一种多晶硅tft器件及其制造方法

文档序号:7015426阅读:214来源:国知局
一种多晶硅tft器件及其制造方法
【专利摘要】本发明提供一种多晶硅TFT器件及其制造方法,其中多晶硅TFT器件包括:交错排列的扫描线和数据线;与所述扫描线和数据线电连接的半导体层;以及与所述半导体层电连接的像素电极;所述半导体层自其与所述数据线的连接点至其与所述像素电极的连接点,形成依次间隔设置的多个通道区和掺杂区,所述通道区为所述半导体层与扫描线相交重叠的部分,其余部分为掺杂区,至少一个所述掺杂区的宽度为0.5-3um,离子掺杂浓度为2*E11~5*E15。本发明将半导体层设计为弯折图案,依次与扫描线相交,形成相互间隔设置的多个通道区和掺杂区,通过控制掺杂区的宽度及离子掺杂浓度来降低漏电流。
【专利说明】—种多晶硅TFT器件及其制造方法
【技术领域】
[0001]本发明涉及图像显示领域,尤其涉及一种多晶硅TFT器件及其制造方法。
【背景技术】
[0002]非晶硅(a-Si) TFT技术虽然工艺简单,成本低廉,但是其载流子的迁移率非常小;同时,非晶硅TFT只能提供N型器件,并且其稳定性在长期应力作用下也存在问题。而多晶硅TFT,由于其载流子迁移率高,响应速度快,易于实现大面积的动态视频显示。同时,高的载流子迁移率可以利用多晶硅TFT将外围驱动电路集成在显示背板之上,大大减少了外接引线,降低了外围驱动电路的复杂性。目前,国际上普遍采用多晶硅TFT进行AMOLED背板的研究与开发。
[0003]多晶硅TFT的沟道区是通过在衬底上形成非晶硅层,对非晶硅层进行再结晶从而形成多晶硅层而制备的。再结晶的方法例如金属诱导方法,或者金属诱导侧向方法。
[0004]在这些方法中,金属诱导侧向结晶技术与其他技术相比,TFT器件的均匀性更好,更容易实现大尺寸AMOLED显示的需要,同时,利用金属诱导侧向结晶技术的成本也更为低廉。而且与金属诱导结晶技术相比,金属诱导侧向结晶技术可以有效的降低沟道区残留金属的污染。
[0005]目前采用金属诱导侧向结晶技术的AMOLED背板的主要瓶颈在于:无法降低TFT的漏电流。为了保证每个像素点在一帧时间的正常显示,需要保证开关晶体管在关断时通过其的泄漏电流不会使存储电容上的电压值下降超过I个灰度级。但是,由于金属诱导侧向结晶法得到的多晶硅TFT中仍存在少量金属残留,TFT的漏电流过高,制约了实现高灰度、高质量的显示。

【发明内容】

[0006]本发明所要解决的技术问题在于,提供一种可有效降低漏电流的多晶硅TFT器件及其制造方法。
[0007]为了解决上述技术问题,本发明提供一种多晶硅TFT器件,包括:
交错排列的扫描线和数据线;
与所述扫描线和数据线电连接的半导体层;以及 与所述半导体层电连接的像素电极;
所述半导体层自其与所述数据线的连接点至其与所述像素电极的连接点,形成依次间隔设置的多个通道区和掺杂区,所述通道区为所述半导体层与扫描线相交重叠的部分,其余部分为掺杂区,至少一个所述掺杂区的宽度为0.5-3um,离子掺杂浓度为2*E11?5*E15。
[0008]其中,扫描线包括主线和多个分支,其中第一分支位于所述主线上方并沿所述主线的延伸方向与所述主线相邻接;第二分支和第三分支均自所述主线向下延伸设置并与所述主线相垂直;所述第一分支、第二分支和第三分支均为矩形,且均位于两数据线之间。
[0009]其中,半导体层的图案大致呈U形,按从第一连接点到第二连接点的顺序,其与所述扫描线第一分支和所述主线相交,重叠部分形成第一通道区;与所述扫描线第二分支和第三分支依次相交,重叠部分分别形成第二通道区和第三通道区,所述第一通道区和第二通道区之间形成第一掺杂区,所述第二通道区和第三通道区之间形成第二掺杂区;与所述扫描线主线相交,重叠部分形成第四通道区,所述第三通道区和第四通道区之间形成第三惨杂区。
[0010]其中,所述第一连接点与所述第一通道区之间形成源极区,所述第二连接点与所述第四通道区之间形成漏极区,所述第一连接点和第二连接点均为接触孔,所述源极区通过第一接触孔与所述数据线电连接,所述漏极区通过第二接触孔与所述像素电极电连接。
[0011]其中,扫描线包括主线和多个分支,其中第一分支位于所述数据线左侧,自所述主线向下延伸设置并与所述主线相垂直;第二分支为L形,位于所述主线上方、所述数据线左侦U,并与所述主线相邻接;第三分支位于所述数据线右侧,垂直于所述主线并延伸出所述主线上下两侧;所述第一分支、第二分支和第三分支均为矩形。
[0012]其中,半导体层的图案大致呈方形螺旋结构,按从第一连接点到第二连接点的顺序,其与所述扫描线第一分支相交,重叠部分形成第一通道区;与所述扫描线主线相交,重叠部分形成第二通道区,所述第一通道区和第二通道区之间形成第一掺杂区;与所述扫描线第二分支相交,重叠部分形成第三通道区,所述第二通道区和第三通道区之间形成第二掺杂区;与所述扫描线第三分支相交,重叠部分形成第四通道区,所述第三通道区和第四通道区之间形成第三掺杂区;与所述扫描线主线及第二分支依次相交,重叠部分形成第五通道区,所述第四通道区和第五通道区之间形成第四掺杂区。
[0013]其中,所述第一连接点与所述第一通道区之间形成源极区,所述第二连接点与所述第五通道区之间形成漏极区,所述第一连接点和第二连接点均为接触孔,所述源极区通过第一接触孔与所述数据线电连接,所述漏极区通过第二接触孔与所述像素电极电连接。
[0014]其中,在所述像素电极下方设有存储电容,在所述存储电容与所述像素电极之间设有共同电极。
[0015]其中,扫描线包括主线和多个分支,其中第一分支大致呈“ Π ”形,包括依次相连的第一分段、第二分段以及第三分段,所述第一分段位于所述数据线左侧,自所述主线向上延伸设置并与所述主线相垂直,所述第二分段位于所述主线上方并且与所述主线相平行,所述第三分段位于所述数据线右侧,垂直于所述主线并延伸出所述主线上下两侧;第二分支位于所述数据线左侧,自所述主线向下延伸设置并与所述主线相垂直;所述第一分段、第二分段、第三分段以及所述第二分支均为矩形。
[0016]其中,半导体层的图案大致呈方形螺旋结构,按从第一连接点到第二连接点的顺序,其与所述扫描线第一分支的第二分段和第三分段依次相交,重叠部分形成第一通道区;与所述扫描线第二分支相交,重叠部分形成第二通道区,所述第一通道区和第二通道区之间形成第一掺杂区;与所述扫描线主线及第一分支的第一分段依次相交,重叠部分形成第三通道区,所述第二通道区和第三通道区之间形成第二掺杂区。
[0017]其中,所述第一连接点与所述第一通道区之间形成源极区,所述第二连接点与所述第三通道区之间形成漏极区,所述第一连接点和第二连接点均为接触孔,所述源极区通过第一接触孔与所述数据线电连接,所述漏极区通过第二接触孔与所述像素电极电连接。
[0018]其中,在所述数据线上设置有共同电极。[0019]本发明还提供一种多晶硅TFT器件的制造方法,包括:
步骤Si,提供交错排列的扫描线和数据线;
步骤S2,提供与所述扫描线和数据线电连接的半导体层以及与所述半导体层电连接的像素电极;
步骤S3,使所述半导体层自其与所述数据线的连接点至其与所述像素电极的连接点,形成依次间隔设置的多个通道区和掺杂区,所述通道区为所述半导体层与所述扫描线相交重叠的部分,其余部分为掺杂区,至少一个所述掺杂区的宽度为0.5-3um,离子掺杂浓度为2*Ε11~5*Ε15。
[0020]其中,还包括步骤: 在第一连接点与第一通道区之间形成源极区,在第二连接点与第四通道区之间形成漏极区。
[0021]其中,还包括步骤:在第一连接点与第一通道区之间形成源极区,在第二连接点与第五通道区之间形成漏极区。
[0022]其中,还包括步骤:在第一连接点与第一通道区之间形成源极区,在第二连接点与第三通道区之间形成漏极区。
[0023]其中,所述第一连接点和第二连接点均为接触孔,所述源极区通过第一接触孔与所述数据线电连接,所述漏极区通过第二接触孔与所述像素电极电连接。
[0024]其中,还包括步骤:在所述像素电极下方设置存储电容,在所述存储电容与所述像素电极之间设置共同电极。
[0025]其中,还包括步骤:在所述数据线上设置共同电极。
[0026]本发明将半导体层设计为弯折图案,依次与扫描线相交,形成相互间隔设置的多个通道区和掺杂区,通过控制掺杂区的宽度及离子掺杂浓度来降低漏电流。
【专利附图】

【附图说明】
[0027]为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
[0028]图1是本发明实施例一多晶硅TFT器件的结构示意图。
[0029]图2是本发明实施例二多晶硅TFT器件的结构示意图。
[0030]图3是本发明实施例三多晶硅TFT器件的结构示意图。
[0031]图4是本发明实施例四多晶硅TFT器件的制造方法的流程示意图。
【具体实施方式】
[0032]下面参考附图对本发明的优选实施例进行描述。
[0033]本发明的多晶硅TFT器件,在半导体层设置为掺杂区域通道区间隔设置的方式,自半导体层与数据线的连接点至半导体层与像素电极的连接点,半导体层包括依次连接设置的多个通道区和掺杂区,其中通道区为半导体层与扫描线相交重叠的部分,其余部分为掺杂区,从而降低半导体层的漏电流。以下以三个实施例来具体说明。
[0034]请参照图1所示,本发明实施例一的多晶硅TFT器件包括交错排列的扫描线10和数据线12,与扫描线10和数据线12电连接的半导体层11 (如图1中虚线框所示)以及与半导体层11电连接的像素电极13。其中,半导体层11自其与数据线12的第一连接点120至半导体层11与像素电极的第二连接点130,形成依次间隔设置的多个通道区和掺杂区,通道区为半导体层11与扫描线10相交重叠的部分,其余部分为掺杂区。
[0035]具体来说,扫描线10包括主线100和多个分支,其中第一分支101位于主线100上方并沿主线100的延伸方向与主线100相邻接;第二分支102和第三分支103均自主线100向下延伸设置并与主线100相垂直。第一分支101、第二分支102和第三分支103均为矩形,且均位于两数据线12之间。
[0036]由于扫描线10的这种含有多个分支的设计,通过将半导体层11设计为弯折图案,与扫描线主线100及各分支相交,从而可形成多个通道区和掺杂区。本实施例中,半导体层11的图案大致呈U形,按从连接点120到连接点130的顺序,其与扫描线第一分支101和主线100相交,重叠部分形成第一通道区Illa ;与扫描线第二分支102和第三分支103依次相交,重叠部分分别形成第二通道区112a和第三通道区113a,而第一通道区Illa和第二通道区112a之间形成第一掺杂区111b,第二通道区112a和第三通道区113a之间形成第二掺杂区112b ;半导体层11与扫描线主线100相交,重叠部分形成第四通道区114a,第三通道区113a和第四通道区114a之间则形成第三掺杂区113b。
[0037]第一连接点120与第一通道区Illa之间形成源极区113,第二连接点130与第四通道区114a之间形成漏极区114。具体地,第一连接点120和第二连接点130均为接触孔,源极区113通过第一接触孔120与数据线12电连接,漏极区114通过第二接触孔130与像素电极13电连接。
[0038]此外,本实施例中在像素电极13下方设有存储电容115,以及在存储电容115与像素电极13之间设有共同电极116。由于存储电容115和共同电极116远离半导体层11与扫描线10相交区域,其位置设计非常灵活。
[0039]请再参照图2所示,本发明实施例二的多晶硅TFT器件包括交错排列的扫描线20和数据线12,与扫描线20和数据线12电连接的半导体层21 (如图2中虚线框所示)以及与半导体层21电连接的像素电极13。其中,半导体层21自其与数据线12的第一连接点120至半导体层11与像素电极的第二连接点130,形成依次间隔设置的多个通道区和掺杂区,通道区为半导体层21与扫描线20相交重叠的部分,其余部分为掺杂区。
[0040]与实施例一相比,本实施例的扫描线20和半导体层21均有所不同,具体来说,扫描线20包括主线200和多个分支,其中第一分支201位于数据线12左侧,自主线200向下延伸设置并与主线200相垂直;第二分支202为L形,位于主线200上方、数据线12左侧,并与主线200相邻接;第三分支203位于数据线12右侧,垂直于主线200并延伸出主线200上下两侧。第一分支201、第二分支202和第三分支203均为矩形。
[0041]由于扫描线20的这种含有多个分支的设计,通过将半导体层21设计为弯折图案,与扫描线主线200及各分支相交,从而可形成多个通道区和掺杂区。本实施例中,半导体层21的图案大致呈方形螺旋结构,按从第一连接点120到第二连接点130的顺序,其与扫描线第一分支201相交,重叠部分形成第一通道区211a ;与扫描线主线200相交,重叠部分形成第二通道区212a,第一通道区211a和第二通道区212a之间形成第一掺杂区211b ;与扫描线第二分支202相交,重叠部分形成第三通道区213a,第二通道区212a和第三通道区213a之间形成第二掺杂区212b ;与扫描线第三分支203相交,重叠部分形成第四通道区214a,第三通道区213a和第四通道区214a之间形成第三掺杂区213b ;与扫描线主线200及第二分支202依次相交,重叠部分形成第五通道区215a,第四通道区214a和第五通道区215a之间形成第四掺杂区214b。
[0042]第一连接点120与第一通道区211a之间形成源极区113,第二连接点130与第五通道区215a之间形成漏极区114。具体地,第一连接点120和第二连接点130均为接触孔,源极区113通过第一接触孔120与数据线12电连接,漏极区114通过第二接触孔130与像素电极13电连接。
[0043]此外,本实施例中在像素电极13下方设有存储电容115,以及在存储电容115与像素电极13之间设有共同电极116。由于存储电容115和共同电极116远离半导体层21与扫描线20相交区域,其位置设计非常灵活。
[0044]再如图3所示,本发明实施例三的多晶硅TFT器件包括交错排列的扫描线30和数据线12,与扫描线30和数据线12电连接的半导体层31 (如图3中虚线框所示)以及与半导体层31电连接的像素电极13。其中,半导体层31自其与数据线12的第一连接点120至半导体层31与像素电极的第二连接点130,形成依次间隔设置的多个通道区和掺杂区,通道区为半导体层31与扫描线30相交重叠的部分,其余部分为掺杂区。
[0045]与实施例一及实施例二相比,本实施例的扫描线30和半导体层31均有所不同,具体来说,扫描线30包括主线300和多个分支,其中第一分支301大致呈“ π ”形,包括依次相连的第一分段301a、第二分段301b以及第三分段301c,第一分段301a位于数据线12左侦牝自主线300向上延伸设置并与主线300相垂直,第二分段301b位于主线300上方并且与主线300相平行,第三分段301c位于数据线12右侧,垂直于主线300并延伸出主线300上下两侧;第二分支302位于数据线12左侧,自主线300向下延伸设置并与主线300相垂直。第一分段301a、第二分段301b、第三分段301c以及第二分支302均为矩形。
[0046]由于扫描线30的这种含有多个分支的设计,通过将半导体层31设计为弯折图案,与扫描线主线300及各分支相交,从而可形成多个通道区和掺杂区。本实施例中,半导体层31的图案大致呈方形螺旋结构,按从第一连接点120到第二连接点130的顺序,其与扫描线第一分支301的第二分段301b和第三分段301c依次相交,重叠部分形成第一通道区311a ;与扫描线第二分支302相交,重叠部分形成第二通道区312a,第一通道区311a和第二通道区312a之间形成第一掺杂区311b ;与扫描线主线300及第一分支301的第一分段301a依次相交,重叠部分形成第三通道区313a,第二通道区312a和第三通道区313a之间形成第二掺杂区312b。
[0047]第一连接点120与第一通道区311a之间形成源极区113,第二连接点130与第三通道区313a之间形成漏极区114。具体地,第一连接点120和第二连接点130均为接触孔,源极区113通过第一接触孔120与数据线12电连接,漏极区114通过第二接触孔130与像素电极13电连接。
[0048]此外,本实施例中,在数据线12上设置有共同电极116。
[0049]上述三个实施例中,半导体层的均形成弯折图案,与扫描线主线及各分支相交,可形成多个相互间隔的通道区和掺杂区(分别给出了三种不同的通道区与掺杂区的组合方式),通过控制掺杂区的宽度与离子掺杂浓度来控制漏电流,其中,掺杂区为轻掺杂区LDD (Lightly Doped Drain),至少一个掺杂区的宽度为0.5_3um,离子掺杂浓度为2*E11?5*E15,能够有效降低漏电流。
[0050]请参照图4所示,本发明实施例四提供一种多晶硅TFT器件的制造方法,包括: 步骤Si,提供交错排列的扫描线和数据线;
步骤S2,提供与扫描线和数据线电连接的半导体层以及与半导体层电连接的像素电
极;
步骤S3,使半导体层自其与数据线的连接点至其与像素电极的连接点,形成依次间隔设置的多个通道区和掺杂区,通道区为半导体层与扫描线相交重叠的部分,其余部分为掺杂区,至少一个掺杂区的宽度为0.5-3um,离子掺杂浓度为2*E11?5*E15。
[0051]至于扫描线的结构和半导体层的多个通道区与掺杂区的组合方式请分别参照本发明实施一、二、三的描述和图1-3所示,此处不再赘述。
[0052]具体地,相应于实施例一的结构,本实施例还包括步骤:在第一连接点120与第一通道区Illa之间形成源极区113,在第二连接点130与第四通道区114a之间形成漏极区114。
[0053]具体地,相应于实施例二的结构,本实施例还包括步骤:在第一连接点120与第一通道区211a之间形成源极区113,在第二连接点130与第五通道区215a之间形成漏极区114。
[0054]具体地,相应于实施例三的结构,本实施例还包括步骤:在第一连接点120与第一通道区311a之间形成源极区113,在第二连接点130与第三通道区313a之间形成漏极区114。
[0055]其中,第一连接点120和第二连接点130均为接触孔,源极区113通过第一接触孔120与数据线12电连接,漏极区114通过第二接触孔130与像素电极13电连接。
[0056]此外,本实施例还包括步骤:在像素电极13下方设置存储电容115,在存储电容115与像素电极13之间设置共同电极116。或者还包括步骤:在数据线12上设置共同电极116。
[0057]本发明将半导体层设计为弯折图案,依次与扫描线相交,形成相互间隔设置的多个通道区和掺杂区,通过控制掺杂区的宽度及离子掺杂浓度来降低漏电流。
[0058]以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。
【权利要求】
1.一种多晶娃TFT器件,其特征在于,包括: 交错排列的扫描线和数据线; 与所述扫描线和数据线电连接的半导体层;以及 与所述半导体层电连接的像素电极; 所述半导体层自其与所述数据线的连接点至其与所述像素电极的连接点,形成依次间隔设置的多个通道区和掺杂区,所述通道区为所述半导体层与扫描线相交重叠的部分,其余部分为掺杂区,至少 一个所述掺杂区的宽度为0.5-3um,离子掺杂浓度为2*E11~5*E15。
2.根据权利要求1所述的多晶硅TFT器件,其特征在于,扫描线(10)包括主线(100)和多个分支,其中第一分支(101)位于所述主线(100)上方并沿所述主线(100)的延伸方向与所述主线(100)相邻接;第二分支(102)和第三分支(103)均自所述主线(100)向下延伸设置并与所述主线(100)相垂直;所述第一分支(101 )、第二分支(102)和第三分支(103)均为矩形,且均位于两数据线(12)之间。
3.根据权利要求2所述的多晶硅TFT器件,其特征在于,半导体层(11)的图案大致呈U形,按从第一连接点(120)到第二连接点(130)的顺序,其与所述扫描线第一分支(101)和所述主线(100)相交,重叠部分形成第一通道区(Illa);与所述扫描线第二分支(102)和第三分支(103)依次相交,重叠部分分别形成第二通道区(112a)和第三通道区(113a),所述第一通道区(Illa)和第二通道区(112a)之间形成第一掺杂区(111b),所述第二通道区(112a)和第三通道区(113a)之间形成第二掺杂区(112b);与所述扫描线主线(100)相交,重叠部分形成第四通道区(114a),所述第三通道区(113a)和第四通道区(114a)之间形成第三掺杂区(113b)。
4.根据权利要求3所述的多晶硅TFT器件,其特征在于,所述第一连接点(120)与所述第一通道区(Illa)之间形成源极区(113),所述第二连接点(130)与所述第四通道区(114a)之间形成漏极区(114),所述第一连接点(120)和第二连接点(130)均为接触孔,所述源极区(113)通过第一接触孔(120)与所述数据线(12)电连接,所述漏极区(114)通过所述第二接触孔(130)与所述像素电极(13)电连接。
5.根据权利要求1所述的多晶硅TFT器件,其特征在于,扫描线(20)包括主线(200)和多个分支,其中第一分支(201)位于所述数据线(12)左侧,自所述主线(200)向下延伸设置并与所述主线(200)相垂直;第二分支(202)为L形,位于所述主线(200)上方、所述数据线(12)左侧,并与所述主线(200)相邻接;第三分支(203)位于所述数据线(12)右侧,垂直于所述主线(200)并延伸出所述主线(200)上下两侧;所述第一分支(201)、第二分支(202)和第三分支(203)均为矩形。
6.根据权利要求5所述的多晶硅TFT器件,其特征在于,半导体层(21)的图案大致呈方形螺旋结构,按从第一连接点(120)到第二连接点(130)的顺序,其与所述扫描线第一分支(201)相交,重叠部分形成第一通道区(211a);与所述扫描线主线(200)相交,重叠部分形成第二通道区(212a),所述第一通道区(211a)和第二通道区(212a)之间形成第一掺杂区(211b);与所述扫描线第二分支(202)相交,重叠部分形成第三通道区(213a),所述第二通道区(212a)和第三通道区(213a)之间形成第二掺杂区(212b);与所述扫描线第三分支(203)相交,重叠部分形成第四通道区(214a),所述第三通道区(213a)和第四通道区(214a)之间形成第三掺杂区(213b);与所述扫描线主线(200)及第二分支(202)依次相交,重叠部分形成第五通道区(215a),所述第四通道区(214a)和第五通道区(215a)之间形成第四掺杂区(214b)。
7.根据权利要求6所述的多晶硅TFT器件,其特征在于,所述第一连接点(120)与所述第一通道区(211a)之间形成源极区(113),所述第二连接点(130)与所述第五通道区(215a)之间形成漏极区(114),所述第一连接点(120)和第二连接点(130)均为接触孔,所述源极区(113)通过第一接触孔(120)与所述数据线(12)电连接,所述漏极区(114)通过第二接触孔(130)与所述像素电极(13)电连接。
8.根据权利要求1所述的多晶硅TFT器件,其特征在于,扫描线(30)包括主线(300)和多个分支,其中第一分支(301)大致呈“ π ”形,包括依次相连的第一分段(301a)、第二分段(301b)以及第三分段(301c),所述第一分段(301a)位于所述数据线(12)左侧,自所述主线(300)向上延伸设置并与所述主线(300)相垂直,所述第二分段(301b)位于所述主线(300)上方并且与所述主线(300)相平行,所述第三分段(301c)位于所述数据线(12)右侧,垂直于所述主线(300)并延伸出所述主线(300)上下两侧;第二分支(302)位于所述数据线(12)左侧,自所述主线(300)向下延伸设置并与所述主线(300)相垂直;所述第一分段(301a)、第二分段(301b)、第三分段(301c)以及所述第二分支(302)均为矩形。
9.根据权利要求9所述的多晶硅TFT器件,其特征在于,半导体层(31)的图案大致呈方形螺旋结构,按从第一连接点(120)到第二连接点(130)的顺序,其与所述扫描线第一分支(301)的第二分段(301b)和第三分段(301c)依次相交,重叠部分形成第一通道区(311a);与所述扫描线第二分支(302)相交,重叠部分形成第二通道区(312a),所述第一通道区(311a)和第二通道区(312a)之间形成第一掺杂区(311b);与所述扫描线主线(300)及第一分支(301)的第一分段(301a)依次相交,重叠部分形成第三通道区(313a),所述第二通道区(312a)和第三通道区(313a)之间形成第二掺杂区(312b)。
10.根据权利要求10所述的多晶硅TFT器件,其特征在于,所述第一连接点(120)与所述第一通道区(311a)之间形成源极区(113),所述第二连接点(130)与所述第三通道区(313a)之间形成漏极区(114),所述第一连接点(120)和第二连接点(130)均为接触孔,所述源极区(113)通过第一接触孔(120)与所述数据线(12)电连接,所述漏极区(114)通过第二接触孔(130)与所述像素电极(13)电连接。
11.根据权利要求9所述的多晶硅TFT器件,其特征在于,在所述数据线(12)上设置有共同电极(116)。
12.—种多晶硅TFT器件的制造方法,包括: 步骤SI,提供交错排列的扫描线和数据线; 步骤S2,提供与所述扫描线和数据线电连接的半导体层以及与所述半导体层电连接的像素电极; 步骤S3,使所述半导体层自其与所述数据线的连接点至其与所述像素电极的连接点,形成依次间隔设置的多个通道区和掺杂区,所述通道区为所述半导体层与所述扫描线相交重叠的部分,其余部分为掺杂区,至少一个所述掺杂区的宽度为0.5-3um,离子掺杂浓度为2*Ε?1-5*Ε150
13.根据权利要求13所述的制造方法,其特征在于,还包括步骤:在第一连接点(120)与第一通道区(Illa)之间形成源极区(113),在第二连接点(130)与第四通道区(114a)之间形成漏极区(114)。
14.根据权利要求13所述的制造方法,其特征在于,还包括步骤:在第一连接点(120)与第一通道区(211a)之间形成源极区(113),在第二连接点(130)与第五通道区(215a)之间形成漏极区(114)。
15.根据权利要求13所述的制造方法,其特征在于,还包括步骤:在第一连接点(120)与第一通道区(311a)之间形成源极区(113),在第二连接点(130)与第三通道区(313a)之间形成漏极区(114)。
16.根据权利要求14-16任一项所述的制造方法,其特征在于,所述第一连接点(120)和第二连接点(130)均为接触孔,所述源极区(113)通过第一接触孔(120)与所述数据线(12)电连接,所述漏 极区(114)通过第二接触孔(130)与所述像素电极(13)电连接。
【文档编号】H01L27/12GK103746000SQ201310725152
【公开日】2014年4月23日 申请日期:2013年12月25日 优先权日:2013年12月25日
【发明者】赵国 申请人:深圳市华星光电技术有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1