一种纳米金属铁获得及包裹的方法与流程

文档序号:11497227阅读:599来源:国知局
一种纳米金属铁获得及包裹的方法与流程

本发明涉及地球化学领域,特别是涉及一种模拟月壤中纳米金属铁获得及包裹的方法。



背景技术:

月球与地球不同,没有大气和磁场的保护,长期遭受太空风化作用。纳米金属铁(npfe0)被发现以圆形小球状广泛存在于月壤的胶结质玻璃相中以及月壤颗粒的表面非晶质环带里,它的形成被认为与太空风化有关。通过对阿波罗月球样品研究,纳米金属铁是改变月球表面反射光谱最主要的因素。

通过对纳米金属铁的实验模拟研究,可以为其成因解释以及为月球与无大气天体遥感数据的解译提供有力的理论依据,同时可以为模拟月尘月壤系列标准物质中加入纳米金属铁提供实验指导。

目前,国内外为模拟月壤中的纳米金属铁已展开了系列实验,其中为模拟(微)陨石轰击熔融还原作用,将橄榄石、辉石、斜长石和玄武岩玻璃在氢气气氛中加热到1100℃,并迅速冷却,这种方法得到了亚微米甚至几个微米的金属铁,但大大超出了月壤中纳米金属铁的粒径范围;利用脉冲激光辐射橄榄石和辉石模拟模拟(微)陨石轰击蒸发沉积作用,观察到橄榄石颗粒表面非晶化并且包裹纳米金属铁,但是辉石中没有发现此结构,并且纳米金属铁含量低,实验结果可重复性较差;同样利用脉冲激光辐射含铁量低的斜长石,也观察到不同形状熔融体;模拟太阳风粒子溅射沉积作用,主要用离子注入机将高能的h、he离子注入橄榄石和辉石,离子注入后样品表面出现了非晶质薄层以及气泡结构,但并没有观察到纳米金属铁。还有一些非成因模拟方法,如化学合成溶胶凝胶法、微波熔融法、磁控溅射法以及两步热处理法等,但是这些方法都不能批量模拟得到接近真实月壤圆形小球状的纳米铁。



技术实现要素:

基于背景技术存在的技术问题,本发明提出了一种模拟月壤中纳米金属铁获得获得及包裹的方法。

一种纳米金属铁获得获得及包裹的方法,包括以下步骤:

a、将靶材和基底放入石英玻璃充填氮气保护瓶中,先用脉冲激光轰击玄武岩靶材,轰击次数为5500-6500次;

b、静置8-15分钟,待轰击出的熔融体或等离子体沉积于基底上,改用铁靶轰击3400-3700次;

c、再静置8-15分钟,改用玄武岩靶激光轰击5500-6500次,静置8-15分钟,让激光轰击出的铁包裹于玄武岩中,即可。

优选的,所述的玄武岩靶材的轰击次数为6000次,铁靶的轰击次数为3600次。

优选的,所述的每次轰击后的静置时间为10分钟。

优选的,所述的脉冲激光轰击设备为continuum型号surelitei-10激光器。

优选的,所述的轰击样品参数为:激光波长532nm,能量200mj,脉冲宽度4-6nsec,聚焦束斑0.5mm,轰击频率分别为玄武岩靶10hz、铁靶2hz,靶材倾斜45°,靶材与基底距离2.5cm。

对激光轰击样品进行形貌观察,发现铁靶和玄武岩靶轰击出的熔融体或等离子体沉积产物形态为絮状和圆形小球状。沉积后的形态主要与轰击频率有关,轰击频率越小,越倾向于形成较大的圆形球;轰击频率越大,则会形成较多絮状物。通过控制轰击频率可以控制形成圆球的大小,以及是否形成絮状物。为了使铁以纳米圆形小球状包裹于玄武岩絮状物中,轰击铁靶与玄武岩靶采用不同的频率,其中铁靶轰击频率为2hz,形成纳米级别圆形小球,而玄武岩靶轰击频率为10hz,主要形成絮状物。同时实验时采用玄武岩靶-铁靶-玄武岩靶顺序轰击。

本发明的有益之处在于:

本发明的模拟月壤中纳米金属铁获得及包裹的方法,该方法是一种实验室模拟制备月壤中纳米金属铁的方法,通过轰击铁靶得到纳米铁,轰击玄武岩靶得到包裹纳米铁的絮状物;激光轰击沉积后的铁小球主要是以零价铁形式存在,并且为多晶体;通过调节脉冲激光轰击频率与轰击时间等参数控制纳米铁的大小与含量,可批量模拟月壤的纳米铁包裹结构,用于模拟更真实的月壤月尘样品。

附图说明

图1:脉冲激光轰击样品后沉积物二次电子图像;

图2:沉积物fib超薄切片高分辨图像;

图3:纳米铁颗粒离子溅射前后俄歇全谱;

图4:femnn俄歇窄谱,a)纳米铁颗粒离子溅射前后对比;b)不同标准物质对比。

具体实施方式

以下本发明的实施例进行详细说明,但是本发明可以根据权利要求限定和覆盖的多种不同方式实施。

实施例1

一种纳米金属铁获得及包裹的方法,包括以下步骤:

a、将靶材和基底放入石英玻璃充填氮气保护瓶中,先用脉冲激光轰击玄武岩靶材,轰击次数为6000次;

b、静置10分钟,待轰击出的熔融体或等离子体沉积于基底上,改用铁靶轰击3600次;

c、再静置10分钟,改用玄武岩靶激光轰击6000次,静置10分钟,让激光轰击出的铁包裹于玄武岩中,即可。

所述的脉冲激光轰击设备为continuum型号surelitei-10激光器。

所述的轰击样品参数为:激光波长532nm,能量200mj,脉冲宽度5nsec,聚焦束斑0.5mm,轰击频率分别为玄武岩靶10hz、铁靶2hz,靶材倾斜45°,靶材与基底距离2.5cm。

将样品fib超薄切片,以待hrtem观察。

以下对样品进行检测:

图1为沉积物的二次电子图像,图1a可以看出沉积物均匀分布在基底材料上。图1b、1c图表明圆形小球与絮状物混合在一起,部分小球附在絮状物上,小球直径集中在50nm-800nm。将扫描电子显微镜电子枪压增大至20kv,激发更深层二次电子图像,图1d可以观察到絮状物中包裹有圆形小球。圆形小球为亚微米或者纳米级别,而常规能谱激发深度为1微米左右,为了更准确得到小球成分,将电子枪电压降至10kv(fekα1线系激发的x射线能量为6.391kev,fekα2为6.404kev),可减小激发深度。能谱数据结果表明可,大部分小球为铁或铁的氧化物,絮状物成分为硅酸盐。图1d中包裹圆形小球部分(分析点4)铁含量明显高于周边的絮状物(分析点3)。由扫描图像和能谱数据分析表明,通过脉冲激光交替轰击玄武岩靶和铁靶可以得到纳米铁或铁氧化物的包裹体,而且纳米铁圆形小球数量可观。

纳米铁价态确认

为了进一步探究纳米铁的包裹情况以及确认纳米铁的价态信息,还对轰击的样品进行了高分辨透射电镜和俄歇电子能谱分析。利用聚焦离子束(fib)对轰击沉积后的样品进行超薄切片,便于观察纳米铁的包埋情况并且可以得到其晶格结构。

图2为沉积物fib超薄切片透射电镜图像。从图2a可以看出圆形小球包裹于絮状物中,絮状物存在空隙;通过图2b可以发现,圆形小球并不是单个晶体,而是以多晶形式存在;图2c为小球内部高分辨图像,晶粒层间距为0.204nm,与体心立方(bcc)单质铁(101)面层间距一致,说明有单质铁形成。样品高分辨图像表明,当脉冲激光轰击铁靶,得到的熔融体或者等离子体沉积在基底时汇聚形成圆形小球,小球冷凝结晶形成多晶体。小球之所以形成多晶体而不是单晶形态是由于它在自然凝固结晶时,并没有人为去控制晶核的形成与成长,只要液态金属过冷在其理论结晶温度以下时,尺寸较大的短程有序原子集团就会通过结晶释放潜热排列形成长程有序的小晶体(晶核),并且慢慢长大,而这些小晶体的形成是随机的,晶核形成和长大会同步进行,因此这种液态金属自然冷凝会形成多晶体。

fib切片在实验转运过程中,会暴露在大气中,其中的小圆球大部分会被氧化想成铁的氧化物,层间距相应会增大,甚至达到0.218nm,与氧化亚铁(200)面层间距相对应。为了消除样品传送过程中氧化带来的影响,并且进一步验证小圆球的价态,对样品进行俄歇分析。俄歇分析前,先用氩离子枪对样品进行溅射,清除表面污染物与氧化层。单质铁、铁氧化物价态可以通过femnn俄歇谱图化学位移判断其价态,其化学位移主要与元素本身的有效电荷及相邻元素的电负性差有关,若相邻元素相同则元素的化合价越正,俄歇电子动能越低,化学位移越负,可以通过比对相应物质的标准谱图确定其价态。俄歇能谱对元素化学价态研究一般会采用背景信号丰富的积分谱进行线形分析,但是对于铁元素而言,涉及价电子的俄歇迁移为femnn俄歇峰,俄歇动能位置与二次电子能量(约50ev)重叠,俄歇峰在二次电子背景值之上,信号并不明显。通过对俄歇峰作微分处理,消除背景电子对俄歇峰的影响,使不同化学环境中的铁元素femnn俄歇峰差异明显。

图3为圆形小球被离子枪溅射前后的俄歇全谱。可以看出圆形小球暴露在大气中,表面吸附有污染物并且有氧化情况,存在含量较高的碳和氧元素,有少许的铜元素是由基底材料影响。对小球溅射50nm,表面污染物吸附层和氧化层基本都被清除掉,单仍会存在微氧,可能小球中存在少量游离氧,不排除在分析过程中腔室中有极少氧与小球发生氧化。图4是圆形小球离子枪溅射前后以及标准物质femnn俄歇谱图。通过与标准物质比对,主要对比窄谱的峰形与峰位,可以分析得到小球表面基本已被氧化成氧化铁(fe2o3),将表面氧化层溅射掉后,小球为以单质零价铁形式存在。

通过高分辨电镜和俄歇能谱分析可知,脉冲激光轰击得到的圆形小球以零价的单质铁为主,小球没有形成单个晶体,而为多晶体;一旦小球接触大气,其表面会被污染物吸附并且会被氧化,但是内部仍会以零价铁形式存在。

以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1