一种防止金属迁移的半导体发光器件的制作方法

文档序号:7109250阅读:376来源:国知局
专利名称:一种防止金属迁移的半导体发光器件的制作方法
技术领域
本发明涉及一种半导体发光器件,更具体地是一种防止金属迁移的半导体发光器件。
背景技术
银具有极其优良的导电性、传热性、可焊性和低接触电阻,且在可见光区域具有很高的反射率,所以采用银和银合金在可见光区域反射率非常高的材料,用来制备反射镜可以大大提升LED的出光效率。但是在另一方面,银同时是一种非常容易发生电迁移的金属。在LED中,由于芯片侧面是p-n界面区域,其电位梯度比其他区域高,所以银会倾向迁移到芯片侧面的p-n界面,从而产生梯度分流路径,严重影响LED的效率及稳定性。在外加电场及对应湿度感应环境下,银(不论是在金属或其他合金形态,例如CuAg, AgPd,或SnAg等)会转变为Ag+离子,通过表面材料的原结构迁移,然后再沉淀后产生另一个金属银区域。这 重生金属银区域在电子器件的表面上,会成长为树叉形状或“晶须”形状的导电途径从而导致电子之间短路现象。目前,为了防止银的扩散和电迁移,一般在反射层覆盖一层或多层阻挡层来阻挡Ag的迁移(例如US6194743B1,图2所示),但阻挡效果不好,在芯片边缘,银仍然会很容易扩散及产生电迁移现象,导致芯片失效。

发明内容
本发明的目的是提供一种半导体发光器件,其可有效防止金属迁移,提高器件的使用寿命。本发明达到上述目的的技术方案为一种防止金属迁移的半导体发光器件,包括由η型半导体层、发光层、P型半导体层构成的多层发光结构;反射层,形成于所述P型半导体层上,含有易迁移金属;阱环结构,形成于所述P型半导体层,并包围所述反射层,防止反射层的金属向侧壁迁移;金属覆盖层,覆盖所述反射层,并向所述阱环结构延伸。在本发明中,在P型半导体层形成阱环结构,其包围反射层,从而在反射层外围形成“钉扎”效果,阻止反射层金属沿着反射层与P型半导体的接触面向器边缘迁移,提高了器件的可靠性。进一步地,在本发明中,根据反射层的大小在所述P型半导体形成阱环结构,阱环结构深度不超过150nm ;宽度不超过20um。所述阱环结构至少包括一个阱环围绕所述反射层,也可以由多个阱环依次围绕,阱环内P层的电阻比阱环外P层电阻高。阱环结构围住反射层,反射层可以覆盖到阱环结构,但不超过阱环结构的包围。在本发明的一些实施例中,可以通过调整不同阱环上的电阻率高低变化差异,进一步降低银迁移密度。在本发明的一些实施例中,所述阱环结构为形成于P型半导体的凹槽结构,在所述凹槽结构内填充绝缘材料层或者易与反射层材料共熔的金属层。在本发明的一些实施例中,所述金属覆盖层厚度为200nm 2000nm,填满讲环结构,并与整个P型半导体层形成良好欧姆接触,材料选自Ti、Pt、W、Au、Ni、Sn和Cr其中一种或其组合。本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。


附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。图I为专利US6194743所公开的一种抑制金属迁移的结构示意图,其在反射层外围包裹一层致密的障碍层,防止金属的扩散迁移。
·
图2为根据本发明实施的一种防止金属迁移的发光器件示意图。图3为本发明实施例一的结构示意图。图4为本发明实施例二的结构示意图。图5为本发明实施例三的结构示意图。图6为本发明实施例四的结构示意图。图7为本发明实施例五的结构示意图。图8 图12为制作实施例二所示的发光器件的的过程中各个步骤的器件示意图。
具体实施例方式下面实施例公开了一种防止金属迁移的半导体发光器件。该发光器件包括多层发光结构,其由η型半导体层、发光层、P型半导体层组合形成在基板上,在P型半导体层上形成环结构,在阱环保护结构包围中形成金属反射层。其中,在一些实施例中可以在阱环中制作致密绝缘材料阻隔反射层电场。然后在整个反射层上覆盖层致密的金属层,同时向阱环结构延伸,进行高温熔合,使整个阱环结构的P型半导体与金属层形成欧姆接触,从而在银反射层外围形成“钉扎”效果,阻止银的迁移。下面结合附图和实施例对本发明的具体实施作详细说明。请参考图2,一种倒装半导体发光器件,由η型半导体层211、发光层212和ρ型半导体层213构成的多层发光结构倒装形成于支撑基板240上。其中,支撑基板240上分布有图形化金属层241和242,多层发光结构的η型半导体层211和ρ型半导体层213分别通过η电极232、ρ电极231与支撑基板240上的金属层241和242连接。在ρ型半导体层213与P电极232之间设有银反射层221,其与P型半导体层213接触,且在P型半导体层213围绕反射层221形成阱环结构213a。银反射层221的厚度介于50nm 500nm之间,材料首选Ni/Ag/Ti/Pt;也可以是Ti、Pt、W、Al、Au、Ni、Sn和Cr其中一种或两种以上组合的金属层。阱环结构至少包括一个阱环,优先地包含两个以个阱环,其深度不超过150nm、宽度不超过20um,阱环内的电阻率比阱环外的电阻率高,如果多个阱环结构,可以通过调整不同阱环上的电阻率高低变化差异,进一步降低银迁移密度。在银反射层221上面覆盖一层金属覆盖层220,此覆盖层完全覆盖银反射层221,并向阱环结构延伸,如阱环结构为凹槽结构,可向凹槽内填充,其经过高温熔合处理,使整个阱环结构的P型半导体与金属覆盖层形成欧姆接触,从而在银反射层外围形成“钉扎”效果,阻止银的迁移。下面结合附图8至12详细说明中所述的防止金属迁移的半导体发光器件的制作方法。请参看图8,在一生长衬底200上外延生长η型半导体层211,发光层212,ρ型半导体层213,构成多层发光结构,其中各外延层材料包括Ga、In、Al、P、N和As其中两种或两种以上组成的化合物。请参看图9,首先定义反射层的位置,利用利用离子注入的方法 在P型半导体层213包围反射层的区域形成高阻结构,构成阱环结构213a,阱环内的P层电阻率比阱环外P层电阻率高。请参看图10,在阱环结构213a包围中制作反射层221,银反射层的厚度介于50nnT500nm之间,其俯视图如图11所示。请参看图11,在阱环结构213a和反射层221上制作致密的金属覆盖层220,金属覆盖层厚度介于200nnT2000nm之间,在高温条件下进行金属层熔合,使金属与P型层形成欧姆接触。覆盖层材料首选TiW,也可以是Ti、Pt、W、Al、Au、Ni、Sn和Cr其中一种或两种以上组合的金属层。接下来,采用常规芯片制作工艺进行后续芯片制程。具体包括利用干蚀刻方法制备芯片的图形,并蚀刻至N层半导体;在N层半导体上和金属覆盖层上制作电极,首选TiAu,也可以是Ti、Pt、W、Al、Au、Ni、Sn和Cr其中一种或两种以上组合的金属层;在电极之外覆盖绝缘封装钝化层;对晶片进行研磨减薄以及单一化处理;最后采用覆晶技术进行支撑基板240的键合,最后形成如图2所示的发光器件。下面结合附图2至6(实施例I 5)对阱环结构的更多实施细节作详细说明。实施例一
在本发实施例中,首先定义银反射层的位置及大小,利用干蚀刻的方法在P型半导体层内围绕银反射层形成凹槽阱环213a,其深度不超过lOOnm,宽度不超过20um ;接着,在由凹槽阱环213a包围的P型半导体上制作银反射层221 ;最后,在阱环层和反射层上制作致密的金属覆盖层220,金属覆盖层220厚度介于200nm 2000nm之间,填满阱环结构213a,并与整个P型层形成良好欧姆接触,其结构剖面图如图3所示。金属覆盖层220材料首选Tiff,也可以是Ti、Pt、W、Al、Au、Ni、Sn和Cr其中一种或两种以上组合的金属层。在本实施例中,整个阱环结构的P型半导体与金属覆盖层形成欧姆接触,从而在银反射层外围形成“钉扎”效果,阻止银的迁移。实施例二
如图4所示,本实施例与实施例一的区域在于在制作完凹槽阱环213a后,可先在凹槽阱环213a填充绝缘材料,如Si02、SiN等。通过绝缘材料提高凹槽阱环内的电位,阻止银向N型半导体横向迁移。实施例三
请参考图5,首先定义银反射层的位置及大小,利用离子注入的方法在P型半导体层包围所述反射层的区域形成高阻结构,构成阱环结构213a ;接着,在由凹槽阱环213a包围的P型半导体上制作银反射层221 ;最后,在阱环结构213a和银反射层221上制作致密的金属覆盖层220。通过绝缘材料提高凹槽阱环内的电位,搭配阱环外的良好欧姆接触,从而阻止银从边缘向N型半导体横向迁移。实施例四
请参考图6,在本实施例中,在P型半导体层中形成三个凹槽阱环213a,反射层221形成于凹槽阱环包括的P型半导体层上,并填充第一个内环,金属覆盖层220覆盖在反射层上,并填充两围的两个凹槽阱环。将外围银反射层分成小区域,改善反射层边缘的覆盖性,降低横向迁移密度。实施例五
请参考图7,在本实施例中,反射层221内嵌在P型半导体层213的表层。从而使金属 覆盖层完全包裹住银反射层,同时与凹槽外围的P型半导体有较好的欧姆接触。
权利要求
1.一种防止金属迁移的半导体发光器件,包括由η型半导体层、发光层、P型半导体层构成的多层发光结构,其特征在于还包括 反射层,形成于所述P型半导体层上,含有易迁移金属; 阱环结构,形成于所述P型半导体层,并包围所述反射层,防止反射层的金属向侧壁迁移; 金属覆盖层,覆盖所述反射层,并向所述阱环结构延伸。
2.根据权利要求I所述的半导体发光器件,其特征在于根据反射层大小,在所述P型半导体形成讲环结构,讲环结构深度不超过150nm ;宽度不超过20um。
3.根据权利要求I所述的半导体发光器件,其特征在于所述阱环结构包括一个或复数个阱环围绕所述反射层。
4.根据权利要求I所述的半导体发光器件,其特征在于在P型半导体层中,阱环内的电阻率比阱环外的电阻率高。
5.根据权利要求4所述的半导体发光器件,其特征在于所述阱环结构为形成于P型半导体的凹槽结构。
6.根据权利要求5所述的半导体发光器件,其特征在于所述凹槽结构填充有绝缘材料层。
7.根据权利要求5所述的半导体发光器件,其特征在于所述凹槽结构填充有易与反射层材料共熔的金属层。
8.根据权利要求I的所述的半导体发光器件,其特征在于所述金属覆盖层厚度为200nm 2000nm,填满阱环结构,并与整个P型层形成良好欧姆接触。
9.根据权利要求I的所述的半导体发光器件,其特征在于所述金属覆盖层的材料选自Ti、Pt、W、Au、Ni、Sn和Cr其中一种或其组合。
10.根据权利要求I的所述的半导体发光器件,其特征在于利用离子注入的方法在P型半导体层包围所述反射层的区域形成高阻结构,构成阱环结构。
全文摘要
本发明公开了一种防止金属迁移的半导体发光器件,其包括由n型半导体层、发光层、p型半导体层构成的多层发光结构;反射层形成于所述P型半导体层上,含有易迁移金属;阱环结构,形成于所述P型半导体层,并包围所述反射层,防止反射层的金属向侧壁迁移;金属覆盖层,覆盖所述反射层,并向所述阱环结构延伸,与阱环外的P型半导体形成良好欧姆接触。在本发明中在p型半导体层形成阱环结构,其包围反射层,从而在反射层外围形成“钉扎”效果,阻止反射层金属沿着反射层与P型半导体的接触面向器件边缘迁移,提高了器件的可靠性。
文档编号H01L33/46GK102931314SQ20121037237
公开日2013年2月13日 申请日期2012年9月29日 优先权日2012年9月29日
发明者钟志白, 李水清, 杨建健, 张灿源, 梁兆煊 申请人:厦门市三安光电科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1