一种微波-接枝处理石墨烯的方法及利用其提高磷酸铁锂大倍率放电性能的改性方法与流程

文档序号:19935828发布日期:2020-02-14 22:33阅读:355来源:国知局
一种微波-接枝处理石墨烯的方法及利用其提高磷酸铁锂大倍率放电性能的改性方法与流程

本发明涉及一种微波-接枝处理石墨烯的方法及利用其提高磷酸铁锂大倍率放电性能的改性方法,属于锂离子电池正极材料技术领域。



背景技术:

作为一种新型导电碳材料,石墨烯拥有二维超薄结构、较大比表面积、超高电导率以及较高热力学稳定性等优点,使其在能源领域的应用受到广泛关注。磷酸铁锂正极材料具有高比容量、安全、生产成本低等优点,已成为广泛应用的锂离子电池正极材料。然而,磷酸铁锂材料较低的电导率限制了其在动力锂电池领域的应用。因此,提高磷酸铁锂的电子电导率改善磷酸铁锂的倍率性能成为研究的重点。本发明将pvp、nmp对石墨烯导电浆料进行微波接枝处理,然后与lixfeybzpo4的橄榄石型掺硼磷酸铁锂粉末混合制备改性材料,在nmp溶剂中,非离子型高分子化合物pvp中的羰基与石墨烯导电浆料表面的基团成键,改善结合力,同时改善橄榄石型掺硼磷酸铁锂的表面能,减少电池内阻,从而提升改性材料的大倍率放电性能。



技术实现要素:

本发明的目的是解决上述现有技术的不足,提供一种微波-接枝处理石墨烯的方法及利用其提高磷酸铁锂大倍率放电性能的改性方法,改善橄榄石型掺硼磷酸铁锂材料的表面能,减少电池内阻,从而提升改性材料的大倍率放电性能。

本发明是通过以下技术方案实现的:

一种微波-接枝处理石墨烯的方法,包括以下步骤:在低温度露点下,将石墨烯导电浆料和接枝液在60~120℃的油浴锅中按照体积比(1~20):(1~20)混合后,转移至微波下震荡混合1~120min,制得所需微波-接枝处理的石墨烯。

作为本发明的进一步改进,所述的接枝液制备方法为:将一定质量的聚乙烯吡咯烷酮与一定体积的n-甲基吡咯烷酮按照1mg:(1~10)ml混合,于微波下每超声处理5~20min,搅拌1~5min,总微波处理时间为60~120min,加入n-甲基吡咯烷酮,使接枝液浓度为0.05~0.5mg/ml。

作为本发明的进一步改进,所述的接枝液中聚乙烯吡咯烷酮的分子量为0.8~22万。

一种利用上述方法制备的微波-接枝处理石墨烯提高磷酸铁锂大倍率放电性能的改性方法,包括以下步骤:

(1)将组成为lixfeybzpo4的橄榄石型掺硼磷酸铁锂粉末与微波-接枝处理石墨烯按照质量比3:(1~12)混合,获得均质混合物;

(2)向均质混合物中加入其总质量10~100倍质量的湿磨介质,在湿磨设备中湿磨混合2h~10h,制得前驱物1;

(3)将前驱物1采用真空干燥的方法制得前驱物2;

(4)将前驱物2进行研磨后,置于高纯度惰性气体气氛中,采用分段烧结的方式,先在350~500℃烧结2~6h,再在650~800℃烧结12~20h,自然冷却至室温,研磨制得微波-接枝处理石墨烯改性的橄榄石型掺硼磷酸铁锂;

其中,x、y和z同时满足以下关系式:1.01≤x≤1.09,0.92≤y≤1.00,0.035≤z≤0.055。

作为本发明的进一步改进,步骤(2)所述的湿磨介质为无水乙醇或n-甲基吡咯烷酮。

作为本发明的进一步改进,步骤(2)所述的湿磨设备包括行星式球磨机、超能球磨机或湿磨机。

作为本发明的进一步改进,步骤(3)所述的真空干燥温度为60~150℃,真空干燥时间为6~24h。

本发明的有益效果在于:

本发明通过将pvp、nmp对石墨烯导电浆料进行微波接枝处理,然后与lixfeybzpo4的橄榄石型掺硼磷酸铁锂粉末混合制备改性材料,在nmp溶剂中,非离子型高分子化合物pvp中的羰基与石墨烯导电浆料表面的基团成键,改善结合力,同时改善橄榄石型掺硼磷酸铁锂的表面能,减少电池内阻,同时制得的材料呈现出纳米、微米型混合结构,从而使微波-接枝处理石墨烯处理磷酸铁锂后的改性材料表现出优异的大倍率放电性能。

附图说明

图1是本发明实施例1-3的微波-接枝处理石墨烯改性掺硼磷酸铁锂材料制备扣式电池未循环样的阻抗图。

图2是本发明对比例1-3的微波-接枝处理石墨烯(对比例3)或未处理石墨烯(对比例1-2)改性掺硼磷酸铁锂材料制备扣式电池未循环样的阻抗图。

图3是本发明实施例1的微波-接枝处理石墨烯及对比例1未处理石墨烯改性掺硼磷酸铁锂材料制备扣式电池在200c倍率电流下第1循环的放电曲线图。

具体实施方式

为更好理解本发明,下面结合实施例及附图对本发明作进一步描述,以下实施例仅是对本发明进行说明而非对其加以限定。

实施例1

(1)将一定质量的聚乙烯吡咯烷酮与一定体积的n-甲基吡咯烷酮按照1mg:2ml混合,于微波下每超声处理10min,搅拌1min,总微波处理时间为60min,加入n-甲基吡咯烷酮,制得浓度为0.2mg/ml接枝液。

(2)在低于-40℃温度露点下,将石墨烯导电浆料和接枝液在80℃的油浴锅中按照体积比1:1混合后,转移至微波下震荡混合60min,制得所需微波-接枝处理的石墨烯。

(3)将组成为li1.05fe0.96b0.045po4的橄榄石型掺硼磷酸铁锂粉末与微波-接枝处理石墨烯按照质量比3:5混合,获得均质混合物。向均质混合物中加入其总质量30倍质量的n-甲基吡咯烷酮,在超能球磨机中湿磨混合5h,制得前驱物1。将前驱物1采用120℃真空干燥箱中干燥12h,制得前驱物2。将前驱物2进行研磨后,置于高纯氮气氛的管式烧结炉中,采用分段烧结的方式,先在400℃烧结4h,再在730℃烧结16h,自然冷却至室温,研磨制得微波-接枝处理石墨烯改性的橄榄石型掺硼磷酸铁锂。

所述的聚乙烯吡咯烷酮的分子量为58000。

对比例1

将组成为li1.05fe0.96b0.045po4的橄榄石型掺硼磷酸铁锂粉末与未处理石墨烯按照质量比3:5混合,获得混合粉体。向混合粉体中加入粉末总质量的30倍质量的n-甲基吡咯烷酮,在超能球磨机中湿磨混合5h,制得前驱物1。将前驱物1采用120℃真空干燥箱中干燥12h,制得前驱物2。将前驱物2进行研磨后,置于高纯氮气氛的管式烧结炉中,采用分段烧结的方式,先在400℃烧结4h,再在730℃烧结16h,自然冷却至室温,研磨制得微波-接枝处理石墨烯改性的橄榄石型掺硼磷酸铁锂。

所述的聚乙烯吡咯烷酮的分子量为58000。

实施例2

(1)将一定质量的聚乙烯吡咯烷酮与一定体积的n-甲基吡咯烷酮按照1mg:1ml混合,于微波下每超声处理5min,搅拌2min,总微波处理时间为90min,加入n-甲基吡咯烷酮,制得浓度为0.5mg/ml接枝液。

(2)在低于-40℃温度露点下,将石墨烯导电浆料和接枝液在60℃的油浴锅中按照体积比1:20混合后,转移至微波下震荡混合120min,制得所需微波-接枝处理的石墨烯。

(3)将组成为li1.01feb0.035po4的橄榄石型掺硼磷酸铁锂粉末与微波-接枝处理石墨烯按照质量比3:12混合,获得均质混合物。向均质混合物中加入其总质量10倍质量的n-甲基吡咯烷酮,在超能球磨机中湿磨混合2h,制得前驱物1。将前驱物1采用60℃真空干燥箱中干燥24h,制得前驱物2。将前驱物2进行研磨后,置于高纯氩气氛的管式烧结炉中,采用分段烧结的方式,先在350℃烧结6h,再在650℃烧结20h,自然冷却至室温,研磨制得微波-接枝处理石墨烯改性的橄榄石型掺硼磷酸铁锂。

所述的聚乙烯吡咯烷酮的分子量为10000。

对比例2

将组成为li1.01feb0.035po4的橄榄石型掺硼磷酸铁锂粉末与未处理石墨烯按照质量比3:12混合,获得混合粉体。向混合粉体中加入粉末总质量的10倍质量的n-甲基吡咯烷酮,在超能球磨机中湿磨混合2h,制得前驱物1。将前驱物1采用60℃真空干燥箱中干燥24h,制得前驱物2。将前驱物2进行研磨后,置于高纯氩气氛的管式烧结炉中,采用分段烧结的方式,先在350℃烧结6h,再在650℃烧结20h,自然冷却至室温,研磨制得微波-接枝处理石墨烯改性的橄榄石型掺硼磷酸铁锂。

所述的聚乙烯吡咯烷酮的分子量为10000。

实施例3

(1)将一定质量的聚乙烯吡咯烷酮与一定体积的n-甲基吡咯烷酮按照1mg:8ml混合,于微波下每超声处理20min,搅拌1min,总微波处理时间为60min,加入n-甲基吡咯烷酮,制得浓度为0.5mg/ml接枝液。

(2)在低于-40℃温度露点下,将石墨烯导电浆料和接枝液在100℃的油浴锅中按照体积比5:1混合后,转移至微波下震荡混合90min,制得所需微波-接枝处理的石墨烯。

(3)将组成为li1.09fe0.92b0.055po4的橄榄石型掺硼磷酸铁锂粉末与微波-接枝处理石墨烯按照质量比3:10混合,获得均质混合物。向均质混合物中加入其总质量100倍质量的n-甲基吡咯烷酮,在超能球磨机中湿磨混合8h,制得前驱物1。将前驱物1采用150℃真空干燥箱中干燥8h,制得前驱物2。将前驱物2进行研磨后,置于高纯氮气氛的管式烧结炉中,采用分段烧结的方式,先在450℃烧结3h,再在780℃烧结12h,自然冷却至室温,研磨制得微波-接枝处理石墨烯改性的橄榄石型掺硼磷酸铁锂。

所述的聚乙烯吡咯烷酮的分子量为58000。

对比例3

(1)将一定质量的聚乙烯吡咯烷酮与一定体积的n-甲基吡咯烷酮按照1mg:8ml混合,于微波下每超声处理20min,搅拌1min,总微波处理时间为60min,加入n-甲基吡咯烷酮,制得浓度为0.5mg/ml接枝液。

(2)在低于-40℃温度露点下,将石墨烯导电浆料和接枝液在100℃的油浴锅中按照体积比5:1混合后,转移至微波下震荡混合90min,制得所需微波-接枝处理的石墨烯。

(3)将组成为li1.09fe0.92b0.055po4的橄榄石型掺硼磷酸铁锂粉末与微波-接枝处理石墨烯按照质量比3:10混合,获得均质混合物。向均质混合物中加入其总质量的100倍质量的n-甲基吡咯烷酮,在超能球磨机中湿磨混合8h,制得前驱物1。将前驱物1采用150℃真空干燥箱中干燥8h,制得前驱物2。将前驱物2进行研磨后,置于高纯氮气氛的管式烧结炉中,在780℃烧结16h,自然冷却至室温,研磨制得微波-接枝处理石墨烯改性的橄榄石型掺硼磷酸铁锂。

所述的聚乙烯吡咯烷酮的分子量为58000。

实施例4

(1)将一定质量的聚乙烯吡咯烷酮与一定体积的n-甲基吡咯烷酮按照1mg:10ml混合,于微波下每超声处理20min,搅拌5min,总微波处理时间为120min,加入n-甲基吡咯烷酮,制得浓度为0.05mg/ml接枝液。

(2)在低于-40℃温度露点下,将石墨烯导电浆料和接枝液在120℃的油浴锅中按照体积比20:1混合后,转移至微波下震荡混合1min,制得所需微波-接枝处理的石墨烯。

(3)将组成为li1.09fe0.92b0.055po4的橄榄石型掺硼磷酸铁锂粉末与微波-接枝处理石墨烯按照质量比3:1混合,获得均质混合物。向均质混合物中加入其总质量100倍质量的n-甲基吡咯烷酮,在超能球磨机中湿磨混合10h,制得前驱物1。将前驱物1采用150℃真空干燥箱中干燥6h,制得前驱物2。将前驱物2进行研磨后,置于高纯氮气氛的管式烧结炉中,采用分段烧结的方式,先在500℃烧结2h,再在800℃烧结12h,自然冷却至室温,研磨制得微波-接枝处理石墨烯改性的橄榄石型掺硼磷酸铁锂。

所述的聚乙烯吡咯烷酮的分子量为220000。

从图1和图2中可以看出采用本发明微波-接枝处理石墨烯对磷酸铁锂大倍率放电性能的改性方法,实施例1相较于实施例2、3具有较低的电荷传递阻抗,表明实施例1为最佳实施例;实施例1、2相较于对比例1、2均具有较低的电荷传递阻抗,表明通过微波-接枝处理石墨烯对磷酸铁锂材料的改性降低了电池内阻;实施例3相较于对比例3具有较低的电荷传递阻抗,表明采用分段烧结的方式可以显著降低电池内阻;以最佳实施例1做大倍率放电测试,图3表明在200c倍率电流下实施例1放电平台相较于对比例1更稳定。

以上实施例仅用以说明本发明的技术方案而非限制,尽管参照最佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,上述的具体实施方式仅仅是示意性的,而不是限制性的。凡是本领域技术人员在本发明的基础上所作出的显而意见的改进或变更均属于本发明保护范围。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1