微多孔膜及其制造方法与流程

文档序号:11284757阅读:377来源:国知局

本发明涉及一种包含聚丙烯系聚合体的微多孔膜、由其获得的蓄电装置、以及所述微多孔膜的制造方法。



背景技术:

作为电池或电容器等蓄电装置的隔片,使用各种微多孔膜。对于隔片用微多孔膜,首先要求能够隔离电极、具有离子传导性的作为隔片的基本性能。聚烯烃系树脂就耐化学品性高、可利用多种方法来进行多孔化的方面而言,作为电池隔片的材料而有用。而且,聚烯烃系树脂由于在合成树脂中比较价廉,故而聚烯烃制电池隔片也有利于电池制造成本的削减。

聚烯烃系树脂膜的多孔化方法大致划分为湿式法与干式法。湿式法中,将聚烯烃系树脂与塑化剂、油、石蜡等的熔融混合物展开为膜状。继而,提取出聚烯烃以外的成分,使这些成分所存在的部分空隙化。其结果为,聚烯烃系树脂经成型加工为微多孔膜。干式法中为如下方法:通过使不包含塑化剂、油、石蜡等成分或溶剂的以聚烯烃系树脂作为主体的原料进行延伸,而将聚烯烃系树脂成型加工为微多孔膜。干式法已知有:使聚烯烃系树脂中的片晶(lamella)结构的间隙中产生空隙的方法、以及使添加于原料中的无机添加剂与聚烯烃系树脂的界面产生空隙的方法。

例如专利文献1、专利文献2、专利文献3中记载有:使聚烯烃系树脂多孔化来制造空孔率高的微多孔膜;以及使用所获得的微多孔膜作为电池隔片。

专利文献1中记载有:利用湿式法,将包含聚烯烃系树脂与共轭二烯聚合物的混合物的原料加工为具有所需空孔率的微多孔膜。

专利文献2中记载有:通过利用干式法,将聚丙烯与聚乙烯的混合物以两个阶段进行延伸,而加工成具有所需空孔率的微多孔膜。

专利文献3中记载有:通过利用干式法,将在聚烯烃中调配有低分子量物质的混合物以两个阶段进行延伸,而加工为具有所需空孔率的微多孔膜。

然而,作为合成树脂制微多孔膜的制造方法,由于不使用溶剂的干式法在成本方面有利,故而必须尽可能减少所使用的树脂的种类或添加物的种类来实现低成本化,因此所述专利文献1、专利文献2、专利文献3中记载的微多孔膜及其制造方法存在问题点。低成本、空孔率高、且包含聚烯烃系树脂的微多孔膜依然存在改善的余地。

[现有技术文献]

[专利文献]

专利文献1:日本专利特开2004-352834号公报

专利文献2:日本专利特开2008-248231号公报

专利文献3:日本专利特开平8-20660号公报



技术实现要素:

[发明要解决的问题]

因此,本发明的发明人们为了将廉价的聚丙烯系树脂不与其它树脂掺合而用作原料,利用干式法来制造具有良好空孔率的微多孔膜,而进行努力研究。

[解决问题的技术手段]

其结果为,使用具有特定的熔体质量流动速率的聚丙烯系树脂作为原料,利用干式法而成功制造具有高空孔率的微多孔膜。

即,本发明为以下者。

(发明1)一种微多孔膜,其包含熔体质量流动速率(mfr(meltmassflowrate),以依据日本工业标准(japaneseindustrialstandards,jis)k6758(230℃、21.18n)的条件来测定)为1.0g/10min以下的聚丙烯系聚合体,且空孔率为50%以上。

(发明2)发明1的微多孔膜,其中空孔率在50%~60%的范围内。

(发明3)发明1或发明2的微多孔膜,其中通气度为200sec/100ml以上。

(发明4)发明1~发明3中任一项的微多孔膜,其中通气度在200sec/100ml~300sec/100ml的范围内。

(发明5)发明1~发明4中任一项的微多孔膜,其中聚丙烯系聚合体为丙烯主体的聚合体,其熔点在150℃~170℃的范围内,熔体质量流动速率(mfr,以依据jisk6758(230℃、21.18n)的条件来测定)为1.0g/10min以下,并且所述聚合体可任意地包含选自乙烯、碳数4~8的α-烯烃中的至少一种。

(发明6)发明1~发明5中任一项的微多孔膜,其用于蓄电装置的隔片。

(发明7)发明6的微多孔膜,其中蓄电装置为锂离子电池。

(发明8)发明6的微多孔膜,其中蓄电装置为电容器。

(发明9)一种蓄电装置,其包括发明6的微多孔膜。

(发明10)一种锂离子电池,其包括发明7的微多孔膜。

(发明11)一种电容器,其包括发明8的微多孔膜。

(发明12)发明1~发明11中任一项的微多孔膜的制造方法,其包含以下的步骤:

(步骤1)将依据jisk6758且在230℃、荷重21.18n下测定的熔体质量流动速率(mfr)为1.0g/10min以下的聚丙烯系聚合体进行挤出成型而制成原坯膜的步骤;

(步骤2)对步骤1中获得的原坯膜进行热处理的步骤;

(步骤3)将步骤2中获得的热处理后的原坯膜在-5℃~45℃下,在长度方向上延伸至1.0倍~1.1倍的步骤;

(步骤4)在较聚丙烯系聚合体的熔点低5℃~65℃的温度下,将结束了步骤3的延伸膜在长度方向上延伸至1.5倍~4.0倍的步骤;以及

(步骤5)在加热下,以长度成为0.7倍~1.0倍的方式使步骤4中获得的温延伸后的膜松弛的步骤。

[发明的效果]

本发明的微多孔膜首先具有50%以上,优选为50%~60%的高空孔率。这在使用本发明的微多孔膜作为隔片材料的情况下可期待高的离子导电性。

而且,本发明的微多孔膜具有200sec/100ml以上,优选为200sec/ml~300sec/ml的通气度。通常,微多孔膜的每单位表面面积的孔的数量反映在空孔率上,微多孔膜的微孔的平均大小反映在通气度上。就此意义而言,本发明的空孔率与通气度的平衡可预计在本发明的微多孔膜表面形成大量比较小的微孔。由此,对于本发明的微多孔膜可期待比较稳定且均匀的物质透过性。

具体实施方式

本发明的微多孔膜包含熔体质量流动速率(mfr,以依据jisk6758(230℃、21.18n)的条件来测定)为1.0g/10min以下的聚丙烯系聚合体,且空孔率为50%以上。

(微多孔膜的原料)

本发明的微多孔膜的原料为聚丙烯系聚合体,将丙烯的均聚物或共聚单体进行共聚合而成的共聚物与其相当。作为本发明中使用的聚丙烯系聚合体优选为结晶性比较高、熔点在150℃~170℃的范围内者,更优选为熔点在155℃~168℃的范围内者。所述共聚单体通常为选自乙烯及碳数4~8的α-烯烃中的至少一种。另外,也可为与这些共聚单体一并,将2-甲基丙烯、3-甲基-1-丁烯、4-甲基-1-戊烯等碳数4~8的分支烯烃类、苯乙烯类、二烯类进行共聚合而成者。

只要微多孔膜显示出所需的性质,则所述共聚单体的含量可在任意的范围内。优选为相对于作为提供高结晶性聚丙烯系聚合体的范围的聚合体100重量份,以5重量份以下,特别是2重量份以下为宜。

另外,所述聚丙烯系聚合体的熔体质量流动速率(mfr,以依据jisk6758(230℃、21.18n)的条件来测定)为1.0g/10min以下,优选为0.2~0.6。

本发明的微多孔膜的原料中,可调配结晶核剂或填充剂等添加剂。添加剂的种类或量若为不损及多孔性的范围,则无限制。

(微多孔膜的制造方法)

本发明的微多孔膜是使用所述的原料,利用所谓的干式法来制造。本发明的微多孔膜的制造方法包含以下的步骤1~步骤5。

(步骤1:制膜步骤)

将原料挤出成型而制成原坯膜的步骤。将依据jisk6758且在230℃、荷重21.18n下测定的熔体质量流动速率(mfr)为1.0g/10min以下的聚丙烯系聚合体供给至挤出机中,将聚丙烯系聚合体在其熔点以上的温度下进行熔融混炼,而自安装在挤出机的前端的模具中挤出聚丙烯系聚合体膜。所使用的挤出机并无限定。挤出机例如可使用:单轴挤出机、双轴挤出机、串列型挤出机的任一者。所使用的模具若为用于膜成型者,则可使用任一者。模具例如可使用各种t型模具。原坯膜的厚度或形状并无特别限定。优选为模唇间隙(dieslipclearance)与原坯膜厚度的比(牵伸比)为100以上,更优选为150以上。优选为原坯膜的厚度为10μm~200μm,更优选为15μm~100μm。

(步骤2:热处理步骤)

对结束了步骤1的原坯膜进行热处理的步骤。在较聚丙烯系聚合体的熔点低5℃~65℃,优选为低10℃~25℃的温度下,对原坯膜施加长度方向的一定的张力。张力优选为原坯膜的长度成为超过1.0倍且为11倍以下的大小。

(步骤3:冷延伸步骤)

将结束了步骤2的热处理后的原坯膜在比较低的温度下进行延伸的步骤。延伸温度为-5℃~45℃,优选为5℃~30℃。延伸倍率在长度方向上为1.0~1.1,优选为1.00~1.08,更优选为1.02以上且小于1.05。其中,延伸倍率大于1.0倍。延伸方法并无限制。可使用辊延伸法、拉幅机延伸法等公知的方法。延伸的阶段数可任意地设定。可为一阶段延伸,也可经过多个辊而进行两阶段以上的延伸。在冷延伸步骤中,构成原坯膜的聚丙烯系聚合体的分子取向。其结果为,获得包括分子链稠密的片晶部、以及片晶间的分子链稀疏的区域(裂纹)的延伸膜。

(步骤4:温延伸步骤)

将结束了步骤3的延伸膜在比较高的温度下进行延伸的步骤。延伸温度为较聚丙烯系聚合体的熔点低5℃~65℃的温度,优选为较聚丙烯系聚合体的熔点低10℃~45℃的温度。延伸倍率在长度方向上为1.5倍~4.5倍,优选为2.0倍~4.0倍。延伸方法并无限制。可使用辊延伸法、拉幅机延伸法等公知的方法。延伸的阶段数可任意地设定。可为一阶段延伸,也可经过多个辊而进行两阶段以上的延伸。在温延伸步骤中,步骤3中产生的裂纹延长而产生空孔。

(步骤5:松弛步骤)

为了防止结束了步骤4的温延伸后的膜的收缩而使膜松弛的步骤。松弛温度为较温延伸的温度稍高的温度,通常为高0℃~20℃的温度。松弛的程度是以结束了步骤4的延伸膜的长度最终成为0.7倍~1.0倍的方式进行调整。

本发明的微多孔膜所具有的“空孔率”及“通气度”是在以下的条件下进行测定。

(空孔率)

对于宽度50mm×长度120mm的微多孔膜切片,利用以下的计算式来算出的值。

空孔率(%)=[1-(切片重量)/(切片面积×树脂密度×切片厚度)]×100

(通气度)

依据jisp8117,通过室温为23℃±2℃、湿度为50%±5%的环境中的哥雷试验(gurleytest)而求出的通气度。

本发明的微多孔膜的空孔率为50%以上,优选为在50%~60%的范围内。本发明的微多孔膜的通气度为200sec/100ml以上,优选为在200sec/100ml~300sec/100ml的范围内。

[实施例]

(实施例1)

(原料)作为微多孔膜的原料,使用依据jisk6758(230℃、21.18n)来测定的熔体质量流动速率(mfr)为0.5g/10min、熔点为165℃的丙烯均聚物。(步骤1)利用单轴挤出机,将熔融混炼的原料以牵伸比159自t字模中挤出,制造厚度为22μm的原坯膜。(步骤2)继而,将原坯膜在150℃下进行热处理。(步骤3)在30℃下,将原坯膜在长度方向上冷延伸至1.03倍。(步骤4)在145℃下,将所获得的延伸膜在长度方向上温延伸至3.0倍。(步骤5)以所获得的延伸膜的长度成为0.88倍的方式在150℃下使其松弛。如此获得最终厚度为20μm的本发明的微多孔膜。利用所述方法来测定所获得的微多孔膜的空孔率及通气度,将其结果与制造条件一并示于表1中。此外,通气度的测定中,使用东洋精机制作所公司制造的通气度计(哥雷(gurley)式透气度测定仪(densometer))。

(实施例2)

(原料)作为微多孔膜的原料,使用依据jisk6758(230℃、21.18n)来测定的熔体质量流动速率(mfr)为0.5g/10min、且熔点为165℃的丙烯均聚物。(步骤1)利用单轴挤出机,将熔融混炼的原料以牵伸比159自t字模中挤出,制造厚度为22μm的原坯膜。(步骤2)继而,将原坯膜在150℃下进行热处理。(步骤3)在30℃下,将原坯膜在长度方向上冷延伸至1.04倍。(步骤4)在145℃下,将所获得的延伸膜在长度方向上温延伸至3.0倍。(步骤5)以所获得的延伸膜的长度成为0.88倍的方式在150℃下使其松弛。如此获得最终厚度为20μm的本发明的微多孔膜。将评价结果与制造条件一并示于表1中。

(比较例1)

(原料)作为微多孔膜的原料,使用依据jisk6758(230℃、21.18n)来测定的熔体质量流动速率(mfr)为2.0g/10min、且熔点为165℃的丙烯均聚物。(步骤1)利用单轴挤出机,将熔融混炼的原料以牵伸比159自t字模中挤出,制造厚度为22μm的原坯膜。(步骤2)继而,将原坯膜在150℃下进行热处理。(步骤3)在30℃下,将原坯膜在长度方向上温延伸至1.07倍。(步骤4)在145℃下,将所获得的延伸膜在长度方向上温延伸至3.2倍。(步骤5)以所获得的延伸膜的长度成为0.88倍的方式在150℃下使其松弛。如此获得最终厚度为20μm的比较用的微多孔膜。将评价结果与制造条件一并示于表1中。

(比较例2)

(原料)作为微多孔膜的原料,使用依据jisk6758(230℃、21.18n)来测定的熔体质量流动速率(mfr)为1.5g/10min、且熔点为158℃的丙烯-乙烯共聚物。(步骤1)利用单轴挤出机,将熔融混炼的原料以牵伸比159自t字模中挤出,制造厚度为22μm的原坯膜。(步骤2)继而,将原坯膜在150℃下进行热处理。(步骤3)在30℃下,将原坯膜在长度方向上冷延伸至1.04倍。(步骤4)在128℃下,将所获得的延伸膜在长度方向上温延伸至3.0倍。(步骤5)以所获得的延伸膜的长度成为0.88倍的方式在150℃下使其松弛。如此获得最终厚度为20μm的比较用的微多孔膜。将评价结果与制造条件一并示于表1中。

[表1]

实施例1、实施例2中获得的本发明的微多孔膜的空孔率显示出54%的高值。与此相对,比较例1、比较例2的微多孔膜的空孔率未达到50%,缺乏作为电池隔片的实用性。就空孔率及通气度的平衡来看,预测为:实施例1、实施例2与比较例1、比较例2相比,高密度地存在孔径比较小的微孔。此种微孔形态也反映在微多孔膜的每单位厚度的通气度上。认为与比较例1、比较例2相比,实施例1、实施例2稳定地发挥比较高的离子电导性。

[产业上的可利用性]

本发明的微多孔膜包含具有充分的多孔性且不含特别的添加剂的原料。此种本发明的微多孔膜作为具有优异的离子电导性、且可以低成本来制造的电池隔片的材料而有用。

当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1