微电池及其制造方法

文档序号:7247575阅读:284来源:国知局
专利名称:微电池及其制造方法
技术领域
本发明涉及包括形成在基板上的固体薄层的堆叠的微电池,该堆叠被封装层(encapsulation layer)覆盖,并顺次包括-与基板直接接触的第一集电器/电极组件;-固体电解质;-具有直接接触封装层的内表面的前表面和直接接触固体电解质的后表面的第二集电器/电极组件;以及-用于将第二集电器/电极组件与外部电负荷进行电连接的装置。
本发明也涉及这样的微电池的制造方法。
背景技术
微电池被定义为由薄层的活性堆叠形成的全固体(all-solid)电化学发电机,该薄层的活性堆叠构成通过电解质分离的(正和负)电极。这样的微电池进一步包括金属集电器。微电池的所有层为通过PVD (物理气相沉积)或CVD (化学气相沉积)获得的薄膜形式。正电极通常为锂嵌入(insertion)材料,例如,锂金属氧化物,且电解质为具有高离子电导率的电绝缘体。对于锂微电池,三种主要提供Li+离子的微电池可依赖于负电极的性质而被区分称为“锂-金属(lithium-metal)”的微电池、“锂-离子”或“无锂”微电池。称为“锂-金属”微电池的微电池呈现最好的电化学特性,特别是在电势以及充电和放电容量的稳定性方面。第一种锂微电池包括由金属锂制成的负电极。称为“锂-离子”(或Li-ion)微电池的微电池具有由锂添加(intercalation)或嵌入材料形成的负电极。Li+阳离子在负和正电极之间来回地移动,进行微电池的充电和放电。该种微电池使通常的微加工技术能够被使用,但是在循环(cycling)方面一般呈现较差的电化学性能。最后,称为“无锂”微电池的微电池包括作为负电极的金属集电器。在第一放电期间,Li+离子从正电极迁移,并被集电器阻挡。Li+离子通过电沉积在集电器上形成金属锂层。然后,电池以与锂-金属电池相同的方式运转,在第一循环期间具有小的容量降低。由于锂微电池的高质量密度、大的有效储能表面及低毒性,锂微电池引起人们的特别关注。然而,锂微电池对空气敏感,尤其对湿气敏感。为了保护锂微电池的活性堆叠,通常使用封装,以将堆叠与外部接触隔离,因此防止来自于环境的任何污染。存在不同的微电池构造,尤其是,存在呈现为平面或垂直电连接的构造,S卩,其中微电池到外部负荷的最后电连接在与集电器相同的平面上或在垂直于集电器的平面中。为了示例的目的,文献W02008/011061描述了具有平面电连接的微电池。如图I中所示,微电池典型地包括基板2上的堆叠I。堆叠I由第一集电器3、被固体电解质5覆盖的第一电极4、第二电极6和第二集电器7接连地形成。堆叠I被涂层(coating) 8封装,涂层8对形成堆叠I的元件是惰性的,且被设计为紧紧地密封堆叠I并保护堆叠I免受外部污染。接触连接通过涂层8上的金属层9而实现,并通过涂层8中形成的通孔10耦接到第二集电器7。接触连接连接位于堆叠I上方的第二集电器7和第一集电器3。通孔10穿过涂层8,并限定堆叠I的仅被形成接触连接的金属层9覆盖的局部区域11。这样,局部区域11构成微电池的对机械应力更敏感的易损点。特别地,锂微电池的运转基于通过锂离子的电流传输,当微电池的充电和放电发生时,由于电极中的锂离子的嵌入和提取(也称作脱出),电极经历变形。体积的这些重复变更迅速地引起机械损伤。层9的包括在局部区域11和与层3的固定连接点之间的部分对机械应力更敏感,因此会引起使用中的故障,且是微电池的性能降低的原因。如图I中所示,具有外部电负荷(未示出)的该类型构造的电连接常规地通过在集电器3的扩展部中的接触垫12实现,该接触垫12布置在涂层8的每侧。接触垫12形成接触终端,该接触终端使微电池能够被连接至例如外部电负荷、一个或更多的附加微电池、电子芯片或任何电负荷。至外部负荷的最后连接典型地由使用配线的焊接步骤实现。除了复杂和精密实现之外,该种构造集成方面具有缺点。第一集电器3的表面的一部分实际上被 接触垫12占用,因此限制了专门用于第一电极4的表面。然而,微电池的电化学特性,例如容量(单位yAh · cm_2),与微电池的活性表面成比例,尤其与第一电极4/电解质5以及第一电极4/第一集电器3界面的尺寸成比例。这样,活性表面的损失被观察,其与电化学性能的损失和集成密度(基板上每表面单位的器件数量)的损失的内涵相同。为了示例的目的,文献US-A-20070238019描述了具有关于基板2的主平面的垂直电连接的微电池。在图2中示出的该构造中,按照惯例,沉积在基板2上的堆叠包括通过电解质5分开的阴极4和阳极6。基板2具有前表面13和后表面14。分别为3和4的第一和第二集电器布置在基板2的前表面13上。基板2存在从前表面13上的集电器3和4达到外部负荷16的贯通连接15,外部负荷16在基板2的后表面14处被连接。该构造使得能够增加微电池的活性表面,且使电化学特性能够增强,以及使集成密度能够增加。然而,该构造呈现为复杂的实现,在于必须采用几个微加工步骤(沉积、蚀刻、化学机械抛光)来实现垂直电连接。已经提出了具有垂直连接的其他微电池构造。文献JP-A-61165965、US-A-2007087230 和 DE-A-102008011523 可被引用为示例。然而,现有技术中描述的解决方案仍不能充分克服由接触连接产生的机械应力的问题,或解决方案仍难以实现。特别地,局部区域的出现导致在微电池中的易损点,该易损点更特别地受制于微电池的体积变形,导致有裂纹、分裂或分层的倾向。

发明内容
本发明的目的是提供去除了现有技术的缺点的微电池和这种微电池的制造方法。特别地,本发明的目的是提供一种微电池,该微电池具有良好的性能、呈现最优的储能效率、高集成密度以及延长的寿命。微电池被设计为借由容易实施的工业制造方法制造,该工业制造方法在经济上是可行的且与在微电子领域中执行的技术是兼容的。根据本发明,该目的通过根据所附权利要求的微电池和制造这种微电池的方法实现。特别地,该目的通过以下事实实现电连接装置由至少两个导电隔件形成,该至少两个导电隔件从封装层的内表面至外表面穿过所述封装层,每一个所述隔件具有与第二集电器/电极组件的前表面直接接触的底壁(lower wall)和在封装层的外表面露出的顶壁(upper wall);且该目的通过以下事实实现所述隔件形成封装层中的划分网。根据特定的设计,至少两个隔件是相邻且彼此平行的,并通过封装层的一部分而被分开。根据优选的实施例,至少两个隔件是相邻且彼此平行的,并通过封装层的一部分而被分开,且分开两个相邻且平行的势垒的距离小于或等于所述封装层的位错密度的平方根的倒数。



由本发明的特定实施例的以下描述,其他的优点和特征将变得更清楚,本发明的特定实施例被指定用于仅非限制示例目的,且在所附图中被描述,其中图I以剖面图示意地示出了根据现有技术的具有平面电连接的微电池;图2以剖面图示意地示出了根据现有技术的具有垂直电连接的微电池;图3以剖面图示意地示出了根据本发明第一特定实施例的微电池;图4至10以剖面图示意地示出了用于制造根据图3的微电池的方法的不同步骤;图11以剖面图示意地示出了根据本发明第二特定实施例的微电池;图12以俯视图示意地示出了根据本发明第三特定实施例的微电池;图13以沿着图12的线AA截取的剖面图示意地示出了根据本发明第三特定实施例的微电池;图14以俯视图示意地示出了根据本发明第四特定实施例的微电池;图15以沿着图14的线BB截取的剖面图示意地示出了根据本发明第四特定实施例的微电池。
具体实施例方式参考图3,也被称为“全固体(all-solid)”电池的微电池包括形成在基板2上的固体薄层的堆叠17。基板2可为硅晶片或包括专用集成电路(或ASIC)的硅晶片。基板2也可被钝化层(未示出)覆盖,该钝化层由诸如二氧化硅(SiO2)的电介质形成或由双层形成,该双层由SiO2层和氮化硅(Si3N4)层按序形成。微电池优选为锂微电池。有利地,堆叠17的厚度在2μπι到20 μ m之间,优选为15 μ m。堆叠17被封装层18覆盖,且顺次包括-与基板2直接接触的第一集电器/电极组件19;-固体电解质20;-具有前表面22和后表面24的第二集电器/电极组件21,前表面22(在图3中的上部)与封装层18的内表面23直接接触,后表面24 (在图3中的下部)与固体电解质20直接接触;以及-第二集电器/电极组件21至外部电负荷的电连接装置25。第一集电器/电极组件19和第二集电器/电极组件21的每个由至少一个薄层形成。
根据图3中描述的第一特定实施例,第一集电器/电极组件19可由第一集电器26和正电极27形成。这样,第一集电器26与基板2直接接触,而正电极27位于第一集电器26和固体电解质20之间。第二集电器/电极组件21可包括形成负电极28的薄层和形成第二集电器29的薄层。第二组件21优选由负电极28和第二集电器29形成。如图3中所示,第二集电器29形成在负电极28上,而固体电解质20布置在正电极27和负电极28之间。在该情况中,第二集电器/电极组件21的前表面22和后表面24分别由第二集电器29的前表面和负电极28的后表面形成。第一集电器26和第二集电器29由金属制成,例如,由钼(Pt)、铬(Cr)、金(Au)、钛(Ti)、钨(W)或钥(Mo)制成。正电极27的尺寸比第一集电器26的尺寸小,使得正电极27不会延伸超出第一集电器26的周界并不与基板2或与基板2的钝化层接触。被使用作为正电极27的活性材料的材料可为非锂材料或锂材料,非锂材料例如为铜的硫化物或二硫化物(CuS或CuS2)、氧硫 化钨(WOySz)、二硫化钛(TiS2)、氧硫化钛(TiOxSy)或钒的氧化物(VxOy),锂材料例如为诸如锂钴氧化物(LiCo02)、锂镍氧化物(LiNi02)、锂锰氧化物(LiMn204)、锂钒五氧化物(LiV2O5)或磷酸锂铁(LiFePO4)的锂基混合氧化物。按照惯例,负电极28可由选自过渡金属及其合金、非金属及其合金以及锂嵌入或添加材料中的一种或更多种材料形成。负电极28可为Li+离子产生器或者也包括活性锂嵌入材料。用作负电极28的活性材料可为非锂材料,或为锂嵌入或添加材料,该非锂材料例如为硅(Si )及其合金(例如硅/锗合金(SiGe ))、锡及其合金(例如锡/铜合金(Cu6Sn5))、碳;锂嵌入或添加材料选自锡硅氧氮化物(SiTON)、氮化锡(SnNx)、氮化铟(InNx)以及锡氧化物(诸如二氧化锡(SnO2)。用作负电极28的活性材料的材料可为锂材料,例如包括少于30%的锂的SiLix或GeLix合金或锂基混合氧化物(诸如锂镍氧化物(LiNiO2)X分别为27和28的正和负电极在堆叠17中自然地可具有相反的位置。例如,正电极27可在图3中的顶部,而负电极28在底部。固体电解质20由使得Li+锂离子能够传导的材料形成。优选地,选择电绝缘且离子传导材料。固体电解质20可为具有基础的玻璃质(vitreous)材料,该基础由硼氧化物、锂氧化物或锂盐形成,或者有利地由锂基化合物(例如磷和锂的氧氮化物(LiPON)或磷硅酸锂氧氮化物(LiSiPON))形成。按照惯例,封装层18由选自聚合物、陶瓷或金属材料的一种或更多种材料形成。电连接装置25由至少一个导电隔件(barrier)形成,该导电隔件从封装层18的内表面23 (在图3中的底部)至外表面30 (在图3中的顶部)穿过封装层18。换言之,隔件在封装层18的外表面30露出。隔件是厚度较小的细元件,决定在封装层18中的分隔。隔件具有底壁31、顶壁32和侧壁33,且优选地具有矩形的截面。隔件的厚度有利地在O. 5 μ m和10 μ m之间,优选在I μ m和5 μ m之间。隔件的高度或隔件的侧壁33的高度至少等于封装层18的厚度。底壁31与第二集电器/电极组件21的前表面22直接接触,而顶壁32在封装层18的外表面30露出。隔件优选由至少一种导电材料形成,该导电材料有利地选自金属及其合、聚合物和金属氧化物。隔件有利地单独由导电材料(例如,钛、钨、钼、镍或铜)形成。隔件优选地是实心的,即被材料完全填充。如图3中所示,隔件的顶壁32优选与封装层18的外表面30形成共同的平坦表面。隔件因此不从封装层18的表面突出。每一个隔件的侧壁33 (在图3中的右边和左边)进一步垂直于第二集电器/电极组件21的前表面22。因为机械应力主要产生在相同的方向(由图3中的垂直箭头表示,关于基板2的主面垂直)上,所以锂的嵌入和脱出而造成的体积膨胀对这样的结构的影响很小。对于在第二集电器/电极组件21上方具有均匀厚度的封装层18,隔件的高度实质上等于位于第二组件21上方的封装层18的厚度。隔件的高度是指隔件的侧壁33的高度。对于在第二集电器/电极组件21上方具有非均匀层厚的封装层18,隔件的高度实质上等于封装层18的位于隔件每侧的部分的厚度。
在封装层18中出现的隔件使得封装层18中存在的缺陷不连续,由此减少易于损害微电池堆叠17的活性元件的物质的关键扩散路径(critical diffusion path)。隔件阻挡杂质并在封装层18中产生裂纹传播终止区域(crack propagation stopper area)。隔件还具有小的厚度,在底壁31和封装层18的内表面23之间的接触部分被大量减少。微电池的易损区域,即,没有封装且仅被隔件保护的区域,因此大大地减少。根据具体实施例,这种微电池的制造可借由这样的制造方法实现,该制造方法包括在图4至11中示出并在下文中描述的连续步骤。如图4中所示,制造方法包括在基板2上进行薄层的堆叠17的全晶片沉积以顺次形成第一集电器26、正电极27、固体电解质20、负电极28和第二集电器29的。第一集电器26和正电极27形成第一集电器/电极组件19,而第二集电器29和负电极28形成第二集电器/电极组件21。该步骤之后为在第二集电器/电极组件21上进行第一保护层34的全晶片沉积。在该构造中,第一保护层34被直接沉积在第二集电器29上。借由任何方法(例如,通过PVD或CVD)执行全晶片沉积。薄层的厚度典型地在O. I μ m和5 μ m之间。第一保护层34由选自聚合物或陶瓷材料的一种或更多种材料形成,该聚合物或陶瓷材料有利地是不导电的,例如由环氧化物、丙烯酸盐、聚对二甲苯、硅石或氮化物制成。当需要加温退火步骤以增加构成电极之一的薄层的结晶化并增加其的嵌入容量时,该退火步骤可有利地在第一薄层的全晶片沉积之后进行,因此形成电极27。如图5中所示,然后,至少一个沟槽35借由任何方法被制成在第一保护层34中。按照惯例,沟槽35由其后跟随有蚀刻的传统光刻掩模(masking)工艺制成,该蚀刻例如为反应离子蚀刻(RIE)类型的选择性干法蚀刻或选择性湿法工艺蚀刻。沟槽35形成模型(matrix)以制成隔件。隔件被设计为在第一保护层34中引入不连续。模型即是隔件的空心印记(imprint)。沟槽35穿过第一保护层34的厚度,并露出第二集电器/电极组件21的前表面22,即第二集电器29的前表面。一个或更多的外围沟槽36也有利地与沟槽35同时制成,以限定微电池的最后形状和尺寸。外围沟槽36也穿过第一保护层34的厚度,并露出第二集电器/电极组件21的前表面22,即第二集电器29的前表面。
如图6和7中所示,沟槽35此后被导电材料填充。该填充步骤包括借由任何已知的方法在第一保护层34上沉积导电材料的薄层37,其后跟随有薄层37的选择性蚀刻。为了示例的目的,选择性蚀刻可为干法工艺蚀刻。如图6中所示,沟槽35的厚度,标为X1,优选小于或等于薄层37的厚度,标为X2,的两倍,使得沟槽35被形成薄层37的导电材料完全填充。外围沟槽或沟槽36的厚度,标为X3,优选大于或等于薄层37的厚度X2的两倍。限定了微电池的轮廓的外围沟槽36因此未被完全填充。如图7中所示,薄层37借由任何已知的方法蚀刻,例如借由干法工艺蚀刻。由于沟槽35和36的特定尺寸,位于外围沟槽36中且在第一保护层34的外表面30上(在图7中的顶部)的薄层37被除去,这是因为薄层37的该部分直接暴露于蚀刻溶液,但是薄层37的在沟槽35中的较窄部分未暴露于蚀刻溶液。在该蚀刻步骤完成之时,仅薄层37的在沟槽35中的部分被保留。 该步骤使隔件能够在第一保护层34中被获得,而且不需要先于蚀刻的掩模操作。如图8中所示,在沟槽35被填充之后,一个或更多堆叠17的蚀刻步骤借由任何已知的方法被执行,以使基板2上的微电池局部化。使用的蚀刻的类型依赖于将被蚀刻的薄层的性质。因此可以设想通过其后跟随有单个蚀刻操作的光刻执行掩蔽,该单个蚀刻操作同时蚀刻第二集电器29、负电极28、固体电解质20和正电极27。然后,第一保护层34的表面的一部分(在图8中的右边和左边)是暴露的。该蚀刻步骤给出了微电池的活性堆叠17的最终形状。第一保护层34的暴露部分可位于堆叠17周围。根据替代的实施例,堆叠17的蚀刻通过用于一个或更多的薄层的一连串的选择性蚀刻而执行,该一个或更多的薄层对应于第二集电器29、负电极28、固体电解质20或正电极27。如图9中所示,第二保护层38借由任何已知的方法制成,例如通过其后跟随有蚀刻的沉积制成。第二保护层38以第二保护层38形成连续不间断的层。按照惯例,第二保护层38由选自聚合物、陶瓷或金属材料的一种或更多种材料形成。分别为34和38的第一和第二保护层有利地由相同的一种材料或多种材料形成。第二保护层38覆盖堆叠17的所有侧面部分(在图9中的左边和右边)并在第一集电器26上在堆叠17的每侧延伸,但是不覆盖第一集电器26的所有暴露部分。分别为34和38的第一和第二保护层因此形成封装层18。第一集电器26的位于微电池外围的暴露表面构成用于连接至外部电负荷的接触点。因此,如图10中所示,接触垫39使外部电负荷(未示出)能够连接至分别为26和29的第一和第二集电器,并因此连接至微电池的正电极27和负电极28。接触垫39可以布置在堆叠17的每侧且在第一集电器26的暴露表面上。按照惯例,接触配线被焊接至接触垫39上,并被连接至外部电负荷(图10)。根据图11中示出的第二特定实施例,微电池为“无锂”微电池。在微电池的第一次充电之前,第二集电器/电极组件21最初由单个薄层形成。单个薄层由金属或金属合金形成。该薄层构成用于金属锂的电解沉积的电镀层。此后,当执行微电池的充电时,锂沉积被激活。如在文献W0-A1-0060689中描述的,在微电池的最初充电之前,微电池不包括构成负电极28的金属锂的薄层。当微电池的充电发生时,负电极28由金属锂的电解沉积形成。在微电池的第一次充电之后,第二集电器/电极组件21由构成第二集电器29的薄层以及构成负电极28的金属锂的薄层形成(图10)。除了负电极28和第二集电器29通过沉积单个薄层实现之外,用于制造根据第二特定实施例的微电池的方法与在上文中描述的第一实施例相同。根据图12和13中示出的第三特定实施例,电连接装置25由至少两个导电隔件形成。隔件在封装层18中形成划分网(compartmentalization network) 40。“划分网”即是由彼此交叉的至少两个区划隔件(有 利地以矩形的方式)形成的组件,所述隔件将封装层18分为多个隔间。在微电池工作期间,划分网因此产生易于形成在封装层18中的一个或更多个裂纹传播终止区域41。每一个隔件具有底壁31和顶壁32,底壁31与第二集电器/电极组件21的前表面22直接接触,而顶壁32在封装层18的外表面30露出。根据有利的构造,至少两个隔件是相邻且彼此平行的。这两个隔件因此通过封装层18的一部分而彼此分开。隔件的侧壁33垂直于第二集电器/电极组件21的前表面22,并彼此平行(图13)。分开这两个相邻且平行的隔件的距离,标为L1,优选小于或等于封装层18的位错密度(标为dd)的平方根的倒数。封装层18的位错密度即是每表面单位的缺陷密度。因此,为了减少或消除缺陷断续性,微电池的构造,特别是隔件关于彼此的布置,必须满足以下关系
j < I例如,对于4disloC/ μ m2的位错密度,分开两个相邻且平行的隔件的距离L1必须小于或等于O. 5 μ Hi2。划分网40产生出现在封装层18中的缺陷的不连续,从而减少易于损害微电池的堆叠17的活性元件的物质的关键扩散路径。同样地,划分网40的每一个隔件产生在封装层中的裂纹传播终止区域41。因此,微电池的结构限制了微电池的易损区域,增加了集成密度,并具有改进微电池性能的效果。根据图14和15中示出的第四特定实施例,划分网40具有网眼结构(meshedstructure),图案为平行四边形的形式,例如为正方形或矩形的图案。如图14中所示,划分网40优选地具有栅格形式的结构。隔件的网眼形成封装层18中彼此隔离的隔间,防止易于损害构成堆叠17的元件的物质和裂纹41的任何扩散。隔件的顶壁进一步形成在封装层18的表面处的连接线,该连接线能够实现微电池至一个或更多的外部电负荷的电连接。如图14中所示,至少一个接触垫39例如能被放置在连接线上,接触划分网40的顶壁32之一,并连接至外部电负荷(未示出)的负端。至少另一个接触垫39此后被放置在第一集电器26的暴露表面上,并连接至外部电负荷的正端。根据未不出的替代实施例,第一集电器26的暴露表面仅仅位于被封装的堆叠17的一侧,以限制分配给集电器的基板表面,并提高集成密度。用于制造根据第三和第四实施例的微电池的方法与上文中描述的第一实施例相同,除了使电连接装置25将被实现的模型的形式之外。因此该方法包括至少一个沟槽35在第一保护层34中的形成,该沟槽35形成实现隔件的模型。按照惯例,隔件可以由单个沟槽或几个沟槽制成。本发明不限于上文中描述的实施例。特别地,封装层18由第一保护层34单独地形成。然后,制造方法与在上文中描述的第一实施例的不同在于,堆叠17的蚀刻在第一保护层34的蚀刻之前执行,且在于,第一保护层34沉积在第一集电器26和堆叠17上,使得第一保护层34完全覆盖堆叠17。然后,一个沟槽或多个沟槽直接被制成在封装层18上。具有带垂直连接的最优结构的锂微电池借由本发明的制造方法已经被实现。该微电池的结构避免了使封装层18易损并损害封装层18的机械和密封特性的接触连接的出现。根据本发明的微电池具有一种结构,该结构使专用于集电器的基板表面能够被限制,并使集成密度被提高。隔件的出现,尤其是划分网的出现,进一步使封装层的阻隔效应能够被保持为限制易损区域,并与在先技术的微电池相比,特别是在寿命方面,使电池的性能能够被改进。 这些微电池有许多工业应用,特别是在微电子领域(组件的小型化和自自主性要求需要使用具有较长寿命的较小的、更大存储量的电池)。与根据在先技术的制造方法(需要形成锂微电池的不同层的多个经常复杂的沉积和蚀刻步骤)不同,根据本发明的制造方法易于实现并是简单的。以独特的方式,该制造方法可以以减少的蚀刻和掩模步骤数量来实现,特别地,以对于蚀刻堆叠17是必须的单个步骤来实现。微电池的功能界面在制造方法的进程中被保护,这些界面的质量进一步被保持。这样的锂微电池的制造方法与在微电子领域中采取的技术是兼容的,特别地,该制造方法使这样的锂微电池能够被并入微组件,并导致制造费用能够被降低。
权利要求
1.一种微电池,该微电池包括形成在基板(2)上的固体薄层的堆叠(17),所述堆叠(17)被封装层(18)覆盖,并顺次包括 -与所述基板(2)直接接触的第一集电器/电极组件(19); -固体电解质(20); -具有前表面(22)和后表面(24)的第二集电器/电极组件(21),该前表面(22)与所述封装层(18 )的内表面(23 )直接接触,该后表面(24 )与所述固体电解质(20 )直接接触;以及 -将所述第二集电器/电极组件(21)连接到外部电负荷的电连接装置(25); 所述微电池的特征在于所述电连接装置(25)由至少两个导电隔件形成,该至少两个导电隔件从所述封装层(18)的内表面(23)穿通到所述封装层(18)的外表面(30),所述隔件的每一个具有与所述第二集电器/电极组件(21)的前表面(22)直接接触的底壁(31)和在所述封装层(18 )的外表面(30 )露出的顶壁(32 ),并且所述隔件在所述封装层(18 )中形成划分网(40)。
2.根据权利要求2所述的微电池,其特征在于,至少两个隔件是相邻且彼此平行的,并被所述封装层(18)的一部分分开。
3.根据权利要求3所述的微电池,其特征在于,相邻且平行的所述两个隔件的分开距离小于或等于所述封装层(18)的位错密度的平方根的倒数。
4.根据权利要求I至3中任一项所述的微电池,其特征在于,所述划分网(40)具有网眼结构,图案为平行四边形,优选为栅格形状。
5.根据权利要求I至4中任一项所述的微电池,其特征在于,每个所述隔件的侧壁(33)垂直于所述第二集电器/电极组件(21)的前表面(22)。
6.根据权利要求I至5中任一项所述的微电池,其特征在于,所述隔件的顶壁(32)与所述封装层(18)的外表面(30)形成共同的平坦表面。
7.根据权利要求I至6中任一项所述的微电池的制造方法,其特征在于,所述方法包括以下的连续步骤 -在所述基板(2)上进行薄层的堆叠(17)的全晶片沉积以顺次形成第一集电器/电极组件(19 )、固体电解质(20 )和第二集电器/电极组件(21), -在所述第二集电器/电极组件(21)上进行第一保护层(34)的全晶片沉积, -在所述第一保护层(34 )中制成至少一个沟槽(35 ),该至少一个沟槽(35 )形成模型以形成所述隔件,所述沟槽(35)穿过所述第一保护层(34)的厚度,并露出所述第二集电器/电极组件(21)的前表面(22),以及-用导电材料填充所述沟槽(35 )。
8.根据权利要求7所述的方法,其特征在于,所述填充步骤包括在所述第一保护层(34)上沉积导电材料的薄层(37),该沉积之后选择性地蚀刻所述薄层(37)。
9.根据权利要求7和8中任意一项所述的方法,其特征在于,在填充所述沟槽(35)之后,所述方法包括一个或更多个所述堆叠(17)的蚀刻步骤,以在所述基板(2)上使所述微电池局部化。
10.根据权利要求9所述的方法,其特征在于,在蚀刻所述堆叠(17)之后,使第二保护层(38)覆盖所述堆叠(17)的所有侧面部分,并与所述第一保护层(34) —起形成封装层(18)。
全文摘要
本发明涉及一种微电池,该微电池包括在基板(2)上的堆叠(17),该堆叠(17)被封装层(18)覆盖且包括第一和第二集电器/电极组件(19,21)、固体电解质(20)以及将第二集电器/电极组件(21)连接到外部电负荷的电连接装置(25)。电连接装置(25)包括至少两个导电隔件,该导电隔件从封装层(18)的内表面(23)至外表面(30)穿过封装层(18)。隔件的每一个具有与第二集电器/电极组件(21)的前表面(22)直接接触的底壁(31)和在封装层(18)的外表面(30)露出的顶壁(32)。隔件形成封装层(18)中的划分网(40)。
文档编号H01M10/0585GK102812579SQ201180012137
公开日2012年12月5日 申请日期2011年2月23日 优先权日2010年3月1日
发明者S.奥卡西, P.科罗内尔 申请人:原子能和代替能源委员会
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1