一种C/C-TiC碳陶复合材料的制备方法与流程

文档序号:14513226阅读:352来源:国知局
一种C/C-TiC碳陶复合材料的制备方法与流程

本发明涉及一种碳陶复合材料的制备方法,具体指一种c/c-tic复合材料及其制备方法与应用。



背景技术:

碳化钛陶瓷熔点高、密度小,硬度高于sic、zrc等陶瓷,抗磨损性能优异,在耐磨材料、切削刀具、机械抗磨零件等领域具有广泛的应用前景。然而,和几乎所有的陶瓷材料类似,碳化钛陶瓷的脆性大,断裂韧性低,很容易发生灾难性破坏,大大限制了其进一步的推广应用。碳纤维具有十分优异的力学性能,其可作为增韧材料,有效提高陶瓷材料的断裂韧性,克服陶瓷材料的脆性问题。采用碳纤维对碳化钛陶瓷进行增韧,制备出碳纤维增强碳化钛陶瓷,能充分发挥碳化钛陶瓷和碳纤维的优异性能,应用前景广阔。文献“g.m.song,q.li,g.w.wen,y.zhou.materialsscienceandengineeringa326(2002)240–24”和“j.y.rossignol,j.m.quenisset,r.naslain.composites,18(2)(1987):135-144”公开报道了采用热压烧结法和化学气相渗透法制备碳纤维增强碳化钛陶瓷复合材料,结果表明碳纤维的加入大大提高了tic陶瓷的断裂韧性。然而,热压烧结法材料制备需要较大的压力和较高的温度,成本高,采用该法也难于制备出形状复杂的构件。化学气相渗透法材料制备周期长,往往需要数百小时增密样品,材料制备成本高。此外,化学气相渗透工艺中材料表面的气孔也容易堵塞,需要加工表面以保证后续增密过程的进行。

在前期研究中,报道了一种钛金属熔体反应熔渗制备c/c-tic复合材料的工艺(y.g.tong,s.x.bai,k.chen.materialsscience&engineeringa556(2012)980–983),该工艺周期短,成本低,可以制备形状复杂构件。然而,该工艺通过钛金属熔体渗入多孔碳预制体与固体碳反应形成碳化钛陶瓷基体,熔体与碳反应速度快,难于有效控制;高温熔体与碳反应时不可避免的会与部分碳纤维发生反应,导致碳纤维强度损伤;反应过程控制不当易导致碳陶复合材料内部残留有少量残余金属,影响碳陶复合材料的性能。因此,开发一种新型的高效率、低成本、能有效控制c/c-tic复合材料结构和性能的制备工艺已成为推进其广泛应用的关键。



技术实现要素:

本发明的目的是提供一种c/c-tic碳陶复合材料的制备方法,使得制备周期短、成本低,并且制备得到的c/c-tic碳陶复合材料密度低、强度高,抗摩擦磨损性能好。

本发明提供的一种c/c-tic碳陶复合材料的制备方法,包括以下步骤:

(1)碳纤维预制体的制备和预处理;

(2)碳纤维预制体碳纤维表面制备保护涂层;

(3)将带有保护涂层的碳纤维预制体增密制得多孔c/c预制体;

(4)将多孔c/c预制体高温热处理;

(5)金属钛加热,钛蒸汽挥发渗入其上方的多孔c/c预制体中,制备得到c/c-tic碳陶复合材料。

步骤(1)中碳纤维预制体的制备是对碳纤维或碳纤维布采用针刺、碳布叠层穿刺、三维编织或多维整体编织的方式制备得到纤维体积分数为10%-50%的碳纤维预制体。优选体积分数为20%-35%。

步骤(1)的预处理是将碳纤维预制体在真空度为5.0×10-2pa-3pa,温度为1200-1800℃的条件下热处理1-4h。优选预处理条件为,真空度小于0.5pa,温度1600℃,时间2h。

步骤(2)采用化学气相沉积工艺或者聚合物浸渍裂解工艺或溶胶-凝胶工艺在所述碳纤维预制体中碳纤维表面制备保护涂层,上述制备方法的步骤(2)中,所述涂层为热解碳涂层sic涂层或bn涂层,厚度为50-500nm。优选厚度为50-200nm。

步骤(3)采用化学气相沉积工艺或者聚合物浸渍裂解工艺将带有保护涂层的碳纤维预制体增密制得多孔c/c预制体;多孔c/c预制体的密度控制在0.9-1.6g/cm3,孔隙率控制在15%-55%。

优选地,多孔c/c预制体的密度控制在1.2-1.5g/cm3,孔隙率控制在20%-35%。

当采用聚合物浸渍裂解工艺增密时,浸渍所用聚合物为酚醛树脂、呋喃树脂或者沥青。

本发明的上述制备方法中,步骤(4)多孔c/c预制体高温热处理的方法是在真空或惰性气氛下,对多孔c/c预制体在1600-2200℃下热处理1-4h。优选地,对多孔c/c预制体在2000℃下热处理2h。

步骤(5)所述钛蒸汽是将金属钛在真空条件下加热产生的,加热条件为:真空度为5.0×10-2-10pa,温度为1600-2200℃,时间为1-8h。

优选地,步骤(5)的反应条件为:真空度为小于5pa,温度为1800-2000℃,时间为2-4h。

步骤(5)所述金属钛纯度>99%;金属钛在多孔c/c预制体的下方,二者间隔距离为5-30mm。优选地,二者间隔距离为20mm。

上述制备方法制备得到的c/c-tic碳陶复合材料属于本发明的保护范围。

本发明提供了上述制备方法制得的c/c-tic碳陶复合材料在刹车制动系统中的应用。所述刹车系统是指航空航天、高铁、汽车、军工领域的刹车系统。

本发明的优点在于:

(1)工艺周期短,效率高,所制备碳陶复合材料成本低;

(2)通过所述气相渗透反应工艺可实现c/c-tic碳陶复合材料的近净成形;

(3)与现有技术的钛熔体反应熔渗工艺相比,本发明制备方法中,钛蒸汽反应渗透工艺通过控制反应温度,真空度和反应时间等参数可以有效控制钛的渗入量和其与多孔c/c预制体的反应速度和程度,工艺可控性强,制备的复合材料力学性能好。与同条件采用熔体反应熔渗工艺(y.g.tong,s.x.bai,k.chen.materialsscience&engineeringa556(2012)980–983)制备的c/c-tic复合材料相比,强度提高20%,断裂韧性提高25%以上

(4)所述工艺通过合理的工艺控制可使渗入的钛与c/c多孔体内部的碳完全反应或者大部分反应形成tic陶瓷基体,能够有效减少或消除所制备c/c-tic碳陶复合材料内残余未反应金属的问题。

(5)本发明方法制备c/c-tic碳陶复合材料时,钛金属熔体与多孔c/c预制体不直接接触,克服了钛金属熔体反应熔渗制备c/c-tic碳陶复合材料时所制备复合材料表面与坩埚内残余金属粘接在一起难于分离的问题,可以实现材料的净近成型

附图说明

图1为实施例1制得的c/c-tic碳陶复合材料的xrd图。

图2为实施例1制得的c/c-tic碳陶复合材料截面的扫描电镜图。

具体实施方式

以下实施例用于说明本发明,但不用来限制本发明的范围。

若未特别说明,本申请实施例所述的原料均为市售。

实施例1

以连续碳纤维为原料,采用无纬布叠层穿刺工艺制备得到碳纤维预制体,碳纤维预制体的纤维体积分数为35%。将碳纤维预制体在真空度8.0×10-2pa下加热到1500℃热处理保温1h,去除纤维表面的胶黏剂。采用化学气相沉积工艺在热处理后的碳纤维预制体的碳纤维表面制备热解碳保护涂层,热解碳保护层的厚度为60nm。采用化学气相渗透工艺继续在多孔碳纤维预制体内部沉积用于后续反应的基体热解碳,增密多孔碳纤维预制体得到多孔c/c复合材料预制体,多孔c/c复合材料预制体的密度控制在1.36g/cm3,孔隙率为32%。将多孔c/c复合材料预制体在氩气气氛中加热到1900℃高温热处理保温1h,提高基体碳的石墨化程度和反应活性。

将纯度为99.5%的金属钛置于石墨坩埚底部,前述所制备的多孔c/c复合材料预制体置于金属钛上方,二者间隔10mm,在0.3pa的真空条件下加热到1800℃,使钛蒸汽挥发渗入其上方的多孔c/c复合材料预制体中,气相钛蒸汽与多孔c/c预制体内部的热解碳反应形成tic陶瓷基体,保温4h制备得到c/c-tic复合材料。

本实施例制备得到的c/c-tic复合材料的xrd图谱如图1所示,图1中出现tic的典型衍射峰,说明复合材料中反应形成了tic相。图2为所制备c/c-tic复合材料截面的扫描电镜图,从图中可以看出复合材料微观致密完整,多孔c/c复合材料预制体内部的孔隙被气相渗透反应形成的碳化钛所填充。排水法测得本实施例制备的c/c-tic碳陶复合材料的密度为2.45g/cm3,开孔隙率为8%。采用三点弯曲法和缺口实验法测试了所述方法制备的c/c-tic碳陶复合材料的强度和断裂韧性为267mpa和16mpam1/2,复合材料的断裂模式为假塑性断裂。与同条件采用熔体反应熔渗工艺(参见y.g.tong,s.x.bai,k.chen.materialsscience&engineeringa556(2012)980–983)制备的c/c-tic复合材料相比,强度提高31%,断裂韧性提高44%。

实施例2

以连续碳纤维为原料,采用无纬布叠层穿刺工艺制备得到碳纤维预制体,碳纤维预制体的纤维体积分数为30%。将碳纤维预制体在真空度6.0×10-2pa下加热到1600℃热处理保温2h,去除纤维表面的胶黏剂。采用化学气相沉积工艺在热处理后的碳纤维预制体的碳纤维表面制备热解碳保护涂层,热解碳保护层的厚度为100nm。以酚醛树脂为先驱体,采用先驱体浸渍裂解工艺在多孔碳纤维预制内部制备用于后续反应的基体裂解碳,增密多孔碳纤维预制体得到多孔c/c复合材料预制体,多孔c/c复合材料预制体的密度控制在1.51g/cm3,孔隙率为22%。将多孔c/c复合材料预制体在氩气气氛中加热到1900℃高温热处理保温2h,提高基体碳的石墨化程度和反应活性。

将纯度为99.8%的金属钛置于石墨坩埚底部,前述所制备的多孔c/c复合材料预制体置于金属钛上方,二者间隔15mm,在0.08pa的真空条件下加热到1750℃,使钛蒸汽挥发渗入其上方的多孔c/c预制体中,气相钛蒸汽与多孔c/c预制体内部的热解碳反应形成tic陶瓷基体,保温2h制备得到本发明所述c/c-tic复合材料。本实施例制备得到的c/c-tic复合材料的xrd图谱出现tic的典型衍射峰,说明复合材料中反应形成了tic相。本实施例制备c/c-tic复合材料截面的扫描电镜图显示复合材料微观致密完整,在多孔c/c复合材料预制体内部的孔隙被气相渗透反应形成的碳化钛所填充。排水法测得本实施例制备的c/c-tic碳陶复合材料的密度为2.05g/cm3,开孔隙率为6%。采用三点弯曲法和缺口实验法测试了所述方法制备的c/c-tic碳陶复合材料的强度和断裂韧性为256mpa和14mpam1/2,复合材料的断裂模式为假塑性断裂。与同条件采用熔体反应熔渗工艺制备的c/c-tic复合材料相比,强度提高25%,断裂韧性提高26%。

虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1