锂离子电池负极材料及其制备方法

文档序号:7018177阅读:88来源:国知局
专利名称:锂离子电池负极材料及其制备方法
技术领域
本发明涉及一种锂离子电池负极材料及其制备方法。
背景技术
锂离子电池是一种新型的绿色化学电源,与传统的镍镉电池、镍氢电池相比具有 电压高、寿命长、能量密度大的优点。自1990年日本索尼公司推出第一代锂离子电池后,它 已经得到迅速发展并广泛用于各种便携式设备。 锂离子电池一般是由两个可逆地嵌入与脱嵌锂离子的材料作为正、负极构成的二 次电池。当电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。因此,锂离子电 池的性能特点与其负极有密切的关系。锂离子电池负极包括集电体和负极材料,而负极材 料是具有可逆嵌入与脱嵌锂离子的材料,故,锂离子电池的负极材料是影响锂离子电池性 能的关键材料之一。传统的锂离子电池的负极材料通常采用碳系材料或金属类材料。
现有的碳系材料为人造石墨或天然石墨等石墨化碳系材料。这些材料虽然具有循 环性能好、脱嵌锂过程中体积变化小等优点,但它们表面碳原子具有大量的不饱和键,在首 次充电时电解液会在它们表面分解,并形成SEI (Solid Electrolyte Interface)膜,使它 们存在首次可逆量较小、储锂能力较低等缺点。为了克服碳系材料储锂能力较低、首次可逆 量较小等问题,郑永平等人于2008年8月20日公告的、公告号为CN100413127C,标题为"一 种核壳结构的碳质锂离子电池负极材料及其制备方法"的大陆专利中揭示了一种碳系负极 材料,该碳系负极材料由核部分和壳部分组成,核部分为石墨,该石墨是由石墨层间化合物 脱插后得到的;壳部分为不定形碳,该不定形碳是由有机物热解后得到的。该碳系负极材料 虽然可以降低首次不可逆量,提高储锂能力;但由于其制备方法和热处理温度对该材料的 组成和结构有较大的影响,进而引起锂离子嵌入行为与性能的差异,而且其可逆储锂容量 仍较低。 与碳系材料相比,金属类的负极材料则具有较高的储锂容量。其中锡就是一种比
容量较大的储锂材料,比容量在1000mAh/g以上。 一般采用电镀法将金属锡单质直接镀在
集电体上制得电池负极,其中锡单质在嵌锂过程中可以与锂反应形成锂合金。但在充放电
过程中锡电极体积变化较大,高达300%,因此在锂的反复可逆嵌入和脱出过程中,锡粒子
易发生粉化,结构受到破坏,因而循环性能较差。而且,随着循环次数的增加,锡电极存储容
量下降较快。这些缺点限制了以锡作为负极材料在锂离子电池中的应用。 为解决碳系材料可逆储锂容量仍较低及金属类负极材料循环性能差、存储容量下
降较快,进一步提高锂离子电池负极储锂能力等问题,人们将碳与金属材料进行复合。利用
碳在脱嵌锂过程中的小的体积膨胀来缓冲金属在该过程中剧烈的体积膨胀,同时利用碳骨
架来分散金属颗粒,抑制金属颗粒的团聚,减缓金属存储容量下降,从而提高锂离子电池负
极的储锂能力。 为此,复旦大学的夏永姚等人于2008年6月18日公开的,公开号为CN101202341A 的大陆专利申请中揭示了一种锂离子电池电极材料及其制备方法。所述锂离子电池电极材
4料为碳包覆合金纳米级粒子的电极材料。该电极材料的本体为纳米级合金材料。通过乳液 聚合方法将酚醛树脂均匀地包覆合金纳米级粒子形成核壳结构,最后在惰性气氛下,高温 煅烧碳化得到碳包覆合金纳米级粒子。在该碳包覆的合金纳米级粒子中,所述纳米级合金 粒子被具有良好导电性和一定膨胀收縮性的碳均匀牢固地包裹,因此在循环过程中可以缓 冲体积膨胀同时保证了整体电极的导电性。该碳包覆合金纳米级粒子材料作为锂离子电池 负极材料可以得到安全性能及循环性能优良的锂离子电池负极材料。但,该电极材料在碳 化过程中使用的碳化温度为60(TC至90(rC,所需温度比较高,能耗大;且由于合金储锂容
量有限使得该电极材料的储锂容量仍较低。

发明内容
有鉴于此,确有必要提供一种新的锂离子电池负极材料及其制备方法,以解决锂 离子电池储锂能力较低的问题。 本发明提供一种锂离子电池负极材料,包括多个纳米级粒子以及包覆该多个纳米 级粒子的包覆材料,其中,所述包覆材料包括碳元素和氧元素。 本发明还提供一种上述锂离子电池负极材料的制备方法,包括提供一含有纳米 级粒子的溶液;将一有机物加入上述含有纳米级粒子的溶液中,得到一有机物包覆纳米级 粒子的材料;以及在30(TC到60(TC时,碳化上述有机物包覆纳米级粒子的材料,从而得到 一锂离子电池负极材料。 与现有技术相比较,由于本发明提供的锂离子电池负极材料的包覆材料中含有氧 元素,而氧元素的储锂能力要高于其他元素,因此本发明提供的锂离子电池负极材料具有 储锂能力较高的特点。 与现有技术相比较,由于本发明提供的锂离子电池负极材料的制备方法在300°C 到600°C时,碳化上述有机物包覆纳米级粒子的材料,具有碳化所需温度较低,能耗较小的 特点。
具体实施例方式
下面将结合具体实施例,对本发明提供的锂离子电池负极材料及其制备方法作进 一步的详细说明。 本发明提供一种锂离子电池负极材料。该锂离子电池负极材料包括多个纳米级粒 子以及包覆该多个纳米级粒子的包覆材料。 所述纳米级粒子材料为可以嵌锂的材料,其包括纳米级合金、纳米级金属氧化物 及纳米级氧化石墨复合物中的一种或其任意组合。所述纳米级合金包括CueSrv Mg2Sn、 CoSn、Ni3Sn4、CeSn3等中的一种或其任意组合。所述纳米级金属氧化物包括Sn02、Fe203、CoO、 CuO、Ni02等中的一种或其任意组合。所述纳米级氧化石墨复合物为氧化石墨与上述纳米级 金属氧化物的复合物。所述纳米级粒子的直径范围为l纳米-50纳米。本实施例中,所述 纳米级粒子为Sn(^,其直径范围为2纳米-3纳米。 所述包覆材料包括碳元素和氧元素,其以网络的形式包覆在所述纳米级粒子表 面。所述多个纳米级粒子通过化学键与该包覆材料相结合。其中,包覆材料的质量与负极 材料的总质量需满足一定的比例。当包覆材料的含量太低时,如低于30%,包覆材料太薄或无法完全包覆,从而导致高温碳化过程中该包覆结构容易破坏,影响整个锂离子电池负 极材料的容量;当包覆材料含量太高时,如大于90%,该锂离子电池负极材料主要由所述 包覆材料组成,而该包覆材料中的碳本身的容量较低,且氧元素的导电性能不佳,从而在很 大程度上降低整个电极材料的容量及导电性能。因此,所述包覆材料的质量占负极材料总 质量的30% -90%。本实施例中,所述包覆材料的质量占锂离子电池负极材料总质量的 65% -70%。 所述锂离子电池负极材料为颗粒状材料。本实施例中,所述锂离子电池负极材料 为C30Sn。.16。该负极材料通过适当的氧与锡元素比例,有效地利用氧元素的较高储锂能力, 而获得较高的放电容量。同时,锡元素亦具有较高的储锂能力,有利于该负极材料具有较高 的放电容量。另外,由于包覆材料的限定作用,也缓解了该锂离子电池负极材料中的纳米级 粒子的锡元素及包覆材料中的氧元素在反复锂嵌/脱过程中的结构应变,有利于改善其循 环性能。 另外,所述锂离子电池负极材料可进一步设置于一集电体的表面。所述锂离子电 池负极材料直接涂覆于该集电体的表面,经烧结后与该集电体紧密结合。该集电体可为一 金属基板,本实施例中,所述集电体为铜箔。 本发明进一步提供一种上述锂离子电池负极材料的制备方法,其主要包括以下几 个步骤 步骤一 提供一含有纳米级粒子的溶液。 所述纳米级粒子包括纳米级合金、纳米级金属氧化物、纳米级金属氢氧化物及纳 米级氧化石墨复合物等粒子中的一种或其任意组合。 以下分别讲述纳米级合金;纳米级金属氧化物、氢氧化物;及纳米级氧化石墨复 合物的制备方法。 其中,纳米级合金采用液相还原法来制备,具体包括以下步骤提供强还原剂、柠 檬酸、去离子水溶液及金属可溶性盐溶液等原料;将强还原剂以及柠檬酸加入去离子水溶 液中并强力搅拌溶解;将所需的金属可溶性盐溶液滴加到上述溶液中充分反应;过滤、洗 涤并真空干燥;最后得到一纳米级合金粒子。上述步骤中所用的还原剂为NaBH4或KBH4中 的一种或两种的混合试剂;所用金属可溶性盐溶液包括CuCl2、SnCl4、CoCl2、NiCl2、MgCl2等 中的一种或其任意组合。 纳米级金属氧化物及纳米级金属氢氧化物的制备方法为提供金属可溶性盐及去 离子水;在一定温度下,将金属可溶性盐置于去离子水中溶解,得到一含有该纳米级金属氧 化物及纳米级金属氢氧化物中的一种或两种的溶液。所述一定温度可以根据所使用的金 属可溶性盐的水解温度确定。所述金属可溶性盐中的金属元素包括锡、铁、铜、钴或镍等元 素中的一种或其任意组合。所述纳米级粒子的直径为l纳米-50纳米。另外,制备上述纳 米级金属氧化物及纳米级金属氢氧化物的过程中,还可以向溶液中加入氢氧化镍。氢氧化 镍的作用是为了得到直径更小的纳米级金属氧化物或纳米级金属氢氧化物。所述的氢氧化 镍可以用可溶性镍盐和可溶性氢氧化物代替,如醋酸镍与氢氧化钠。本实施例中,将一定量 的SnCl2 21120、醋酸镍与氢氧化钠置于去离子水中,使之在常温下溶解,得到一直径为2纳 米_3纳米的纳米级氧化锡及纳米级氢氧化锡的混合溶液。 纳米级氧化石墨复合物制备方法为将一定量的氧化石墨与金属盐一起水解。该
6水解反应可以在零摄氏度以下进行。其中,可在上述水解反应的溶液中加入酸以降低金属 盐与氧化石墨的反应速度,从而利于制备纳米级氧化石墨复合物粒子。 步骤二 将一有机物加入上述含有纳米级粒子的溶液中,得到一由有机物包覆纳 米级粒子的材料。 所述步骤二的具体过程为将所述有机物加入含有纳米级粒子的溶液中,将该溶液
加热至14(TC到200°C,并恒温3小时到8小时,得到一含有有机物包覆纳米级粒子的溶液; 以及过滤上述含有有机物包覆纳米级粒子的溶液,得到一有机物包覆纳米级粒子的材料。 其中,恒温3小时到8小时是为了使所述有机物收縮包覆纳米级粒子。所述有机物中的有 机物分子具有网状结构,该有机物在溶解过程中形成胶束,并将纳米级粒子包裹。所述有机 物包括酚醛树脂、糠醛树脂、糠酮树脂、环氧树脂、蔗糖、淀粉等中的一种或其任意组合。在 14(TC到20(TC时,所述纳米级金属氢氧化物至少一部分脱水,生成纳米级金属氧化物。
本实施例中,将蔗糖加入所述含有纳米级氧化锡及纳米级氢氧化锡的混合溶液 中,并将该混合溶液加热至18(TC,并恒温4小时,得到一含有蔗糖包覆纳米级氧化锡及纳 米级氢氧化锡的溶液;以及过滤上述含有蔗糖包覆纳米级氧化锡及纳米级氢氧化锡的溶 液,得到一蔗糖包覆纳米级氧化锡及纳米级氢氧化锡的材料。其中,所述混合溶液加热至 18(TC时,所述纳米级氢氧化锡有一部分脱水,生成纳米级氧化锡。 步骤三在30(TC到60(TC时,碳化上述有机物包覆纳米级粒子的材料,得到一碳 氧包覆纳米级粒子的材料,从而得到一锂离子电池负极材料。
该步骤的具体过程为在保护气体的环境下,将所述有机物包覆纳米级粒子加热
至30(TC到600°C,并恒温0. 5小时到2小时。所述保护气体为氮气或者惰性气体。所述 加热温度范围为大于等于30(TC,并小于等于60(TC,这是因为若温度低于300°C,由于所述 有机物碳化极少,且该有机物的导电性能较差,则使最终所得的碳氧包覆纳米级粒子的材 料的导电性能不佳。如果温度高于60(TC,则该材料会被完全碳化为碳材料,这会导致该材 料的含氧量较少,不利于储存锂。所述碳氧包覆材料占该锂离子电池负极材料的总质量的 30% -90%。另外,在温度为30(TC到60(TC范围内,所述纳米级金属氢氧化物脱水生成纳米 级金属氧化物,从而形成碳氧包覆纳米级金属氧化物的材料。 本实施例中,在氮气环境下,将所述蔗糖包覆纳米级氧化锡及纳米级氢氧化锡材 料加热至380°C ,并恒温1小时,即可得到碳氧包覆纳米级氧化锡材料。其中,上述加热过程 中,所述蔗糖包覆纳米级氧化锡材料碳化,得到碳氧包覆纳米级氧化锡材料;同时,所述纳 米级氢氧化锡材料脱水,并碳化得到碳氧包覆纳米级氧化锡材料。该碳氧包覆纳米级氧化 锡材料的组成为(;OSn。.w。 与现有技术相比,本发明提供的锂离子电池负极材料及其制备方法具有以下优 点其一,由于氧元素的储锂能力要高于其它元素,本发明提供的锂离子电池负极材料的包 覆材料中含有氧元素,因此该锂离子电池负极材料的储锂能力较高。其二,所述锂离子电池 负极材料中的氧元素与金属元素键合在一起的摩尔比较高,制备该锂离子电池负极材料需 要金属元素的用量较少,因此该锂离子电池负极材料具有较低的生产成本。其三,本发明提 供的制备锂离子电池负极材料的方法,在30(TC到60(TC时碳化所述有机物包覆纳米级粒 子的材料,具有碳化所需温度较低,能耗较小的特点。
权利要求
一种锂离子电池负极材料,包括多个纳米级粒子以及包覆该多个纳米级粒子的包覆材料,其特征在于,所述包覆材料包括碳元素和氧元素。
2. 如权利要求1所述的锂离子电池负极材料,其特征在于,所述碳元素和氧元素以网 络的形式包覆在所述纳米级粒子表面。
3. 如权利要求1所述的锂离子电池负极材料,其特征在于,所述包覆材料在电池负极 材料中的含量大于等于30 %且小于等于90 % 。
4. 如权利要求1所述的锂离子电池负极材料,其特征在于,所述多个纳米级粒子通过 化学键与所述包覆材料相结合。
5. 如权利要求1所述的锂离子电池负极材料,其特征在于,所述纳米级粒子包括纳米 级合金、纳米级金属氧化物及纳米级氧化石墨复合物中的一种或其任意组合。
6. 如权利要求5所述的锂离子电池负极材料,其特征在于,所述纳米级合金包括 Cu6Sn5、Mg2Sn、 CoSn、 CeSn3及Ni3Sn4中的一种或其任意组合。
7. 如权利要求5所述的锂离子电池负极材料,其特征在于,所述纳米级金属氧化物包 括Sn02、 Fe203、 CoO、 Cu0及Ni02中的一种或其任意组合。
8. 如权利要求7所述的锂离子电池负极材料,其特征在于,所述纳米级氧化石墨复合 物为氧化石墨与所述纳米级金属氧化物的复合物。
9. 如权利要求7所述的锂离子电池负极材料,其特征在于,所述纳米级金属氧化物为 Sn(^,其直径范围为大于等于2纳米且小于等于3纳米。
10. 如权利要求1所述的锂离子电池负极材料,其特征在于,所述纳米级粒子的直径范 围为大于等于1纳米,且小于等于50纳米。
11. 如权利要求1所述的锂离子电池负极材料,其特征在于,所述锂离子电池负极材料 进一步设置于一集电体表面。
12. 如权利要求1所述的锂离子电池负极材料,其特征在于,所述锂离子电池负极材料 为C30Sn016。
13. —种锂离子电池负极材料的制备方法,包括(1) 提供一含有纳米级粒子的溶液;(2) 将一有机物加入上述含有纳米级粒子的溶液中,得到一有机物包覆纳米级粒子的 材料;以及(3) 在30(TC到60(TC时,碳化上述有机物包覆纳米级粒子的材料,得到一碳氧包覆纳 米级粒子的材料,从而得到一锂离子电池负极材料。
14. 如权利要求13所述的锂离子电池负极材料的制备方法,其特征在于,所述纳米级 粒子的制备方法为水解法或液相还原法。
15. 如权利要求13所述的锂离子电池负极材料的制备方法,其特征在于,所述步骤(2) 包括将上述有机物及纳米级粒子溶液在14(TC到20(TC下恒温3小时到8小时,得到一含 有有机物包覆纳米级粒子的溶液;以及过滤上述含有有机物包覆纳米级粒子的溶液,得到 一有机物包覆纳米级粒子的材料。
16. 如权利要求15所述的锂离子电池负极材料的制备方法,其特征在于,所述有机物 包覆纳米级粒子的形成过程包括该有机物溶解于含有纳米级粒子的溶液中,并形成胶束将 纳米级粒子包裹。
17.如权利要求13所述的锂离子电池负极材料的制备方法,其特征在于,所述步骤(3) 为在保护气体的环境下,将所述有机物包覆纳米级粒子的材料加热至30(TC到60(TC,恒温 0. 5小时到2小时。
全文摘要
本发明涉及一种锂离子电池负极材料,包括多个纳米级粒子以及包覆该多个纳米级粒子的包覆材料,其中,所述包覆材料包括碳元素和氧元素。本发明还涉及一种锂离子电池负极材料的制备方法,其包括以下步骤提供一含有纳米级粒子的溶液;将一有机物加入上述含有纳米级粒子的溶液中,得到一有机物包覆纳米级粒子的材料;以及在300℃到600℃时,碳化上述有机物包覆纳米级粒子的材料,从而得到一锂离子电池负极材料。
文档编号H01M4/48GK101771146SQ20091010495
公开日2010年7月7日 申请日期2009年1月7日 优先权日2009年1月7日
发明者张昊旭, 范守善 申请人:清华大学;鸿富锦精密工业(深圳)有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1