半导体装置和制作半导体装置的方法与流程

文档序号:11587033阅读:132来源:国知局
半导体装置和制作半导体装置的方法与流程

本说明书涉及一种半导体装置和一种制造半导体装置的方法。



背景技术:

近年来,gan/algan高电子迁移率晶体管(hemt)关于它们替代si或sic用作高电压(hv)装置的可能性已经吸引了大量的注意力。gan/alganhemt通常包括具有位于数个gan层上的algan层的衬底。栅极、源极和漏极位于algan层上方。操作期间,电流在漏极和源极之间经由二维电子气(2deg)流动,所述二维电子气在algan层和上部gan层之间的界面处形成。通过将合适的电压施加到栅极来实现切断,以使得在algan层和最上部gan层之间的界面处的2deg消失。

在一些应用中,这些装置在关闭状态和开启状态之间切换,在所述关闭状态中,它们阻断高漏极到源极电压,同时具有低泄漏电流,在所述开启状态中,它们在低电压下承载高电流。这些装置被设计成这样,以使得可在开启状态、关闭状态的和在切换期间的功率损耗之间找到最佳平衡点。

hemt通常使用两个不同的栅极。第一,栅极可为肖特基(schottky)栅极,其包括位于algan层上的肖特基触点。替代类型的栅极是绝缘栅极,其中栅极触点通过绝缘层而与algan层的表面分隔开。包括这种第二类型的栅极的装置被称作金属绝缘体半导体高电子迁移率晶体管(mishemt)。mishemt的潜在优点是处于关闭状态时的较低泄漏电流。



技术实现要素:

在随附的独立权利要求和从属权利要求中阐述了本发明的各方面。来自从属权利要求的特征的组合可按需要与独立权利要求的特征组合,并且不仅仅是按照权力要求中所明确阐述的。

根据本发明的方面,提供一种半导体装置,其包括:

衬底,其具有位于一个或多个gan层上的algan层,以在algan层和gan层之间的界面处形成二维电子气;

源极触点;

漏极触点;以及

栅极触点,其位于源极触点和漏极触点之间,

其中栅极触点包括:

栅极电极;以及

位于栅极电极和algan层之间的电绝缘层,其中电绝缘层包括至少一个孔口,以允许在装置的关闭状态期间产生的空穴穿过栅极电极离开装置。

根据本发明的另一方面,提供一种制作半导体装置的方法,所述方法包括:

提供衬底,所述衬底具有位于一个或多个gan层上的algan层,以在algan层和gan层之间的界面处形成二维电子气;

形成装置的源极触点;

形成装置的漏极触点;以及

通过以下操作在源极触点和漏极触点之间形成装置的栅极触点;

形成具有至少一个孔口的电绝缘层;以及

形成栅极电极,以使得电绝缘层位于栅极电极和algan层之间,

其中在电绝缘层中的至少一个孔口适合于允许在装置的关闭状态期间产生的空穴穿过栅极电极离开装置。

在例如mishemt的装置中,栅极电极与下面的层的绝缘可阻止在装置的关闭状态期间产生的空穴穿过栅极电极离开装置。这些空穴可增加装置的局部体势(localbodypotential),这可产生增加的电场,所述增加的电场可引起装置失效或劣化。通过在电绝缘层中提供至少一个孔口,在装置的关闭状态期间产生的空穴可穿过栅极电极离开装置。

孔的大小可进行选择,以允许空穴离开装置而不会显著增加穿过栅极触点的泄漏电流。在一些例子中,至少一个孔口的尺寸(举例来说,至少一个孔口的大致直径(例如,其中孔口大体上是圆形的)或平行于栅极长度方向的孔口的边缘(例如,其中孔口是长椭圆形的))可为栅极长度的大约20%到70%。栅极长度可(举例来说)为大约1到3μm。在一个例子中,至少一个孔口的尺寸(例如,至少一个孔口的大致直径)可为大约0.5到2μm。在一些例子中,(例如,在大体上垂直于栅极长度方向的栅极宽度方向上)邻近孔口之间的间距(例如,平均间距)可为大致5到20μm。

当从algan层上方观察时,在栅极电极和algan层之间的电绝缘层中的至少一个孔口的总截面面积可表示为∑a孔口。当从algan层上方观察时,栅极电极的面积可表示为a栅极。这两个面积的比例可进行选择,以允许空穴离开装置而不会显著增加穿过栅极触点的泄漏电流。在一些例子中,孔口的总面积与栅极电极的面积的比例可在0.01≤∑a孔口/a栅极≤0.1范围内。

电绝缘层可包括多个孔口。孔口可以规则阵列形式布置。这可允许孔口在整个栅极触点中平均分布。当从algan层上方观察时,至少一个孔口可为圆形或矩形(例如,长椭圆形)。

栅极电极的至少一部分可延伸到电绝缘层中的至少一个孔口中。以此方式,栅极电极的部分可更接近于装置的下面部分,从而允许空穴离开装置。在一些例子中,延伸到电绝缘层中的至少一个孔口中的栅极电极的部分可直接接触algan层或位于algan层上的gan层。

栅极电极可包括第一电极部分和第二电极部分第一电极部分可包括与电绝缘层中的至少一个孔口对准的至少一个孔口。第二电极部分可大体上充满第一电极部分中的至少一个孔口。这种栅极触点可便于(举例来说)通过在电绝缘层上沉积第一电极部分以及通过穿过第一电极部分和电绝缘层两者蚀刻(例如,干式蚀刻)孔口来制造。接着可沉积第二电极部分以填充孔口。如上文所描述可延伸到电绝缘层中的至少一个孔口中的栅极电极的部分可为第二电极部分。

第一电极部分和第二电极部分可包括不同的导电材料。这可允许优化栅极触点,还可允许第二电极部分的材料匹配于用于在装置其它部分中的栅极电极的材料。

栅极触点可包括位于栅极电极和algan层之间的另一电绝缘层。所述另一绝缘层可跨越绝缘层中的至少一个孔口延伸。这可增加穿过绝缘层中的至少一个孔口的路径的电阻,从而减少装置中的泄漏电流。在其中形成栅极电极的导电材料还用于形成衬底上其它地方的肖特基触点的例子中,衬底上其它地方的肖特基触点可具有相对较低的肖特基势垒,而在电绝缘层中的至少一个孔口处形成的触点可具有相对较高的肖特基势垒,因为还存在另一绝缘层。另一绝缘层的厚度和/或组合物可进行选择以减少泄漏电流,而仍允许空穴穿过栅极触点离开。举例来说,所述另一绝缘层可具有在1nm≤t≤10nm范围内的厚度。所述另一绝缘层可包括aln、al2o3、sin、sio。

栅极电极可包括金属层堆叠。所述堆叠可(举例来说)包括tiw/al、tiwn/al、tin/al、钨或alcu。此处,使用“/”表示每一层中材料(例如,tiw/al指代层的堆叠包括tiw层和al层,其中首先列出所述堆叠中的最低层)。

在一些例子中,装置可以另外包括位于algan层上的gan顶盖层。

出于本发明的目的,高电子迁移率晶体管(hemt)中的电子迁移率可在1000-3000cm^2/v/s范围内或在1000-2000cm^2/v/s范围内。

附图说明

在下文中将仅借助于例子参看附图来描述本发明的实施例,在附图中类似的附图标记指代类似的元件,并且在附图中:

图1示出了包括高电子迁移率晶体管(hemt)的半导体装置;

图2示出了根据本发明的实施例的半导体装置;以及

图3示出了根据本发明的另一实施例的半导体装置。

具体实施方式

在下文中参看附图描述本发明的实施例。

本发明的实施例可提供半导体装置,例如高电子迁移率晶体管(hemt)。hemt可为金属绝缘体半导体高电子迁移率晶体管(mishemt)。

装置可包括衬底,所述衬底具有位于一个或多个gan层上的algan层。二维电子气(“2deg”)可在algan层和(最上部)gan层之间的界面处形成。在2deg内流动的电流可形成装置操作的基础。根据本发明的实施例,此类装置的2deg的电子迁移率可在1000-3000cm^2/v/s范围内,或更具体地说,在1000-2000cm^2/v/s范围内。

装置可包括源极触点、漏极触点和栅极触点。这些触点可位于(举例来说)algan层的表面。在其它例子中,触点可位于层的表面,所述层位于algan层上或algan层上方。举例来说,装置可包括algan层上的gan顶盖层,并且触点可位于gan顶盖层的表面。源极触点和漏极触点的至少一部分可直接向下延伸穿过algan层(和任何层,例如位于algan层上的gan顶盖层)以接触(最上部)gan层。栅极触点可位于源极触点和漏极触点之间。在操作中,电流可在2deg内在源极触点和漏极触点之间流动。可将势施加到栅极触点以调制此电流。

栅极触点可包括栅极电极。栅极触点还可包括电绝缘层,所述电绝缘层可位于栅极电极和algan层之间。这个电绝缘层可包括至少一个孔口。至少一个孔口可允许可在装置的关闭状态期间产生的空穴穿过栅极电极离开装置。如将在下文更详细地描述,这可允许解决与装置内(例如,栅极下方或在场板下)增加的局部体势相关的问题。

图1示出了包括mishemt的装置10的例子。装置10包括衬底18,所述衬底18具有多个gan层8、12和algan层16。gan层8形成超栅格,以将gan层12的结构的栅格参数与下面的衬底18的栅格参数匹配。下面的衬底18可(举例来说)包括硅衬底。gan层12位于形成超栅格的层8上。gan层12是p型。algan层16位于gan层12上。在操作中,2deg20可在gan层12和algan层16之间的界面处形成。

装置10包括源极触点2、漏极触点4和栅极触点6。栅极触点6包括栅极电极,所述栅极电极通过介电层14与algan层16分隔开,所述介电层14位于algan层16上。在操作中,施加到源极触点2、漏极触点4和栅极触点6的电压vgs和vds允许电流在2deg20内在源极触点2和漏极触点4之间流动。此电流可通过施加到栅极触点6的势进行调制。

尽管mishemt原则上可减少穿过栅极触点6的泄漏(举例来说,相比于具有由位于algan层16上的肖特基触点形成的栅极的hemt),但mishemt中的绝缘栅极触点6可阻止在关闭状态(例如,由于雪崩式倍增、隧道效应或来自捕获器(traps)的发射)期间产生的空穴离开装置。

在具有包括肖特基的栅极的hemt中,这些空穴可通过栅极移除,所述栅极对于空穴来说在关闭状态期间可为正向偏置的。然而对于具有绝缘栅极得装置(例如,图1中示出的这种mishemt),这是不可能的,因为绝缘层20可能会阻断这些空穴穿过栅极触点6离开装置10的路线。这些空穴也不可以垂直地移除到衬底18,因为由gan层8形成的超栅格可为高电阻性的。

这些空穴的产生可导致势的局部增加,直到电场高到使空穴以与它们的产生相同的速率穿过超栅格移除或横向地移除到源极2。这种在栅极触点6下或在场板下的体势的局部增加可产生增加的电场,所述增加的电场可引起装置失效或劣化。

图2示出了根据本发明的实施例的半导体装置100。

装置100包括衬底48。衬底48可具有多个gan层38、42和algan层46。衬底48可(举例来说)为硅衬底,尽管还设想衬底48可包括蓝宝石或sic,其上提供gan层38、42和algan层46。

gan层38可形成超栅格,以将gan层42的栅格参数与下面的衬底48匹配。gan层42位于形成超栅格的层38上。gan层42可为p型。algan层46位于gan层42上。在操作中,2deg50可在gan层42和algan层46之间的界面处形成。

装置10包括源极触点32、漏极触点34和栅极触点36。源极触点32和漏极触点34可各自包括电极,所述电极包括导电材料。在一些实施例中,源极和漏极电极可包括金属层的堆叠,所述堆叠可沉积于装置上,并在制造期间进行图案化。金属层可(举例来说)包括ti/al/tiwn或taal或ti/al/ni/au。源极和漏极电极可各自形成欧姆触点。栅极触点36可位于装置100的主表面上的源极触点32和漏极触点34之间。

栅极触点36包括栅极电极37,所述栅极电极37通过电绝缘层44与algan层46分隔开。栅极电极可包括金属层的堆叠。例如,栅极电极37可包括tiw/al、tiwn/al、tin/al、钨或alcu。此处,使用“/”表示每一层中材料(例如,tiw/al指代层的堆叠包括tiw层和al层,其中首先列出所述堆叠中的最低层)。

电绝缘层44可包括介电质,例如sin、al2o3、sio或此类层的组合。在另一例子中,电绝缘层44还可包括原位mocvd沉积的sin(其可进行沉积,作为gan磊晶成长的最后一步)。电绝缘层44可位于栅极电极37和algan层46之间,由此将栅极电极37与algan层46电隔离。因此,装置100可为金属绝缘体半导体高电子迁移率晶体管(mishemt)。

在本例子中,电绝缘层44位于algan层46上,栅极电极37位于电绝缘层44上。可以设想,可存在另一层位于algan层46和栅极电极37之间。举例来说,在一些例子中,gan顶盖层可位于algan层46上。在这些例子中,电绝缘层44可位于gan顶盖层上,栅极电极37可位于电绝缘层44上。

在本例子中,电绝缘层44跨越装置100延伸。为了接触装置的下面的层,源极触点32和漏极触点34可延伸穿过电绝缘层44。例如,如图2所示,源极触点32和漏极触点34可延伸穿过电绝缘层44和algan层46两者,以直接接触gan层42。可以设想,在其它例子中,电绝缘层44可为栅极触点36的局部,从而源极触点32和漏极触点34不必穿过电绝缘层44。

在操作中,电压(例如,vgs和vds)可施加到源极触点32、漏极触点34和栅极触点36,以使电流在2deg50内在源极触点32和漏极触点34之间流动。此电流可通过变化施加到栅极触点36的势进行调制。

电绝缘层44可包括至少一个孔口60。在一些例子中,可提供多个此类孔口60。至少一个孔口60可允许可在装置100的关闭状态期间产生的空穴穿过栅极电极37离开装置100。

当从algan层46上方观察时,至少一个孔口60可以阵列形式布置。阵列可为随机阵列。可替换的是,阵列可为规则阵列(例如,线性、矩形或六边形阵列),这可确保孔口在整个栅极触点36中平均分布。在图2所示的例子中,电绝缘层44包括多个孔口60,其以包括单个行的线性阵列形式提供。

当从algan层46上方观察时,电绝缘层44中的至少一个孔口60可具有规则形状,例如大体上圆形、大体上椭圆形或大体上矩形(例如,方形或被配置成数个条形)。在图2所示的例子中,孔口60为大体上圆形。

电绝缘层44中的至少一个孔口60的大小和形状可进行选择以允许空穴穿过栅极电极37离开装置100,同时防止穿过栅极触点36的泄漏电流达到不可接受的水平。举例来说,这可通过变化至少一个孔口60的截面面积a孔口(当从algan层46上方观察时)和/或通过变化孔口60的总截面面积∑a孔口(当从algan层46上方观察时)来实现。原则上,相比于栅极电极37的总面积a栅极,面积a孔口和∑a孔口可能较小,以使得装置100可操作为mishemt(与具有高泄漏肖特基栅极的hemt相反)。另一方面,面积a孔口和∑a孔口可大到足以使得在装置100的关闭状态中产生的任何空穴的大部分可穿过至少一个孔口60,从而穿过栅极电极37离开装置100。

在一些例子中,至少一个孔口的尺寸(举例来说,至少一个孔口的大致直径(例如,其中孔口大体上是圆形的)或平行于栅极长度方向的孔口的边缘(例如,其中孔口是长椭圆形的))可为栅极长度的大约20%到70%。栅极长度可(举例来说)为大约1到3μm。在一个例子中,至少一个孔口的尺寸(例如,至少一个孔口的大致直径)可为大约0.5到2μm。在一些例子中,(例如,在大体上垂直于栅极长度方向(在图2中由标记为l的箭头指示)的栅极宽度方向(在图2中由标记为w的箭头指示)上)邻近孔口之间的间距(例如,平均间距)可为大致5到20μm。

在一些例子中,至少一个孔口60的总截面面积与栅极电极37的面积(当从algan层46上方观察时)的比例可在0.01≤∑a孔口/a栅极≤0.1范围内。

在一些例子中,例如在图2所示的例子中,栅极电极37的至少一部分可延伸到电绝缘层44中的至少一个孔口60中。这可允许栅极电极37的(相对较小)部分向装置的下面的层延伸。举例来说,如图2所示,延伸到至少一个孔口60中的栅极电极37的部分直接接触algan层46。栅极电极37和algan层46之间的这种直接接触可减少对空穴离开装置100的阻力。由于a孔口和∑a孔口相比于a栅极较小,装置可仍操作为低泄漏mishemt,如上所述。在其中其它层(例如,gan顶盖层)位于栅极电极37和algan层46之间的例子中,延伸穿过至少一个孔口60的栅极电极的部分可直接接触那些层中的一个层(例如,gan顶盖层的上表面)。

图3示出了根据本发明的另一实施例的半导体装置100。在一些方面中,图3中的实施例类似于上文相对于图2所述的实施例。装置100包括衬底48,所述衬底48可为上文相对于图2所述的那种衬底,并且可具有多个gan层38、42和algan层46。

如先前所描述,gan层38可形成超栅格,以将gan层42的栅格参数与下面的衬底48匹配。gan层42位于形成超栅格的层38上。gan层42可为p型。algan层46位于gan层42上。在操作中,2deg50可在gan层42和algan层46之间的界面处形成。

装置10包括源极触点32、漏极触点34和栅极触点36。源极触点32和漏极触点34可各自是上文相对于图2所述的那种触点。同样,在此例子中,栅极触点36可位于装置100的主表面上的源极触点32和漏极触点34之间。

栅极触点36包括栅极电极37,所述栅极电极37通过电绝缘层44与algan层46分隔开。电绝缘层44可为上文已经相对于图2所述的那种层。同样,栅极电极可包括金属层的堆叠。例如,栅极电极37可包括tiw/al、tiwn/al、tin/al、钨或alcu。如同图2的例子,其它层(例如,gan顶盖层)可位于algan层46和栅极电极37之间。

电绝缘层44可包括至少一个孔口60。除了在下文中所提到的额外细节,至少一个孔口60还可类似于上文相对于图2所述的那些来进行配置。

在图3的例子中,栅极触点36包括另一电绝缘层70。在此例子中,所述另一绝缘层70位于栅极电极37和algan层46之间。所述另一绝缘层70可跨越绝缘层44中的至少一个孔口60延伸。这可增加用于穿过至少一个孔口60的泄漏电流的路径的电阻,同时仍允许空穴穿过栅极电极37离开装置100。此外,在其中形成栅极电极的导电材料还用于形成衬底48上其它地方的肖特基触点的例子(见在下文中所描述的例子)中,衬底48上其它地方的肖特基触点可具有相对较低的肖特基势垒,而在电绝缘层44中的至少一个孔口60处形成的触点可具有相对较高的肖特基势垒,因为还存在另一绝缘层70。

在图3的例子中,所述另一绝缘层70位于绝缘层上方(除了位于至少一个孔口60内的另一绝缘层70的任何部分之外)。然而,还设想,所述另一绝缘层70可位于电绝缘层44下方(例如,所述另一绝缘层70可位于algan层46(或gan顶盖层)和电绝缘层44之间)。此类实施例可通过在沉积和图案化电绝缘层44之前沉积所述另一绝缘70层制造。

所述另一绝缘层70的组合物和厚度可进行选择,以优化允许空穴穿过栅极电极37离开装置100和将栅极泄漏保持在可接受的水平之间的平衡。所述另一绝缘层70可包括aln、al2o3、sin、sio。相比于电绝缘层44的厚度,所述另一绝缘层70可能较薄。所述另一绝缘层70可具有在1nm≤t≤10nm范围内的厚度。

在图3的例子中,所述另一绝缘层70跨越栅极触点36延伸。可以设想,在其它例子中,所述另一绝缘层70可包含在至少一个孔口60内。

在一些例子中,跨越至少一个孔口60延伸的所述另一绝缘层70的部分可直接接触位于电绝缘层44下方的层(例如,algan层46或gan顶盖层)。在图3的例子中,跨越至少一个孔口60延伸的所述另一绝缘层70的部分直接接触algan层46。

在其中栅极电极37的部分延伸到至少一个孔口60中的例子(例如,如图3所示)中,栅极电极37的这个部分可大体上被所述另一绝缘层70围绕。延伸到至少一个孔口60中的栅极电极37的部分可通过所述另一绝缘层70与下面的层(例如,algan层46或gan顶盖层)分隔开。

本文中所描述的这种制造半导体装置的方法可包括提供衬底,所述衬底具有位于一个或多个gan层上的algan层。衬底、algan层和一个或多个gan层可为上文相对于图2和3所述的那种衬底、algan层和一个或多个gan层。algan和gan层可外延生长。如已经描述的,二维电子气(2deg)可在algan层和gan层之间的界面处形成。

制造装置的方法还可包括形成装置的源极触点和漏极触点。这些触点可使用用于沉积和图案化导电材料的光刻技术形成,从而形成触点的电极。在一些例子中,蚀刻工艺可用于打开穿过电绝缘层和/或另一层(例如,gan顶盖层和algan)的一个或多个孔口,以允许装置的源极和漏极触点到达algan层下方的gan层。

制造装置的方法还可包括形成装置的栅极触点。栅极触点可为上文相对于图2和3所述的那种栅极触点。形成栅极触点可包括形成具有至少一个孔口的电绝缘层,以及形成栅极电极,以使得先前所描述的电绝缘层位于栅极电极和algan层之间。

方法可另外包括在电绝缘层中形成至少一个孔口,如上文所描述。在一个例子中,这可通过首先沉积电绝缘层,接着使用蚀刻工艺(例如,干式蚀刻)以蚀刻穿过电绝缘层从而产生孔口来实现。接着可沉积栅极电极(在一些实施例中,可沉积另一绝缘层,随后沉积栅极电极)。

用于形成栅极电极的沉积步骤还可用于在衬底其它地方其它地方形成其它触点。这个例子在图3中示出,其中提供包括肖特基阳极触点62和欧姆阴极触点64的肖特基二极管。在这些例子中,沉积以形成栅极电极的金属还可用于形成肖特基触点62。举例来说,如上所述,栅极电极可提供为金属层的堆叠。这些层可(举例来说)包括tiw/al或tiwn/al或tin/al,以及具有tiw形式的不同的氮触点的变化形式。这些金属尤其适合于在衬底上其它地方形成的肖特基触点。

用于形成装置的栅极触点方法的另一例子可包括沉积和图案化电绝缘层和栅极电极的第一电极部分,接着使用蚀刻工艺(例如,干式蚀刻)形成穿过第一电极部分和电绝缘层的至少一个孔口。当它可使用相同蚀刻工艺形成时,第一电极部分中的至少一个孔口可与电绝缘层中的至少一个孔口对准。接着可沉积栅极电极的第二电极部分。第二电极部分可大体上充满第一电极部分中的至少一个孔口。第二电极部分的至少部分还可在整个第一电极部分的上表面延伸。第二电极部分还可延伸到电绝缘层中的至少一个孔口中,如上所述。

在此例子中,第一电极部分的导电材料可与第二电极部分的导电材料不同。举例来说,第一电极部分的导电材料可进行选择以优化mishemt操作(应注意,第一电极部分通过电绝缘层与下面的层(例如,algan层)分隔开),而第二电极部分的导电材料可进行选择,以优化从而适用作肖特基触点。因此,类似于上文所述的例子,用于形成第二电极部分的沉积步骤还可用于沉积衬底上其它地方的肖特基触点(例如,作为肖特基二极管的部分)。

因此,已经描述了半导体装置和制造半导体装置的方法。装置包括衬底,所述衬底具有位于一个或多个gan层上的algan层,以在algan层和gan层之间的界面处形成二维电子气。装置还包括源极触点。装置另外包括漏极触点。装置还包括位于源极触点和漏极触点之间的栅极触点。栅极触点包括栅极电极。栅极触点还包括位于栅极电极和algan层之间的电绝缘层。绝缘层包括至少一个孔口,以允许在装置的关闭状态期间产生的空穴穿过栅极电极离开装置。

尽管已经描述了本发明的特定实施例,但是应了解,可以在权利要求书的范畴内作出许多修改/添加和/或替代。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1