半导体器件及其制造方法

文档序号:6825010阅读:127来源:国知局
专利名称:半导体器件及其制造方法
本申请涉及半导体器件及其制造方法,特别涉及带焊垫金属膜的半导体器件,用于外部连接要连接到形成在印刷电路板上的外部布线的导体配备在焊垫金属膜上,并且除了配备有用于外部连接的导体的面之外,焊垫金属膜由最终的保护绝缘膜覆盖。
随着认为是典型的半导体器件的微处理器或存储器使用的LSI(大规模集成电路)集成度的增加,构成LSI的这种半导体的每个区域按比例不断缩小尺寸。在半导体的每个区域的布线过程中,包括形成在绝缘膜上的接触孔或通孔的互连孔和其内嵌有布线的互连沟槽同样按比例不断缩小尺寸。为了得到较高的布线密度,开发了在半导体衬底的厚度方向内布线为多层的多级互连技术。在不断更新的LSI中,已引入了多级互连(例如,5到7级)。在这种LSI中,如果特别用于高速微处理器,那么在操作方面,布线的电阻值存在问题。因此相应需要具有小电阻的布线。通常,在包括LSI的半导体器件中,布线的材料为电特性、处理能力等极佳的铝或主要由铝组成的铝金属。然而,铝金属的一个缺点是抗电迁移和应力迁移性能差。由于此,存在使用铜或主要由铜组成的铜金属代替铝的趋势,与铝相比,铜的电阻较小,并且抗电迁移和应力迁移性能优越。
图9为常规半导体器件(下文称做第一常规例子)的剖面图。在图9的常规半导体衬底65中,用于互连53的沟槽形成在半导体衬底51上的保护性绝缘膜52中,在用于互连的沟槽上形成由氮化钛膜等组成的第一阻挡金属膜54上的最上层铜布线55。保护性绝缘膜52由最终的保护绝缘膜56覆盖,在保护绝缘膜56中形成接触孔57,露出最上层铜布线55的近似中心部分。在所述接触孔57中形成第二阻挡金属膜58,由例如氮化钛膜、镍膜和金膜的叠层组成,在所述第二阻挡金属膜58上形成铜焊垫金属膜59。所述铜焊垫金属膜59配备有由焊料组成的突点形导体60。
第一阻挡金属膜54可用于防止由最上层铜布线55扩散到保护性绝缘膜52内引起的对下层布线或扩散区的负面影响。此外,第二阻挡金属膜58可用于防止由突点形导体60的焊料成分的作用引起的吸入铜等的麻烦。


图16所示,半导体器件65使用倒装芯片法(面朝下键合)通过突点形导体60安装到配备在印刷电路板61上的外部布线62上,突点形导体60作为用于外部连接的导体,连接到最上层铜布线55上。
参考图10A、10B、10C、11A、11B、12A和12B,下面以工艺的顺序介绍半导体器件的第一个常规例子的制造方法。
首先,如图10A所示,通过光刻技术用于互连的沟槽53形成在半导体衬底51上的保护性绝缘膜52上。接下来,如图10B所示,使用溅射法等,在含有用于互连的沟槽53的保护性绝缘膜52上顺序地形成第一阻挡金属膜54和最上层铜布线膜55A。
接下来,如图10C所示,使用CMP(化学机械抛光)法,从保护性绝缘膜52和用于互连的沟槽53的上表面除去第一阻挡金属膜54和最上层铜布线膜55A,平面化保护性绝缘膜52,由此形成最上层铜布线55。
此后,如图11A所示,在保护性绝缘膜52上形成最终的保护性绝缘膜56之后,形成抗蚀剂膜63。然后,如图11B所示,使用抗蚀剂膜63作为掩模,腐蚀保护性绝缘膜56形成接触孔57。接下来,如图12A所示,顺序地形成第二阻挡金属膜58和铜焊垫金属膜59之后,形成抗蚀剂膜64。此外,如图12B所示,使用抗蚀剂膜64作为掩模,将第二阻挡金属膜58和铜焊垫金属膜59构图成需要的形状。然后,使用电镀法,将由焊料组成的突点形导体60装配到焊垫金属膜59上,形成图9所示的半导体器件。
图13为常规半导体器件(下文称做第二常规例子)的剖面图。如图13所示,在半导体器件70中,通过第二阻挡金属膜58在第一阻挡金属膜54和最上层铜布线55上形成铝焊垫金属膜66。在铝焊垫金属膜66上装配由铝组成的线形导体67。在该例中,第二阻挡金属膜58起防止最上层铜布线55和铝焊垫金属膜66之间反应的作用。图13中相同的参考数字代表图9所示的对应部分,相应的介绍也省略。
使用粘合剂通过面朝上键合,图17所示的半导体器件70固定在印刷电路板61上,然后通过用于外部连接的导体的线形导体67,半导体器件安装在外部布线62上。
参考图14A、14B、15A和15B,介绍半导体器件的第二个常规例子的制造方法。
首先,如图14A所示,图10C得到的第二阻挡金属膜58和铝焊垫金属膜66形成在保护性绝缘膜52、第一阻挡金属膜54和最上层铜布线55上之后,形成抗蚀剂膜68。接下来,如图14B所示,使用抗蚀剂膜68作为掩模,将第二阻挡金属膜58和铝焊垫金属膜66构图成需要的形状。
接下来,如图15A所示,在保护性绝缘膜52和铝焊垫金属膜66上形成最终的保护性绝缘膜56之后,形成抗蚀剂膜69。然后,如图15B所示,使用抗蚀剂膜69作为掩模,将最终的保护性绝缘膜56构图成需要的形状,露出铝焊垫金属膜66。然后,通过使用线焊接法,由铝组成的线形导体67配备到铝焊垫金属膜66上形成图9所示的半导体器件。
在半导体器件的常规第一和第二个例子中,问题是它们需要许多工艺步骤来制造。
即,在第一常规例子中,用于互连的沟槽53预先形成在保护性绝缘膜52上,在第一阻挡金属膜54上形成最上层铜布线55。然后,形成最终的保护性绝缘膜56,提供接触孔57。此外,形成第二阻挡金属膜58和焊垫金属膜59之后,构图焊垫金属膜59。因此要得到焊垫金属膜59需要许多工艺步骤。
此外,和第一常规例子一样,在第二常规例子中,用于互连的沟槽53预先形成在保护性绝缘膜52上,在第一阻挡金属膜54上形成最上层铜布线55。然后,形成第二阻挡金属膜58和铝焊垫金属膜66之后,构图铝焊垫金属膜。因此,工艺步骤的数量不可避免地增加。
鉴于此,本发明的一个目的是提供一种半导体器件及其制造方法,其中最上层铜布线在与焊垫金属膜的界面和与衬垫绝缘膜的界面有阻挡金属膜,其中可以减少工艺步骤的数量形成配备有用于外部连接使用的突点形或线形导体的焊垫金属膜。
根据本发明的第一个方案,提供一种带焊垫金属膜的半导体器件,用于外部连接要连接到形成在印刷电路板上的外部布线的导体配备在焊垫金属膜上,并且除了配备用于外部连接的导体的面之外,焊垫金属膜由最终的保护绝缘膜覆盖,并连接到最上层布线;由此最上层布线提供有第二阻挡金属膜上的焊垫金属膜,和焊垫金属膜相对面上的第一阻挡金属膜。
在上述内容中,优选保护性绝缘膜形成在最终的绝缘膜下,在保护性绝缘膜上从下到上形成第一阻挡金属膜、最上层布线膜、第二阻挡金属膜和焊垫金属膜。
根据本发明的第二个方案,提供一种带焊垫金属膜的半导体器件,用于外部连接要连接到形成在印刷电路板上的外部布线的导体配备在焊垫金属膜上,并且除了配备用于外部连接的导体的面之外,焊垫金属膜由最终的保护绝缘膜覆盖,并连接到最上层布线;由此保护性绝缘膜形成在最终的保护膜上,在保护性绝缘膜上形成用于互连的沟槽,从下到上嵌有第一阻挡金属膜、最上层布线膜、第二阻挡金属膜和焊垫金属膜。
在上述内容中,优选最上层布线包括主要由铜组成的金属膜。
此外,优选地用于外部连接的导体由突点形导体组成。
此外,优选地用于外部连接的导体由线形导体组成。
此外,优选地突点形导体包括焊料或主要由金组成的金属。
优选地线形导体包括铝或由金组成的金属。
优选地焊垫金属膜主要由铜组成的金属。
优选地焊垫金属膜主要由铝组成的金属。
根据本发明的第三个方案,提供一种半导体器件的制造方法,包括以下步骤在半导体衬底上的保护性绝缘膜上形成用于互连的沟槽;在包括用于互连的沟槽的所述保护性绝缘膜上形成金属膜,金属膜顺序包括第一阻挡金属膜、最上层布线膜、第二阻挡金属膜和焊垫金属膜;通过从保护性绝缘膜和用于互连的沟槽的上表面除去第一阻挡金属膜、最上层布线膜、第二阻挡金属膜和焊垫金属膜,平面化保护性绝缘膜;在平面化的保护性绝缘膜的表面上形成最终的保护性绝缘膜之后,构图最终的保护性绝缘膜,由此仅露出焊垫金属膜的表面,以及将用于外部连接的导体装配到焊垫金属膜露出的表面上。
根据本发明的第四个方案,提供一种半导体器件的制造方法,包括以下步骤在半导体衬底上的保护性绝缘膜上形成金属膜,金属膜顺序包括第一阻挡金属膜、最上层布线膜、第二阻挡金属膜和焊垫金属膜;将保护性绝缘膜上的第一阻挡金属膜、最上层布线膜、第二阻挡金属膜和焊垫金属膜构图成需要的形状;在构图的金属膜上形成最终的保护性绝缘膜之后,构图最终的保护性绝缘膜,由此仅露出焊垫金属膜的表面,以及将用于外部连接的导体装配到焊垫金属膜露出的表面上。
在上述内容中,优选主要由铜组成的金属膜作为最上层布线。
此外,优选突点形导体用做外部连接的导体。
此外,优选线形导体用做外部连接的导体。
优选主要由铜组成的金属作为焊垫金属膜。
优选主要由铝组成的金属作为焊垫金属膜。
从下面结合附图的说明中,本发明的以上和其它目的、优点和特点将很显然,其中图1为根据本发明第一实施例的半导体器件的剖面图;图2A、2B和2C为以上半导体器件的制造方法的工艺步骤的工艺图;图3A、3B和3C为所述半导体器件的制造方法的工艺步骤的工艺图;图4为根据本发明第二实施例的半导体器件的剖面图;图5为根据本发明第三实施例的半导体器件的剖面图;图6A和6B为所述半导体器件的制造方法的工艺步骤的工艺图;图7A和7B为所述半导体器件的制造方法的工艺步骤的工艺图;图8为根据本发明第三实施例的半导体器件的剖面图;图9为常规半导体器件的剖面图;图10A、10B和10C为半导体器件的制造方法的工艺步骤的工艺图;图11A和11B为半导体器件的制造方法的工艺步骤的工艺图;图12A和12B为半导体器件的制造方法的工艺步骤的工艺图;图13为常规半导体器件的剖面图14A和14B为以上半导体器件的制造方法的工艺步骤的工艺图;图15A和15B为以上半导体器件的制造方法的工艺步骤的工艺图;图16为常规半导体器件的安装结构的剖面图;以及图17为常规半导体器件的安装结构的剖面图。
下面参考附图结合各种实施例进一步详细地介绍实施本发明的最佳方式。
第一实施例图1为根据本发明第一实施例的半导体器件的剖面图。图2A、2B、2C、3A和3B示出了按工艺处理的顺序以上半导体器件的制造方法。
如图1所示,半导体器件提供有在由如硅(Si)组成的半导体衬底1上形成的保护性绝缘膜2,保护性绝缘膜2由膜厚度为3到4μm的氧化膜组成,直径约50μm且深度约2μm的互连用沟槽3形成在保护性绝缘膜2上,在互连用沟槽上的由氮化钛组成厚度约50nm的第一阻挡金属膜4上,形成最上层铜布线5。此外,在最上层铜布线5的近似中心区域厚度约70nm的第二阻挡金属膜8上,形成铜焊垫膜9。第二阻挡金属膜8由叠置的膜组成,从下到上依次为厚度约50nm的氮化钛膜、厚度约10nm的镍膜、和厚度约10nm的金膜。
在保护性绝缘膜2上,形成用于除了最上层铜布线之外的下面层的布线,布线之间通过通孔栓塞(未示出)相互连接。
保护性绝缘膜2由氧化膜或类似物组成的最终的保护性绝缘膜6覆盖。最终的保护性绝缘膜6提供有接触孔7,露出铜焊垫膜9的中心区域。由焊料组成的突点形导体10穿过接触孔7安装到铜焊垫膜9上。通过电镀或淀积法等形成突点形导体10。此时,通过使用自对准工艺形成突点形导体10,所以它从铜焊垫膜9的表面生长,由此,可以精确地控制它的位置。此外,要制备突点形导体10,可以使用金或主要由金和硅组成的金属,代替焊料。
通过参考图2A到2C、2D和2E,介绍根据实施例的半导体器件的制造方法。
首先,如图2A所示,通过光刻技术等,直径约50μm且深度约2μm的互连用沟槽3形成在保护性绝缘膜2上,保护性绝缘膜2形成在半导体衬底1上,并且由膜厚度为3到4μm的氧化膜组成。用于除了最上层铜布线之外的下面层的布线形成在保护性绝缘膜2上。
接下来,如图2B所示,通过溅射法等,在含有互连用沟槽3的保护性绝缘膜2上形成厚度约50nm由氮化钛膜组成的第一阻挡金属膜4、厚度约1μm的最上层铜膜5A、由叠层膜组成的第二阻挡金属膜8和铜焊垫膜9,叠层膜从下到上依次为厚度约50nm的氮化钛膜、厚度约10nm的镍膜和厚度约10nm的金膜。此时,形成在互连用沟槽3内的铜焊垫膜9使铜焊垫膜的宽度(W1)为47到48μm。
之后,如图2C所示,通过CMP(化学机械抛光)法,从保护性绝缘膜2和用于互连的沟槽3的上表面除去第一阻挡金属膜4、最上层铜布线膜5A、第二阻挡金属膜8和铜焊垫金属9,平面化保护性绝缘膜2,由此形成最上层铜布线5。由此最上层铜布线5用做沟槽互连,在各层膜之间提供了良好的接触。
然后,如图3A所示,在保护性绝缘膜2、第一阻挡金属膜4、最上层铜布线膜5、第二阻挡金属膜8和铜焊垫金属9上,形成由叠置的膜组成的最终的保护性绝缘膜6,从下到上依次为厚度约800nm的氧化膜、厚度约100nm的氮化物膜和厚度约5μm的聚酰亚胺膜。最终的保护性绝缘膜6可以由紧密接触性优异的聚酰亚胺膜构成。抗蚀剂膜11形成在最终的保护性绝缘膜6的需要区域。
此后,如图3B所示,使用抗蚀剂膜11作为掩模腐蚀最终的保护性绝缘膜6,形成厚度为W2的接触孔7。形成接触孔7,使接触孔7的厚度W2小于互连用沟槽3内的铜焊垫金属9的厚度W1,接触孔7的厚度W2约为40μm。通过电镀法形成由贯穿接触孔7的焊料组成的突点形导体10形成图1所示的半导体器件,制备图1所示的半导体器件。
当用焊料电镀形成突点形导体10时,由于焊料从厚度W2限定的接触孔7露出的铜焊垫膜9的表面生长,所以可以通过自对准工艺精确地控制突点形导体10。此外,可以利用淀积法形成突点形导体10。在整个最终的保护性绝缘膜6上汽相淀积焊料形成焊料膜之后,进行构图使焊料膜仅留在接触孔7内和它的周边区域。接下来,通过在高于焊料熔点的温度下热处理焊料膜,融化其余的焊料膜,融化的焊料膜集中在接触孔中心位置周围,由此形成突点形导体10。
由此,根据本实施例,由于首先在保护性绝缘膜2上形成用于互连的沟槽3,并形成第一阻挡金属膜3、最上层铜布线5、第二阻挡金属膜8和铜膜9之后,在接触孔露出的最终的保护性绝缘膜6上形成铜焊垫膜9,与常规的方法不同,不需要进行构图,直到第二阻挡金属膜和铜焊垫膜形成在最终的保护性绝缘膜上。因此,可以减少工艺步骤的数量。
此外,在根据本实施例的半导体器件中,由于通过自对准工艺形成突点形导体,因此可以精确地控制形成突点形导体的位置。
由此,通过减少工艺步骤的数量可以形成用于装配导体的铜焊垫膜,导体由用于外部连接的突点形导体组成。
第二实施例图4为根据本发明第二实施例的半导体器件的剖面图。图4所示的根据第二实施例的结构与第一实施例的不同之处在于使用铝焊垫膜代替铜焊垫膜,以及使用由铝组成的线形导体代替突点形导体,作为用于外部连接的导体。
当与图1所示第一实施例的结构相比时可以看出,在图4所示的实施例中,由铝制成的线形导体13装配到铝焊垫膜12。因此,可以获得铝和铝之间的连接,由此可以避免可能会产生有害合金的铝和铜之间的接触,并获得良好的接触。代替铝,线形导体13可以主要由除铝之外的其它金属制成,包括硅酮、铜等。此外,代替铝,可以使用金或主要由金和硅酮以及类似物组成的金属。金或主要由金组成的金属能够与铝焊垫膜12建立良好的接触。
要根据本实施例制备半导体器件,在图2B所示的工艺中,代替铜焊垫膜9,形成铝焊垫膜,图3B所示的工艺之后,由铝制成的线形导体装配到铝焊垫膜上。
图4中相同的参考数字代表第一实施例中所示的相应的部分,省略了介绍。
由此,在本实施例中,可以得到和第一实施例相同的效果。
第三实施例图5为根据本发明第三实施例的半导体器件的剖面图。图5所示的根据第三实施例的结构与第一实施例的不同之处在于最上层铜布线不形成在保护性绝缘膜上的互连用沟槽上,而是在保护性绝缘膜上。
当与图1所示第一实施例的结构相比时可以看出,在图5所示的实施例中,在厚度为3到4μm的氧化膜组成的保护性绝缘膜2上形成由厚度约50nm的氮化钛组成的第一阻挡金属膜14上的最上层铜布线15,在最上层铜布线15上形成厚度约70nm的第二阻挡金属膜18上的铜焊垫膜19。第二阻挡金属膜18由以下叠层组成,例如从下到上依次为厚度约50nm的氮化钛、厚度约10nm的氮化镍和厚度约10nm的金膜。
保护性绝缘膜2由厚度约5μm的氧化膜或类似物构成的最终的保护性绝缘膜16覆盖。最终的保护性绝缘膜16提供有接触孔17,露出铜焊垫膜19的中心区域。由焊料组成的突点形导体20穿过接触孔17安装到铜焊垫膜19。
参考图6A、6B、7A和7B,以工艺的顺序介绍根据本实施例的半导体器件的制造方法。
首先,如图6A所示,通过溅射法等,在半导体衬底1上依次形成厚度约3到4μm由氧化膜组成的保护性绝缘膜2、由氮化钛组成的厚度约50nm的第一阻挡金属膜14、厚度约1μm的最上层铜布线15A、第二阻挡金属膜18和厚度约1.5μm的铜焊垫膜19。第二阻挡金属膜18由叠置的膜组成,从下到上依次为厚度约50nm的氮化钛膜、厚度约10nm的镍膜、和厚度约10nm的金膜。
接下来,如图6B所示,通过溅射法等在铜焊垫膜19形成厚度约300nm的掩蔽氧化膜21,在所述掩蔽氧化膜21上形成抗蚀剂膜24。在进行腐蚀时,所述掩蔽氧化膜21可保护叠层。
如图7A所示,在使用抗蚀剂膜24作为掩模进行干法腐蚀之后,构图第一阻挡金属膜14、最上层布线膜15A、第二阻挡金属膜18和铜焊垫膜19,由此得到需要的形状,形成最上层铜布线15。
通过腐蚀连续地进行所述构图。此时,留下掩蔽绝缘膜21。使用抗蚀剂膜24作为掩模在掩蔽绝缘膜21上进行构图之后,除去抗蚀剂膜24,通过使用构图的掩蔽绝缘膜21作为掩模,构图第一阻挡金属膜14、最上层布线膜15A、第二阻挡金属膜18和铜焊垫膜19得到需要的形状。
接下来,如图7B所示,使用溅射法等,在保护性绝缘膜12、第一阻挡金属膜14、最上层布线膜15、第二阻挡金属膜18和铜焊垫膜19上形成最终的保护性绝缘膜16。之后,使用抗蚀剂膜(未示出)作为掩模,进行干法腐蚀,形成接触孔17,露出铜焊垫膜19的局部区域。此时,如果通过以前的工艺留下掩蔽绝缘膜21,那么也对它进行腐蚀。根据本实施例,通过一次腐蚀工艺,在保护性绝缘膜2上形成含有最上层铜布线15的叠层布线,因此减少了工艺步骤的数量。
要制造图5的半导体器件,通过电镀法穿过接触孔17装配由焊料组成的突点形导体10。
由此,在本实施例中,可以获得和第一实施例相同的效果。
第四实施例图8为根据本发明第四实施例的半导体器件的剖面图。
图8所示的根据第四实施例的结构与第三实施例的不同之处在于使用铝焊垫膜代替铜焊垫膜,使用线形导体代替突点形导体,作为用于外部连接的导体。
当与根据第三实施例图5所示的结构相比时可以看出,在本实施例中,由铝制成的线形导体装配到铝焊垫膜22上。
要制备本实施例的半导体器件,代替铜焊垫膜19,形成铝焊垫膜,图7B所示的工艺之后,由铝组成的线形导体装配到铝焊垫膜上。
由此,在本实施例中,可以得到和第一实施例相同的效果。
显然本发明并不限于以上的实施例,不脱离本发明的范围和精神可以进行修改和变形。例如,用于最上层铜布线或铜焊垫膜的铜可以含有如钛、铝等的其它金属。用于铝焊垫膜的铝可以含有如硅酮、铜等的其它金属。即,主要含有铜的金属膜可以用做铜布线,主要含有铝的金属膜可以用做铝布线。
此外,第一和第二阻挡金属膜可以使用如钽、钼、钨等的单个金属,或使用这些金属的氮化物膜。以上阻挡金属膜还可以通过单个金属与氮化物膜的组合得到。例如,可以利用由氮化钽膜、镍膜和金膜组成的叠置膜或镍膜或金膜组成的叠置膜。
以上介绍的金属膜的厚度或制造方法仅为一个例子,可以根据应用或需要进行修改。这里使用的淀积方法不仅包括溅射法,也可以包括CVD(化学汽相淀积)、等离子体CVD法或高密度等离子体CVD法。对于绝缘膜,不仅可以使用氧化膜,还可以为BSG(硼硅玻璃)、PSG(磷硅玻璃)和BPSG(硼磷硅玻璃)膜。此外,每个金属膜、绝缘膜等的膜厚度仅为一个例子,可以根据应用或需要进行修改。
如上所述,根据本方法,首先在保护性绝缘膜的用于互连的沟槽上形成第一阻挡金属膜、最上层铜布线、第二阻挡金属膜和铜膜,之后,形成铜焊垫膜局部露出的最终的保护性绝缘膜,如此形成半导体器件,减少了工艺步骤的数量。
此外,在根据实施例的半导体器件中,由于通过自对准工艺形成突点形导体装配到焊垫金属膜时,可以精确地控制它的形成位置。此外,通过将线形导体安装到焊垫金属膜可以得到良好的接触。
由此,通过减少工艺步骤的数量可以形成用于装配导体的铜焊垫膜,导体由用于外部连接的突点形导体组成。
最后,本申请要求以1998年9月17日申请的日本专利申请No.Hei 10-263663为基础的优先权,在这里引入作为参考。
权利要求
1.一种半导体器件,包括焊垫膜,用于外部连接要连接到形成在印刷电路板上的外部布线的导体配备在所述焊垫金属膜上,并且除了配备用于外部连接的所述导体的面之外,焊垫金属膜由最终的保护绝缘膜覆盖,并连接到最上层布线;由此最上层布线提供有第二阻挡金属膜上的所述焊垫金属膜,和所述焊垫金属膜相对面上的第一阻挡金属膜。
2.根据权利要求1的半导体器件,其中保护性绝缘膜形成在最终的绝缘膜下,在所述保护性绝缘膜上从下到上形成所述第一阻挡金属膜、所述最上层布线膜、所述第二阻挡金属膜和所述焊垫金属膜。
3.一种半导体器件,包括焊垫膜,用于外部连接要连接到形成在印刷电路板上的外部布线的导体配备在所述焊垫金属膜上,并且除了配备用于外部连接的所述导体的面之外,焊垫金属膜由最终的保护绝缘膜覆盖,并连接到最上层布线;由此保护性绝缘膜形成在所述最终的保护绝缘膜下,在所述保护性绝缘膜上形成用于互连的沟槽,沟槽内从下到上嵌有第一阻挡金属膜、所述最上层布线膜、第二阻挡金属膜和所述焊垫金属膜。
4.根据权利要求1或3的半导体器件,其中所述最上层布线包括主要由铜组成的金属膜。
5.根据权利要求1或3的半导体器件,其中所述用于外部连接的导体由突点形导体组成。
6.根据权利要求1或3的半导体器件,其中所述用于外部连接的导体由线形导体组成。
7.根据权利要求5的半导体器件,其中所述突点形导体包括焊料或主要由金组成的金属。
8.根据权利要求6的半导体器件,其中所述线形导体包括铝或由金组成的金属。
9.根据权利要求5的半导体器件,其中所述焊垫金属膜包括主要由铜组成的金属。
10.根据权利要求6的半导体器件,其中所述焊垫金属膜包括主要由铝组成的金属。
11.一种半导体器件的制造方法,包括以下步骤在半导体衬底上的保护性绝缘膜上形成用于互连的沟槽;在包括用于互连的沟槽的所述保护性绝缘膜上形成金属膜,金属膜顺序包括第一阻挡金属膜、最上层布线膜、第二阻挡金属膜和焊垫金属膜;通过从所述保护性绝缘膜和所述用于互连的沟槽的上表面除去所述第一阻挡金属膜、所述最上层布线膜、所述第二阻挡金属膜和所述焊垫金属膜,平面化所述保护性绝缘膜;在所述平面化的保护性绝缘膜的表面上形成所述最终的保护性绝缘膜之后,构图最终的保护性绝缘膜,由此仅露出所述焊垫金属膜的表面,以及将用于外部连接的导体装配到所述焊垫金属膜露出的表面上。
12.一种半导体器件的制造方法,包括以下步骤在半导体衬底上的保护性绝缘膜上形成金属膜,金属膜顺序包括第一阻挡金属膜、最上层布线膜、第二阻挡金属膜和焊垫金属膜;将所述保护性绝缘膜上的所述第一阻挡金属膜、所述最上层布线膜、所述第二阻挡金属膜和所述焊垫金属膜构图成需要的形状;在构图的金属膜上形成所述最终的保护性绝缘膜之后,构图最终的保护性绝缘膜,由此仅露出所述焊垫金属膜的表面,以及将用于外部连接的导体装配到所述焊垫金属膜露出的所述表面上。
13.根据权利要求11或12的半导体器件,其中主要由铜组成的金属膜作为最上层布线。
14.根据权利要求11或12的半导体器件,其中突点形导体用做外部连接的导体。
15.根据权利要求11或12的半导体器件,其中线形导体用做外部连接的导体。
16.根据权利要求14的半导体器件,其中主要由铜组成的金属作为焊垫金属膜。
17.根据权利要求15的半导体器件,其中主要由铝组成的金属作为焊垫金属膜。
全文摘要
通过减少工艺步骤的数量可以形成用于装配导体的铜焊垫膜,导体由用于外部连接的突点形导体或线形导体组成。半导体器件包括在半导体衬底上形成厚度为3到4μm的保护性绝缘膜,在保护性绝缘膜上形成直径约50μm且深度约2μm的互连用沟槽,在互连用沟槽内嵌入由氮化钛组成厚度约50nm的第一阻挡金属膜上的最上层铜布线。此外,在最上层铜布线的近似中心区域厚度约70nm的第二阻挡金属膜8上嵌入铜焊垫膜。
文档编号H01L21/768GK1250951SQ99120209
公开日2000年4月19日 申请日期1999年9月17日 优先权日1998年9月17日
发明者冈田纪雄 申请人:日本电气株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1