改善高镍三元正极材料电化学性能的方法

文档序号:7149117阅读:1296来源:国知局
专利名称:改善高镍三元正极材料电化学性能的方法
技术领域
本发明涉及一种二次电池领域,特别是涉及一种含镍,钴和锰的金属氧化物锂离子电池活性正极材料的性能改善方法以及相应的电极与电池。
背景技术
人们已对充电电池领域中的各种不同的正极材料进行了研究。LiCoO2凭借其工作电压高、循环寿命长而成为目前在商品锂离子电池中最普遍使用的正极材料。虽然LiCoO2是在便携式充电电池应用中广泛使用的正极材料,但其所具有的Co资源匮乏、毒性大、价格较高、低实际比容量(介于140和150mAh/g之间)以及相对低的热稳定性的特征使其在作为一种充电电池正极材料方面受到严重的限制。这些限制已促使人们进行了许多研究,考察用于处理LiCoO2以改善其热稳定性的方法。 为了改善LiCoO2的性能,人们利用多种元素如Ni ,Mn,Fe, Mg, Cr, Al等进行掺杂改性,其中镍钴锰三元材料研究的最为广泛,代表性的材料有LiNi1/3Co1/3Mn1/302,LiNia4Coa2Mna4O2, LiNia5Coa2Mna3O2,其合成方法一般是采用经共沉淀法生成的Ni,Co和Mn的三元氢氧化物前驱体与含锂化合物进行混合并经高温烧结一定时间后得到。镍钴锰三元材料采用价格较为低廉的锰和镍取代资源缺乏和价格较高的钻,因此材料的成本会比钻酸锂有明显的降低,同时具有比钴酸锂更高的可逆比容量(170 230mAh/g),可以更好的满足电子产品日益小型化和多功能化的要求。但是随着Co含量的减少,Ni含量的增加,材料的倍率性能和循环性能变差。倍率性能变差是由于Co含量的减少导致阳离子在晶格中有序度降低而使Li+迁移速率减小。容量和循环性能变差是由于随着Ni含量的升高,材料极易吸潮,进而促进Li+与H2O和CO2反应生成LiOH,Li2CO3杂质并沉积在正极表面使界面内阻升高;此外,由于正极在脱锂状态下Ni4+非常不稳定,反应性很强,因此在高镍含量下更容易引起电极与电解液之间反应产生高的界面内阻,综合效果导致材料容量迅速衰减,循环性能变差。一般尝试改善高镍正极材料电化学性能的方法有正极材料掺杂或表面包覆处理改性,或者是使用电解液正极成膜添加剂。其中包覆处理是对活性材料表面进行处理,将不易与电解液反应的物质包覆在材料表面,在保持材料比容量的同时,减小充放电过程中锂离子的脱嵌对材料晶体结构的影响并避免材料与电解液的反应,以达到改善材料循环性能与安全性能的目的。表面包覆剂主要包括金属氧化物如Al2O3, ZrO2, TiO2 (参见 Improvement of the high-temperature, high-voltage cycling performance ofLiNi0 5Co0 2Mn0 3O2Cathode with TiO2Coatingj W. Liu et al·,Journal of Alloys andCompounds2012Vol. 543181-188), MgO (Structural study of the coating effect onthe thermal stability of charged MgO—coated LiNi0 8Co0 202cathodes investigatedby in situ XRDj W. Yoon et al. ;Journal of Power Sources2012Vol. 217128-134),SiO2(Significant Improvement of LiNi0 8Co0 15A10 0502Cathodes at60 ° C by SiO2DryCoating for L1-1on Batteries,Y.Cho et al. ,Journal of The ElectrochemicalSociety2010Vol. 157No. 6A625-A629)和各种氣化物(Enhanced electrochemicalproperties of Li [Ni0 5Co0 2Mn0 3] O2Cathode by surface coating using LaF3and MgF2, H.Song et al. , Journal of Electroceramics 2012Vol. 29No. 2163-169)。它们都或多或少在不同程度上改善了高镍材料的电化学性能。例如,TiO2包覆改善了 LiNia5Coa2Mntl3O2M料的高温高电压循环性能,在常温下该材料在3. 0-4. 4V的循环性能并没有因TiO2包覆得到改善。但是这些方法用于提升高镍正极材料的电化学性能非常有限。因此有必要发展简便有效的方法改善高镍三元正极材料的电化学性能。

发明内容
为了解决目前现有技术中高镍三元正极材料倍率和循环性能差的问题,本发明提供的技术方案是—种改善高镍三元正极材料电化学性能的方法,该方法包括以下步骤 (I)在水、水溶液或溶剂存在的条件下溶解可溶性钴盐得到可溶性钴盐溶液;(2)将高镍三元正极材料分散到可溶性钴盐溶液中并搅拌均匀得到含有高镍三元正极材料的可溶性钴盐溶液;(3)在水、水溶液或溶剂存在的条件下溶解可溶性锂盐得到锂盐溶液;(4)将锂盐溶液滴加至含有高镍三元正极材料的可溶性钴盐溶液中;(5)喷雾干燥上述混合物液体;(6)在空气或氧气存在条件下高温烧结干燥后的混合物经过筛即得到经包覆处理的正极材料。经试验证实,得到的经包覆处理的高镍三元正极材料具有更优良的电化学倍率性能和循环性能。优选的,所述方法中可溶性钴盐选自但不限于以下钴盐化合物中的至少一种或两种以上的任意组合硫酸钴、碳酸钴、卤化钴、硝酸钴、草酸钴。优选的,所述方法中可溶性锂盐选自但不限于以下锂盐化合物中的一种或两种以
上的任意组合氢氧化锂、醋酸锂、磷酸二氢锂、磷酸氢二锂。优选的,所述方法中可溶性钴盐和可溶性锂盐的相对添加量为L1:Co=1:1 1.20:1。优选的,所述方法中可溶性钴盐的添加量为髙镍三元正极材料的0. 005XMttawt% 0. 05父11钻盐被%,其中M钻盐为钴盐的分子质量。优选的,所述方法中溶剂选自异丙醇,丙酮或去离子水。优选的,所述方法步骤(5)中干燥温度控制在100°C 400°C之间。优选的,所述方法步骤(6)中高温烧结温度控制在400°C 1200°C之间,烧结时间为f 46小时;更优选的烧结温度和烧结时间分别为500°C、00°C和6 15小时。优选的,所述方法步骤(6)中所用氧气纯度> 45%。相对于现有技术中的方案,本发明提供了一种操作简单且易于规模化实现的改善髙镍三元正极材料性能的方法,经过表面处理后的材料比未处理的具有更好的倍率和循环性能。


下面结合附图及实施例对本发明作进一步描述。图1为未处理的LiNitl. 5Co0.2Mn0.302材料的X射线衍射(XRD)图;图2为LiNia5Coa2Mntl3O2材料经表面包覆后未烧结的材料的X射线衍射(XRD)图;图3为LiNia5Coa2Mna3O2材料经表面包覆后且经过烧结的材料的X射线衍射(XRD)图。图4为未处理的LiNitl. SCoci 2Mntl 3O2材料的扫描电镜(SEM)图;图5为LiNia5Coa2Mna3O2材料经表面包覆后未烧结的材料的扫描电镜(SEM)图;图6为LiNia5Coa2Mna3O2材料经表面包覆后且经过烧结的材料的扫描电镜(SEM)图。图7是未处理的LiNia5Coa2Mntl3O2材料以及经表面包覆后且经过烧结的材料的在各种倍率条件下的放电曲线比较。图8是未处理的LiNia5Coa2Mntl3O2材料以及经表面包覆后且经过烧结的材料的循环性能对比。
具体实施例方式以下结合具体实施例对上述方案做进一步说明。应理解,这些实施例是用于说明本发明而不限于限制本发明的范围。实施例中采用的实施条件可以根据具体厂家的条件做 进一步调整,未注明的实施条件通常为常规实验中的条件。介绍和概述本发明通过举例而非给出限制的方式来进行说明。应注意的是,在本公开文件中所述的“一”或“一种”实施方式未必是指同一种具体实施方式
,而是指至少有一种。下文将描述本发明的各个方面。然而,对于本领域中的技术人员显而易见的是,可根据本发明的仅一些或所有方面来实施本发明。为说明起见,本文给出具体的编号、材料和配置,以使人们能够透彻地理解本发明。然而,对于本领域中的技术人员将显而易见的是,本发明无需具体的细节即可实施。在其他例子中,为不使本发明费解而省略或简化了众所周知的特征。将各种操作作为多个分立的步骤而依次进行描述,且以最有助于理解本发明的方式来说明;然而,不应将按次序的描述理解为暗示这些操作必然依赖于顺序。将根据典型种类的反应物来说明各种实施方式。对于本领域中的技术人员将显而易见的是,本发明可使用任意数量的不同种类的反应物来实施,而不只是那些为说明目的而在这里给出的反应物。此外,也将显而易见的是,本发明并不局限于任何特定的混合示例。实施例1将12. 78克氢氧化锂(纯度99. 5%)投入I升水中溶解后在搅拌条件下放入I千克比较例I中合成的并经粉碎分级的LiNia5Coa2Mna3O2材料;在另一个容器中溶解88. 58克硝酸钴(纯度99. 5%)于I升水中;将溶解后的硝酸钴溶液缓慢滴加至连续搅拌的含有均匀分散的LiNia5Coa2Mna3O2材料的LiOH溶液中,整个滴加过程需要30分钟。滴加硝酸钴溶液完毕之后继续搅拌30分钟后将混合液进行喷雾干燥后得到粉末状混合物。最后将粉末混合物在箱式炉中于750° C条件下烧结5小时后得到的材料为经包覆处理的LiNia5Coa2Mna3O2材料。图2和图3分别是包覆后未经烧结和烧结之后的材料的XRD谱图,可以看到包覆并未改变原材料的层状晶体结构。图4,5和6分别是未处理的LiNia5Coa2Mna3O2材料以及经表面包覆后未烧结和包覆之后经过烧结的材料的扫描电镜(SEM)图,与图4对比,可以观察到图5中未经烧结的绒
状包覆层。材料的电化学 性能是通过使用商品钮扣电池而实现的。首先将材料和超级P碳用PVDF的NMP溶液制成浆料后涂布在铝箔之上干燥后得到正极极片。用锂金属做负极,且用1. OM LiPF6 ^EC/DMC*,1:1 (体积比))作电解液,并用商品聚烯烃隔膜制作成2032扣式电池用于材料电化学性能测试。比较例I将Ni。. 5Co0.2Mn0.3 (OH) 2 前驱体和 Li2CO3 按 L1: (Ni+Co+Mn)摩尔比为1. 04:1 的比例投料,经均匀混合后放至箱式炉中在900° C条件下烧结16小时后经粉碎分级后得到层状LiNi0.5Co0.2Mn0.302活性正极材料。图1是该合成材料的X射线衍射(XRD)谱图。图7是未处理的LiNitl. 5Co0.2Mn0.302材料以及经表面包覆后且经过烧结的材料(2032半电池)的在各种倍率条件下的放电曲线比较。图8是未处理的LiNia 5Co0.2Mn0.302材料以及经表面包覆后且经过烧结的材料(2032半电池)的循环性能对比。表I是未处理的LiNia5Coa2Mna3O2材料(比较例I)以及经表面包覆之后经过烧结的材料(实施例1)的倍率放电性能比较。表I比较例I和实施例1的倍率放电性能
倍率放电性能(mAh/g)—
_测试样品_ 0.1C 0.2C 0.5C IC 3C~
I — 175 ~ 169 ~ 159 153 141~ 2175169 " 160 ~ 153 141
~ 3175169 — 160 ~ 153 142
~ 4174167 ' 160 ~ 151 138
比较例 I5 — 174 — 168 ~ 162 153 ~ 141
~ 6173167 — 160 ~ 153 140
~ 7170166 — 159 ~ 152 140
~平均值 173.7 167.9 160.0 152.6 140.4
_ 标准偏差- 1.8 ' 1.2 ~ 1,00.8 1.3 —
I — 178 ~ 173 ~ 165 158 149~ 2177172 — 165 ~ 159 149~ 3 175 170 ' 165 ~ 158 148— 4 176 171 165 ~ 158 148实施例1 5 — 175 — 170 ~ 165 158 148~ 6 171 168 — 163 ~ 157 149~ 7 ~ 173 170 — 166 ~ 159 149~平均值 175.0 170.6 164.9 158.1 148.6_ 标准偏差 2.4 1.60.90.7 0.5综上所述,本发明提供了一种操作简单且易于规模化实现的改善髙镍三元正极材料性能的方法,经过表面处理后的材料比未处理的有更好的倍率和循环性能。以上所述具体实施例仅是本发明的优选实 施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进或替换,这些改进或替换也应当视为本发明的保护范围。
权利要求
1.一种改善高镍三元正极材料电化学性能的方法,该方法包括以下步骤(1)在水、水溶液或溶剂存在的条件下溶解可溶性钴盐形成可溶性钴盐溶液;(2)将高镍三元正极材料分散到可溶性钴盐溶液中并搅拌获得含有高镍三元正极材料的可溶性钴盐溶液;(3)在水、水溶液或溶剂存在的条件下溶解可溶性锂盐得到锂盐溶液;(4)将锂盐溶液滴加至含有高镍三元正极材料的可溶性钴盐溶液中;(5)喷雾干燥由步骤(4)获得的混合物液体;(6)在空气或氧气存在条件下高温烧结干燥后的混合物。
2.根据权利要求1所述的方法,其特征在于所述高镍三元正极材料通式为LiNixCoyMnzO2,其中 x+y+z=l, x ^ 0. 3, y ^ 0. 3
3.根据权利要求1所述的方法,其特征在于所述钴盐选自但不限于以下钴盐化合物中的至少一种或两种以上的任意组合硫酸钴、卤化钴、硝酸钴。
4.根据权利要求1所述的方法,其特征在于所述锂盐选自但不限于以下锂盐化合物中的至少一种或两种以上的任意组合氢氧化锂、醋酸锂、磷酸二氢锂、磷酸氢二锂。
5.根据权利要求1所述的方法,其特征在于所述方法步骤(5)中干燥温度控制在IOO0C 400°C之间。
6.根据权利要求1所述的方法,其特征在于所述方法步骤(6)中高温烧结温度控制在4000C 1200°C之间,烧结时间为I 46小时。
7.根据权利要求1所述的方法,其特征在于所述的溶剂选自异丙醇,丙酮或去离子水。
8.一种电化学电池,包括 (1)阳极, (2)电解液; (3)阴极;其中阴极是一种由权利要求1所述方法制备的锂离子电池正极材料制成; (4)隔膜。
全文摘要
本发明公开了一种改善高镍三元正极材料电化学性能的方法,该方法包括以下步骤(1)在水、水溶液或溶剂存在的条件下溶解可溶性钴盐;(2)将高镍三元正极材料分散到可溶性钴盐溶液中并搅拌;(3)在水、水溶液或溶剂存在的条件下溶解可溶性锂盐;(4)将锂盐溶液滴加至含有高镍三元正极材料的可溶性钴盐溶液中;(5)喷雾干燥上述混合物液体;(6)在空气或氧气存在条件下高温烧结干燥后的混合物得到的正极材料比原未经处理的高镍三元正极材料具有更优良的电化学倍率性能和循环性能。本发明具有方法操作简单,易于实现规模化生产。
文档编号H01M4/505GK103022471SQ20121057631
公开日2013年4月3日 申请日期2012年12月26日 优先权日2012年12月26日
发明者黄碧英, 孙喜梅 申请人:龙能科技(苏州)有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1