和R2中的至少一种具有4匕学式21所示的结构,化学式21<。WR3WR4)rR5其中,p、q以及r是0或l,R3是化学式22所示的二价连接基,R4是化学式23或化学式24所示的二价连接基,以及R5是化学式25至化学式34所示的一价基,4匕学式22何其中,n是1以上的整数;化学式23其中,n是1以上的整数;化学式24<formula>formulaseeoriginaldocumentpage9</formula>化学式25<formula>formulaseeoriginaldocumentpage9</formula>其中,n是0至10的整数;4匕学式26<formula>formulaseeoriginaldocumentpage9</formula>化学式27<formula>formulaseeoriginaldocumentpage9</formula>其中,R6是氢、10以下碳数的烷基或-CHrCN;4匕学式28其中,R7和R8是氢或20以下碳数的烷基;4b学式29<formula>formulaseeoriginaldocumentpage9</formula>其中,R9至Rll是氢、囟素、10以下碳数的烷基、10以下碳数的亚烷基或10以下碳数的烷氧基;化学式30<formula>formulaseeoriginaldocumentpage10</formula>其中,R12和R13是氢、羟基、卣素或10以下碳数的烷基;化学式31<formula>formulaseeoriginaldocumentpage10</formula>其中,R14和R15是氢或IO以下碳数的烷基;化学式32—N=C=O化学式33<formula>formulaseeoriginaldocumentpage10</formula>其中,R16至R18是氢或卤素;化学式3424.根据权利要求20所述的电池,其中,所述负极在设置在负极集电体上的负^L活性物质层上具有涂层,并且所述涂层包含所述氟树脂。25.根据权利要求24所述的电池,其中,电极反应物的氟化物设置在所述涂层的表面上。26.才艮据4又利要求24所述的电池,其中,所述负才及活性物质层包含含有选自由硅的单质、合金以及化合物,和锡的单质、合金以及化合物组成的组中的至少一种的负才及活性物质。27.根据权利要求26所述的电池,其中,所述负极活性物质包含氧,并且所述负才及活性物质中的氧含量为3原子凄1%以上40原子凄史%以下。28.才艮据斥又利要求26所述的电池,其中,所述负才及活性物质在厚度方向上具有包含氧的含氧区域,并且所述含氧区域中的氧含量高于其他区域中的氧含量。29.根据权利要求26所述的电池,其中,所述负极活性物质具有选自由铁、钴、镍、铬、钛以及钼组成的组中的至少一种金属元素。30.根据权利要求26所述的电池,其中,所述负极活性物质由多个颗粒构成。31.根据权利要求30所述的电池,其中,所述负极活性物质的颗粒在所述颗粒内具有多层结构。32.4艮据4又利要求30所述的电池,其中,所述负才及活性物质连4妄于所述负才及集电体。33.根据权利要求30所述的电池,其中,所述负极活性物质通过气相;咒积法形成。34.才艮据;f又利要求31所述的电池,其中,所述负^l活性物质层在应物合金化的金属材料。35.根据权利要求34所述的电池,其中,所述负极活性物质层在所述负极活性物质的所述颗粒的暴露面上具有所述金属材料。36.才艮据4又利要求34所述的电池,其中,所述负才及活性物质层在37.根据权利要求34所述的电池,其中,所述金属材料具有选自由4失、钴、镍、锌以及铜组成的组中的至少一种金属元素。38.根据权利要求34所述的电池,其中,所述金属材料通过液相沉积法形成。39.才艮据权利要求34所述的电池,其中,每单位面积的所述负极活性物质的摩尔数Ml与每单位面积的所述金属材料的摩尔凄tM2之间的摩尔比M2/M1为1/15以上7/1以下。40.根据权利要求24所述的电池,其中,所述负极集电体的表面的十点平均粗4造度Rz为1.5fim以上6.5|am以下。41.根据权利要求20所述的电池,其中,所述电解液包含含有具有不々包和4建的环状^友酸酯的;:容剂。42.根据权利要求20所述的电池,其中,所述电解液包含含有化学式35所示的具有卣素的链状石友酸酯和化学式36所示的具有卣素的环状碳酸酯中的至少一种的溶剂,化学式35<formula>formulaseeoriginaldocumentpage13</formula>其中,R21R26是氢、卤素、烷基或囟代烷基,并且R21~R26中的至少一个为卣素或卣代it基;化学式36<formula>formulaseeoriginaldocumentpage0</formula>其中,R31-R34是氢、卤素、烷基或卣代烷基,并且R31~R34中的至少一个为囟素或卣^^克基。43.根据权利要求42所述的电池,其中,所述化学式35所示的具有囟素的链状碳酸酯是^友酸氟曱酯曱酯、碳酸二氟甲酯曱酯以及碳酸二(氟曱基)西旨中的至少一种,并且所述化学式36所示的具有闺素的环状石灰酸酯是4-氟-1,3-二氧戊环_2-酮和4,5-二氟-1,3-二氧戊环-2-酮中的至少一种。44.根据权利要求20所述的电池,其中,所述电解液包含含有磺内酯的溶剂。45.4艮据^又利要求20所述的电池,其中,所述电解液包含含有酸酐的溶剂。46.根据权利要求20所述的电池,其中,所述电解液包含含有选自由六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、高氯酸锂(LiC104)以及六氟砷酸锂(LiAsF6)组成的组中的至少一种的电解质盐。47.才艮据片又利要求20所述的电池,其中,所述电解液包含含有选种的电解质盐,4匕学式37<formula>formulaseeoriginaldocumentpage14</formula>其中,X41为短周期型周期表中的1A力矣元素或2A力矣元素或者铝;M41为过渡金属元素,短周期型周期表中的3B族元素、4B》矣元素或5B力矣元素;R41为囟素;Y41为画OC-R42-CO-、-00:画€11432-或-00(^0画;R42为亚烷基、卣代亚烷基、亚芳基或囟代亚芳基;R43为烷基、卣代烷基、芳基或卣^芳基;a4是l4的整凄t;b4是0、2或4的整凄史;以及c4、d4、m4和n4是1~3的整数,4匕学式38<formula>formulaseeoriginaldocumentpage14</formula>其中,X51是短周期型周期表中的1A族元素或2A族元素;M51为过渡金属元素,短周期型周期表中的3B力矣元素、4B力臭元素或5B族元素;Y51为-OC-(CR512)b5-CO-、-R532C-(CR522)c5-CO-、-R532C-(CR522)c5-CR532-、-R532C-(CR522)c5-S02-、-02S-(CR522)d5-S02-或-OC-(CR522)d5-S02-;R51和R53是氢、烷基、卣素或卣代烷基,R51和R53各自中的至少一个是卣素或卣代烷基;R52是氢、烷基、卣素或卣代烷基;a5、e5以及n5为l或2的整凄丈;b5禾口d5为1~4的整凄t;c5为0~4的整凄t;以及f5牙口m5为1~3的整凄t,4匕学式39其中,X61为短周期型周期表中的1A族元素或2A族元素;M61为过渡金属元素,短周期型周期表中的3B族元素、4B族元素或5B族元素;Rf为>^数在1~10范围内的氟化烷基或碳数在1-10范围内的氟化芳基;Y61为-R622C-(CR612)d6-CR622-、-R622C-(CR612)d6-S02-、画02S-(CR6l2)e6画S02画或-OC-(CR6l2)e6画S02-;R61为氢、烷基、囟素或卣代烷基;R62为氢、烷基、囟素或闺代烷基,并且它们中的至少一个是卣素或卣代烷基;a6、f6以及n6为l或2的整凄t;b6、c6以及e6为1~4的整凄t;d6为0~4的整凄t;以及g6和m6为1~3的整凄t。48.根据权利要求47所述的电池,其中,所述化学式37所示的化合物是选自由化学式40(1)~40(6)所示的化合物组成的组中的至少一种,所述化学式38所示的化合物是选自由化学式41(1)-41(8)所示的化合物组成的组中的至少一种,以及所述化学式39所示的化合物是化学式42所示的化合物,^f匕学式40-OC-(CR612)d6-CO--R622C-(CR612)d6-CO-<formula>formulaseeoriginaldocumentpage16</formula>(1)<formula>formulaseeoriginaldocumentpage16</formula>(3)<formula>formulaseeoriginaldocumentpage16</formula>(5)<formula>formulaseeoriginaldocumentpage16</formula>(2)<formula>formulaseeoriginaldocumentpage16</formula>(4)<formula>formulaseeoriginaldocumentpage16</formula>(6)<formula>formulaseeoriginaldocumentpage16</formula>4匕学式41<formula>formulaseeoriginaldocumentpage16</formula>(3)<formula>formulaseeoriginaldocumentpage16</formula>(7)<formula>formulaseeoriginaldocumentpage16</formula>(2)<formula>formulaseeoriginaldocumentpage16</formula>(6)<formula>formulaseeoriginaldocumentpage16</formula>(8)化学式42<formula>formulaseeoriginaldocumentpage16</formula>49.根据权利要求20所述的电池,其中,所述电解液包含含有选自由化学式43至化学式45所示的化合物组成的组中的至少一种的电解质盐,化学式43LiN(CmF2m+1S02)(CnF2n+1S02)其中,m和n是l以上的整凄t;化学式44其中,R71是碳数在24范围内的直链或支链的全氟亚烷基;4匕学式45<formula>formulaseeoriginaldocumentpage17</formula>其中,p、q以及r是1以上的整凄丈。全文摘要本发明提供了一种能够改善循环特性的负极和电池。该电池包括正极、负极以及电解液。电解液浸渍到设置在正极和负极之间的隔膜中。负极在设置在负极集电体上的负极活性物质层上具有涂层。该涂层包含氟树脂。氟树脂的末端是能够固定(例如,吸附或粘结)在负极活性物质层(负极活性物质)的表面上的羟基等。文档编号H01M10/36GK101425575SQ200810175218公开日2009年5月6日申请日期2008年10月30日优先权日2007年10月31日发明者中井秀树,山口裕之,川濑贤一,广濑贵一,洼田忠彦申请人:索尼株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1