利用带离散电荷的亲水聚合材料来使材料具有亲水性的方法

文档序号:3758048阅读:670来源:国知局
专利名称:利用带离散电荷的亲水聚合材料来使材料具有亲水性的方法
技术领域
本发明涉及使具有硬质和软质表面的材料具有亲水性或增加其亲水性的方法,更具体地讲,本发明涉及通过将高能处理和荷电颗粒和/或带有离散电荷的一种或多种亲水聚合材料应用于此类硬质或软质表面的材料上而使此类材料具有亲水性或增加其亲水性的方法。
背景技术
硬质表面材料包括,但不限于金属、玻璃、木材、石料、玻璃纤维、塑料和盘碟。
软质表面材料可包括,但不限于织物、服装、纺织品和薄膜。在某些实施方案中,软质表面材料可包括一种或多种结构组分,其可包括,但不限于纤维、纱或其它类型的结构组分。纤维可被制成多种结构,包括但不限于无纺织物和织成的或编织的纺织物。
无纺材料被广泛用于许多类型的产品,包括但不限于诸如尿布、成人失禁制品和妇女卫生制品之类的一次性吸收制品。
很多用合成纤维制成的无纺材料具有疏水性。常常希望对此类无纺材料进行改性以使它们具有亲水性。设法使此类无纺材料具有亲水性的方法包括使用表面活性剂。也采用高能表面处理来试图使无纺材料具有亲水性。
与表面活性剂相关的常见的局限性是,当已处理过的材料接触液体时,表面活性剂易于从已处理过的材料上被洗掉。当其用于诸如经受多次诸如体液之类的液体排出的一次性吸收制品之类的制品中时,这可能会减少用表面活性剂处理的无纺材料的效力。常见的与大多数高能表面处理相关的局限性是耐久性,尤其是在热塑性塑料表面上。通过各种高能表面处理传递到热塑性表面上的部分或全部电荷易于耗散掉。在由纤维构成的材料上与高能表面处理相关的技术局限性典型地超过对同样材料的薄膜的技术局限性,尤其是但不限于无孔薄膜。
背景专利出版物包括美国专利5,618,622;美国专利5,807,636;美国专利5,814,567;美国专利5,922,161;美国专利5,945,175;美国专利6,060,410;美国专利6,217,687;欧洲专利出版物12513 A1;日本专利出版物JP 55133959 A2;JP 57149363 A2;JP 01141736 A2;JP 05163655 A2;JP07040514 A2;JP 07233269;JP 9272258;JP 10029660 A2;JP 2000239963 A2;JP 2001270023 A2;和PCT出版物WO 93/12931 A1;WO 97/02310和WO01/29118 A1。
前述的背景专利公开之一,美国专利5,945,175,涉及一种用于多孔疏水聚合物底物的耐用亲水涂层。该出版物描述了基本均匀的用亲水聚合材料涂敷的、在由疏水聚合物构成的疏水聚合材料上的涂层。涂敷在该疏水聚合物底物上的亲水聚合材料可以是包含多糖或改性多糖的溶液。至少一部分多孔底物被暴露于“活性反应组分场”中,然后用亲水聚合材料处理。多糖分散体和溶液典型地为粘稠的和粘性的材料,其通常为干燥极其缓慢的凝胶。该公开公开了在包含亲水聚合材料的水溶液中浸蘸和浸没经过电晕处理的织物,或者在炉子中将该织物烘干约30分钟,或者采用某些其它方法。
将粘稠和粘性材料应用到一种无纺材料上、并且需要在炉子中将该无纺材料烘干30分钟的方法不适合用在用来制造无纺材料或诸如尿布、成人失禁制品和妇女卫生制品之类的一次性吸收制品类型的高速生产线上。
因此,需要提供使包括但不限于聚烯烃无纺材料的材料具有亲水性或增加其亲水性的方法。
发明概述本发明涉及一种使具有硬质和软质表面的材料具有亲水性或增加其亲水性的方法,并且更具体地讲,本发明涉及通过将高能处理和荷电颗粒和/或带有离散电荷的一种或多种亲水聚合材料应用于此类硬质或软质表面的材料上而使此类材料具有亲水性或增加其亲水性的方法。带有离散电荷的亲水聚合物在本文中也可称为“带有离散电荷的亲水聚合材料”。本文中荷电颗粒和亲水聚合物也可称为“荷电材料”和“荷电组分”。
本发明具有众多的非限制性实施方案。所有的实施方案,即使它们仅仅被描述成本发明的“实施方案”,都旨在为非限制性的(也就是说,除这些方案之外也可有其它的实施方案),除非它们在本文中被清楚地描述成限制本发明的范围。
在一个非限制性的实施方案中,本方法包括以下步骤(a)提供一种由至少某些疏水或边界亲水组分构成(comprised)的材料;(b)对该材料进行高能表面处理以形成已处理过的材料;和(c)将多个荷电颗粒和/或带有离散电荷的一种或多种亲水聚合物施用到处理过的材料上。
用于步骤(b)中的高能表面处理可包括任何合适的处理,其包括但不限于电晕放电处理、等离子处理、紫外线辐射、离子束处理和电子束处理。在某些实施方案中,荷电颗粒和/或亲水聚合物可顺序地施用,首先进行两种处理中的任一种,接着进行另一种处理。在其它的实施方案中,当进行高能表面处理时,可同时施用荷电颗粒和/或带有离散电荷的亲水聚合物。在某些实施方案中,也有可能省掉高能表面处理,所以这样一种处理为任选的。
在不同的实施方案中,本文所描述的方法可在准备被处理的材料的过程的许多不同阶段进行。例如,本方法可在以下阶段进行在结构组分(例如纤维等)形成如无纺织物、织成的或编织的纺织织物结构之前在其上进行;在完成的结构(例如,硬质表面、薄膜、无纺织物、织成的或编织的纺织织物等)上进行;在将该结构加进一种产品的过程期间进行(例如用来制造诸如尿布、成人失禁制品和妇女卫生制品之类的一次性吸收制品类型的生产线);或者在包含该结构的制品上进行(例如尿布等)。
荷电颗粒和/或带有离散电荷的一种或多种亲水聚合物不必是粘稠的或粘性的。在某些非限制性实施方案中,例如适合用于用来制造诸如尿布、成人失禁产品和妇女卫生产品之类的一次性吸收制品的高速生产线上的那些实施方案中,本方法可在少于30分钟内完成。在某些实施方案中,本方法可在数秒内完成。
本发明也可涉及用于实现这些方法的组合物和用这些方法处理材料所产生的制品。
附图简述虽然本说明书以特别指出并清楚地要求保护本发明的权利要求作出结论,但应该相信由下列说明并结合附图可更好地理解本发明,其中

图1是示意性的侧视图,其用来图示说明根据本发明所描述的方法处理的底物的各种实施方案。
发明详述本发明涉及使材料具有亲水性或增加材料的亲水性的方法。材料可包括硬质表面材料或软质表面材料。本发明也可涉及用于实现这些方法的组合物和通过用这些方法处理材料所产生的制品。
硬质表面材料包括,但不限于金属、玻璃、木材、石料、玻璃纤维、塑料和盘碟。
软质表面材料可包括,但不限于织物、服装、纺织品和薄膜。在某些实施方案中,软质表面材料可包括一种或多种结构组分,其可包括,但不限于纤维、纱或其它类型的结构组分。纤维可被制成无数的结构,其包括但不限于无纺织物和织成的或编织的纺织织物。
纤维可由天然材料、人造材料或它们的组合物构成。天然纤维包括,但不限于诸如羊毛、蚕丝、皮毛和毛发之类的动物纤维;诸如纤维素、棉花、亚麻、亚麻布和大麻之类的植物纤维;以及某些天然存在的矿物纤维。合成纤维可衍生自天然纤维。衍生自天然纤维的合成纤维的实施例包括但不限于人造丝和溶剂法纤维素短纤维。合成纤维也可衍生自其它的自然资源和矿物资源。衍生自自然资源而不是天然纤维的合成纤维的实施例包括但不限于某些诸如淀粉之类的多糖。衍生自矿物资源的纤维的实施例包括但不限于诸如聚丙烯和聚乙烯纤维之类的聚烯烃纤维。某些合成纤维可由热塑性或热固性材料构成。合成纤维树脂可为均聚物、共聚物、聚合物共混物,或它们的组合。常用的合成纤维树脂包括但不限于尼龙(聚酰胺)、丙烯酸(聚丙烯腈)、芳族聚酰胺(芳族聚酰胺)、聚烯烃(聚乙烯和聚丙烯)、聚酯、丁二烯-苯乙烯嵌段共聚物、天然橡胶、胶乳和斯潘德克斯弹性纤维(聚氨酯)。该纤维也可为多组分纤维,包括但不限于双组分纤维。
无纺材料为典型地由纤维制成的呈纤维网型式的一种织物类型。无纺织网被描述于1999年Butler I、Batra SK等人所著的Association of theNonwoven Fabrics Industry出版的Nonwovens Fabrics Handbook,和VaughnEA所著的Association of the Nonwoven Fabrics Industry出版的NonwovenFabric Sampler and Technology Reference中。
无纺织网可通过直接挤出法成形,在成形期间纤维和网恰好在约同一时间点成形;或者通过预成形纤维法(铺网法)成形,其中在纤维成形之后纤维可在明显的随后时间点被铺进网中。直接挤出方法的实施例包括但不限于纺粘法、熔喷法、溶液纺丝、静电纺纱,以及其典型地可形成多层的这些方法的组合。铺网法的实施例包括但不限于湿法成网和干法成网。干法成网方法的实施例包括但不限于气流成网、梳理成网以及典型地可形成多层的这些方法的组合。以上方法的组合生产出一般称为混合物或合成物的无纺材料。组合的实施例包括但不限于典型地呈层状的纺粘-熔喷-纺粘(SMS)、纺粘-梳理(SC)、纺粘-气流(SA)、熔喷-气流(MA),以及它们的组合。包括直接挤出在内的组合可在与直接挤出方法大致同一时间点进行结合(例如,SA和MA的纺丝成型和共成型),或者在随后的时间点进行结合。在以上的实施例中,可通过每种方法产生一个或多个单层。例如,SMS可能意味着一个三层的“sms”网,一个五层的“ssmms”网,或者其任何合适的变化,其中小写字母表示单个层,大写字母表示类似的相邻各层的堆积。
大部分无纺织网中的大部分纤维典型地定向于与一个或多个其它纤维的至少一部分呈某种程度的相对角度。两个或多个纤维接触的位置被称为接合处。接合处之间可以某种程度的相对角度相邻或重叠。无纺织网中的纤维典型地被接合到在某些接合处的一个或多个相邻的纤维上。这包括在每一层内接合纤维和在具有一层以上时在各层之间接合纤维。接合纤维常用的方法包括但不限于机械缠结、化学粘合或它们的组合。纤维接合方法的实施例包括但不限于热结合、压力粘合、超声键合、溶剂粘合、缝编法、针刺法和水缠结法。接合方法可任选地包括一种媒介材料。可任选的媒介材料的实施例包括但不限于诸如粘合纤维、溶剂和细丝之类的粘合物。
纤维和无纺织网可在成形后经受附加处理。对于无纺织网,附加处理通常在纤维彼此接合之后进行(后处理)。附加处理的实施例包括但不限于机械应力、化学添加剂或它们的组合。化学添加剂方法是本领域所熟知的方法。化学添加剂可在个体纤维的一部分的周围或全部的周围通过各种技术应用于纤维网的一侧或两侧,这些技术可经过不同的时间区间将化学添加剂施用到一部分纤维或网上,或者施用到所有的纤维上或整个网上。化学剂可以以固相、液相、气相添加,或由于高能表面处理而添加,高能表面处理包括但不限于照射、放射氧化或等离子处理。高能表面处理也可被用来加速在纤维表面上或靠近纤维表面处的材料的化学变化。高能表面处理的实施例包括但不限于电晕放电处理、等离子处理、紫外线辐射处理、离子束处理、电子束处理和包括脉冲激光在内的某些激光处理。添加剂或由某些高能表面处理所产生的在纤维表面上或靠近纤维表面的化学变化包括但不限于从靠近表面的空气氧产生臭氧、表面上游离基或电子或其它部分或完全荷电组分的形成和在表面内准高分子的交联。
与由纤维构成的材料的高能表面处理有关联的局限性典型地超过同一材料薄膜、尤其是但不限于无孔薄膜的局限性。不希望被任何特定的理论所限制,主要差别为表面几何结构。虽然薄膜具有纳米水平的三维表面外形,为了与纤维的高能表面处理相比,在更高的尺度上,可将薄膜看作是近似二维的或平面的(长度和宽度远大于厚度,其仅在边部变得相关)。包括但不限于纤维织物的纤维的三维几何结构与薄膜相比,厚度尺寸更加相关。与许多薄膜相比,多个纤维可产生构成表面积的多个交叉平面的或z方向的边缘。此外,大多数织物具有与可穿过在织物的任一侧的多个最外边的纤维边缘画出的假想宏观平面不相邻的纤维表面。当然,不相邻的纤维表面的不同部分常常可被看作是隐蔽区。将高能表面处理或通过高能表面处理产生的任何合成组分在适当的时间内施用到部分或全部渗透隐蔽区是一种与大部分纤维织物有关的局限性。这种类型的局限性有时被称为遮蔽。相反,由作为纤维织物的同一材料构成的、表面积和纳米形貌可与纤维表面积相比的诸如无孔薄膜之类的普通薄膜具有较少的隐蔽区。因此,当经受可比剂量的高能表面处理时,与所述纤维织物相比,所述薄膜表面积所暴露的部分更大。薄膜表面与织物中纤维的表面相比,典型地产生了平均较高的电荷密度。当电荷耗散时,纤维织物的局限性又显现出来。纤维织物具有较大的表面积,在整个表面积上耗散初始主要位于朝外的纤维表面上的电荷。
无纺织网一般与其它的无纺织网或薄膜相接合形成复合无纺织网。这样的网可按前述的方法进行接合并且一般被称作无纺层压材料。无纺层压材料的一个非限制性实施例为一个诸如尿布底片之类的一次性吸收制品底片,其中一层无纺材料被连接到一层薄膜例如微孔薄膜上。无纺层压材料中不同层的长度、宽度、材料等的差异产生了复合的无纺织网。在被切成单个片、典型地被切成成品制品片之前的一次性吸收制品网是无纺层压网的一个实施例,并且典型地是复合无纺织网的一个实施例。对于本发明的目的而言,包括无纺材料的所有的纤维网被认为是无纺材料,这包括但不限于无纺织网、合成无纺织网、无纺层压材料和复合无纺织网。
疏水或边界亲水软质表面包括,但不限于包含疏水或边界亲水结构组分的诸如编织的、织成的和无纺材料之类的纺织材料。编织的、织成的或无纺材料的结构组分可包括纱、细线、纤维、细丝或其它结构组分。某些或所有结构材料可为疏水的、边界亲水的或它们的组合。疏水结构组分为在表面上全部由疏水材料构成或部分由疏水材料构成的那些组分(例如包括部分或全部被疏水鞘环绕的一种或多种材料芯部的多组分纤维)。同样地,边界亲水结构组分为在表面上全部由边界亲水材料构成或部分由边界亲水材料构成的那些组分。如果一种结构组分在表面上包括疏水材料和边界亲水材料二者,那么可认为其是疏水的。疏水材料通常为合成的均聚物、共聚物、共混聚合物或它们的组合物。其实施例包括但不限于诸如聚丙烯和聚乙烯之类的聚烯烃、诸如聚对苯二甲酸乙二醇酯(PET)之类的某些聚酯,和某些聚酰胺。边界亲水材料通常也为合成的均聚物、共聚物、共混聚合物或它们的组合物。其实施例包括但不限于显示具有边界亲水性的某些聚酯。显示具有边界亲水性的聚酯包括最近已经被称为亲水聚酯的聚酯类。一个实施例为PET/支链聚乙二醇(支链PEG)共聚物例如购自Wellman,Inc.,Charlotte,NC,USA的T870、T289和T801级。另一个实施例为带有脂族重复单元而不是带有某些或全部PET的芳族重复单元的聚酯。购自CargillDow Polymers,LLC,Blair Nebraska的包含脂族重复序列的聚交酯(或聚乳酸或PLA)聚合物。购自位于Kingsport Tennessee的Eastman ChemicalCompany的Eastar Bio牌可生物降解的共聚酯,聚四亚甲基己二酸共对苯二酸盐或PTAT为一个类似的实施例。
虽然表面活性剂可在很多应用场合使纤维具有亲水性或增加纤维的亲水性的效果良好,在以上所描述的某些疏水或边界亲水材料的情况下,使用表面活性剂存在着明显的问题,当该材料在使用期间重新润湿时,例如在传输流体的制品中,其包括但不限于纺织品、吸收制品和诸如尿布和其它的失禁和月经制品例如妇女护垫之类的一次性吸收制品,此种制品在使用期间常遭受一次或多次液体的涌出(例如,尿液、月经、汗液或其它的身体排泄物)。使用期间涌出的液体从软质表面上将表面活性剂冲洗进液相本身。即使液相中的低水平的表面活性剂也降低了液体的表面张力。在液相中降低的表面张力降低了沿着纤维的液体芯吸张力(此处芯吸张力等于表面张力乘以接触角的余弦)。较低的芯吸张力会降低芯吸速度,继而降低通过或沿着多孔纤维的芯吸流量(每单位时间每单位横截面积的液体量)。对于最终的使用者,芯吸流量的降低可导致液体的处理性能降低。
降低液相中的表面张力也会增加其将打算疏水的织物表面润湿的能力。在原来的疏水织物被润湿之后,其能够开始显示具有亲水的性质。将会排斥诸如水之类的流体的疏水表面可以通过芯吸张力、重力、压力梯度力或其它的力穿过或沿着制品传递该流体。一个实施例为一个尿布的SMS阻挡腿箍,在大多数的使用条件下,纯粹的尿液无法很容易地透过它。尿液受到表面活性剂的污染所降低的表面张力可使其能够润湿并穿过后面的所述SMS织物。这会使最终的使用者产生渗漏的感觉。
为了改进液体润湿软质表面的程度,降低液体表面张力的方案会更持久地增加材料的表面能。已经发现,已经经受高能表面处理并且带有很多荷电颗粒和/或带有离散电荷的一种或多种亲水聚合物施用到其上的材料将会更持久地增加表面能。在某些实施方案中,这样一种方法将会产生处理过的材料,其表面张力将降低到最低限度,并且不具有表面活性,或者具有最低限度的表面活性。
如果增加某些纤维的一部分的表面能,高能表面处理可包括但不限于电晕放电处理、等离子处理、紫外线辐射处理、离子束处理、电子束处理、包括脉冲激光在内的某些激光处理和其它辐射技术。在某些实施方案中,小心避免对于待处理材料的负面影响是可取的。
荷电颗粒本文所用的荷电颗粒可以是带正电荷、带负电荷,或它们可包含同时正电荷和负电荷。荷电颗粒可为任何合适的尺寸。荷电颗粒的尺寸范围可从纳米大小的颗粒、最大尺寸(例如,直径)小于或小于等于约750mm(纳米)的颗粒开始到较大尺寸的颗粒不等。应当理解,在整个说明书中给出的每一限定值将包括每一个下限或上限,视具体情况而定,即如同该下限或上限在本文中也有明确表示一样。在本说明书中给出的每一范围将包括包含在该较大数值范围内的所有较小的范围,即如同该较小的范围在本文中也有明确表示一样。
如果希望在施用了荷电颗粒的材料上看不见这些颗粒,则纳米颗粒具有优势。这些颗粒的尺寸可在使其施用到的材料仍具有亲水性的任何尺寸及以下的范围内。在某些实施方案中,例如当将施用了荷电颗粒的材料封装在吸收制品的内部时,如果将处理过的材料暴露出来,则某些荷电颗粒为可见的可能并不重要。在某些实施方案中,在将颗粒施用到纤维材料的场合,颗粒的尺寸小于或等于其所施用的纤维的宽度(例如直径)是可取的。在某些实施方案中,颗粒尺寸小于或等于约10微米,或尺寸小于10微米的任何微米数,包括但不限于小于或等于约5微米是可取的。荷电颗粒尺寸可以全部在某个范围之内,或它们可以包括混合在一起的粒径范围。
荷电颗粒可包括任何一种合适的材料或多种合适的材料。荷电颗粒可包含天然或合成材料。荷电颗粒可以是有机的或无机的。荷电颗粒可以不溶解于水和其它介质。荷电颗粒可以是光敏的或非光敏的。光敏颗粒为需要紫外线或可见光激活因而颗粒变得更加亲水的颗粒。
可选择作为荷电颗粒的合适的材料包括但不限于以下材料诸如胶乳之类的有机颗粒;诸如氧化物、硅酸盐、碳酸盐和氢氧化物之类的无机颗粒,包括某些层状粘土矿物和无机金属氧化物。
适用于本文的层状粘土矿物包括在绿土、陶土、伊利石、亚氯酸盐、绿坡缕石和混合层状粘土的地质类别中的那些矿物。绿土包括蒙脱石、膨润土、叶蜡石、锂蒙脱石、滑石粉、锌蒙脱石、囊脱石、滑石、贝得石、铬高岭石和蛭石。陶土包括高岭石、地开石、珍珠陶土、叶蛇纹石、蠕陶土、多水高岭土、indellite和温石绒。伊利石包括漂云母、白云母、钠云母、金云母和黑云母。亚氯酸盐包括绿泥间蛭石、叶绿泥石、片硅铝石、须藤绿泥石、叶绿泥石和斜绿泥石。绿坡缕石包括海泡石和polygorskyte。混合的层状粘土包括钠板石和黑云母蛭石。这些层状粘土矿物的变体和同构体提供了独特的应用。
层状粘土矿物可以天然存在的或是合成的。层状粘土矿物包括天然的或合成的锂蒙脱石、蒙脱石和膨润土。商业锂蒙脱石的典型来源为来自美国的Southern Clay Products,Inc.的LAPONITETM;美国R.T.Vanderbilt的Veegum Pro和Veegum F和美国Baroid Division,National Read Comp.的Barasyms、Macaloids和Propaloids。
天然粘土矿物典型地以层状硅酸盐矿物形式存在,并很少以非晶质矿物形式存在。层状硅酸盐矿物具有排列成二维网状结构的SiO4四面体片。一种2∶1类型层状硅酸盐矿物具有几个至几十个硅酸盐片的分层结构,硅酸盐片具有一个三层结构,其中一个镁八面体片或一个铝八面体片被夹在两片二氧化硅四面体片之间。
一可膨胀的层状硅酸盐片具有负电荷,并且该电荷通过碱金属和/或碱土金属阳离子的存在中和。绿土或可膨胀的云母可散布于水中以形成具有触变性的溶胶。此外,通过与不同的阳离子有机或无机化合物反应,可形成绿土型粘土的复合物变体。这样一种有机复合物的一个实施例为一种亲有机物质的粘土,其中通过阳离子交换引入了二甲基二(十八烷基)铵离子(季铵离子),并且已经进行了工业化生产并用作涂料的胶凝剂。
诸如层状含水硅酸盐、层状含水铝硅酸盐、氟硅酸盐、云母蒙脱石、水滑石、锂镁硅酸盐和锂镁氟硅酸盐之类的纳米产品是常见的。锂镁硅酸盐的取代变体的一个实施例为羟基部分地被氟取代的情形。锂和镁也可部分地被铝取代。事实上,锂镁硅酸盐可用选自由镁、铝、锂、铁、铬、锌以及它们的混合物组成的任何元素所同构取代。
LAPONITETM,锂镁硅酸盐具有下式[MgwLixSi8O20OH4-yFy]z-其中w=3至6,x=0至3,y=0至4,z=12-2w-x,并且总的负点阵电荷通过反离子进行平衡;并且其中反离子选自由以下经过挑选的Na+、K+、NH4+、Cs+、Li+、Mg++、Ca++、Ba++、N(CH3)4+以及它们的混合物。(如果LAPONITETM用阳离子有机化合物进行“改性”,那么“反离子”会被看作是任何阳离子有机基团(R))。
市售的LAPONITETM有很多等级或变体以及同晶形取代。商业锂蒙脱石的实施例为LAPONITE BTM、LAPONITE STM、LAPONITE XLSTM、LAPONITE RDTM、LAPONITE XLGTM和LAPONITE RDSTM。LAPONITEXLSTM具有以下特性分析(干基)SiO259.8%,MgO 27.2%,Na2O 4.4%,Li2O 0.8%,结构H2O 7.8%,外加焦磷酸四钠(6%);比重为2.53;容积密度为1.0。
某些合成的锂蒙脱石,例如LAPONITE RDTM,不含任何氟。用氟取代羟基的同晶形取代会产生称为钠镁锂氟硅酸盐的合成粘土。这些作为LAPONITETM和LAPONITE STM进行销售的钠镁锂氟硅酸盐,按重量计可含有多达约10%的氟化物离子。LAPONITE STM含有约6%的焦磷酸四钠作为添加剂。
取决于应用情况,对于制定用于实现本发明的所需组合物的性质,LAPONITETM的变体和同晶形取代的使用提供了很好的适应性。LAPONITETM的单个片晶在其外面被荷以负电荷并且具有很高的表面结合水浓度。当传送水或水/表面活性剂或水/醇/表面活性剂载体介质时,表面可被改性为亲水的表面。取决于实施方案(例如在软质表面的情况下),这样的表面可显示具有令人惊讶的和显著改进的可润湿性、透湿性、舒适性。
无机金属氧化物通常属于两组-光敏和非光敏颗粒。光敏金属氧化物颗粒的一般实施例包括氧化锌和氧化钛。光敏金属氧化物颗粒需要可见光(例如氧化锌)或紫外光(TiO2)进行光敏化。
无机金属氧化物可以为天然存在的或合成的二氧化硅或氧化铝基的颗粒。很多天然存在的资源例如高岭石和铝土矿中含有铝。天然存在的氧化铝资源通过Hall方法或Bayer方法进行加工以生产所需的所期望的氧化铝类型。氧化铝的各种形式以水铝矿、水铝石和水软铝石的形式从生产商例如Condea,Inc购买。
非光敏金属氧化物颗粒不使用紫外光或可见光来产生所需效果。非光敏金属氧化物颗粒的实施例包括但不限于二氧化硅、氧化锆、氧化铝、氧化镁和水软铝石氧化铝纳米颗粒,以及混合金属氧化物颗粒,其包括但不限于绿土、滑石粉和水滑石。
水软铝石氧化铝([Al(O)(OH)]n)为水分散性的无机金属氧化物,其可具有各种粒径或粒径范围,包括从约2nm至小于或等于约750nm的平均粒径分布。以商品名Disperal P2TM供应的平均粒径分布状态为约25mm和以商品名Dispal14N4-25供应的平均粒径状态为分布约140nm的水软铝石氧化铝纳米颗粒可购自North American Sasol,Inc。
“胶乳”为水不溶性的聚合物颗粒的胶状分散体,颗粒形状通常呈球状。本发明所用的“纳米胶乳”为粒径小于或等于约750nm的胶乳。纳米胶乳可通过乳液聚合作用来形成。“乳液聚合作用”为利用表面活性剂将胶乳分散进水中以形成稳定的乳剂并继之进行聚合作用的一种方法。所产生的颗粒的尺寸范围为约2至约600nm。
带有离散电荷的亲水聚合材料本方法可使用亲水聚合物(或亲水聚合材料)代替荷电颗粒,或者在荷电颗粒的基础上使用亲水聚合物。亲水聚合物应该具有与之相关联的离散电荷(或者一个或多个荷电团);包含具有强偶极的亲水聚合物;或包含具有离散电荷和强偶极矩二者的亲水聚合物;或它们可以包含不同于多糖的亲水聚合物类型。亲水聚合物也可包括包含离散电荷的去污聚合物,特别是具有磺酸根的那些聚合物。应当理解的是,根据本文所描述的方法,如果本文使用短语“带有离散电荷的亲水聚合物”,任何此类引用将同样适用于以上提到的其它的聚合物类,例如具有强偶极的聚合物和不同于多糖的亲水聚合物。
亲水聚合物可以是合成的(与多糖相反,多糖典型地为天然的或诸如糖和淀粉之类的天然多糖材料的衍生物)。亲水聚合物可为非多糖。然而,本发明可利用以上所述的第一类亲水聚合物,并且不排斥使用某些其它类型的亲水聚合物,其包括但不限于第二类或其它类中的亲水聚合物。
带有离散电荷的亲水聚合物可以是阳离子、阴离子或两性离子。当提及亲水聚合物具有强偶极时,这指的是它们的官能团的偶极矩,而不是整个聚合物的偶极。亲水聚合物可具有任何合适的分子量。在某些实施方案中,为了便于应用,希望亲水聚合物的分子量比多糖和多糖衍生物的分子量低,并且缩短干燥时间。在某些实施方案中,希望亲水聚合物的分子量小于或等于约500,000道尔顿,或者是小于500,000的任何数目或数目范围(包括但不限于200,000至300,000道尔顿)。
亲水聚合物可以是均聚物、无规共聚物、嵌段共聚物或接枝共聚物。亲水聚合物可以是直链的、支链的或树枝状的。
聚阳离子作为举例说明,聚阳离子类可包含分子量范围为几百道尔顿至几十万道尔顿的两种或多种季铵基。季铵基可以是环的部分或它们可以是无环的。其实施例包括但不限于聚紫罗烯、聚二甲基二烯丙基氯化铵、二甲胺-环氧氯丙烷共聚物和咪唑-环氧氯丙烷共聚物。
在一个进一步的说明中,聚阳离子组分可包含两个或更多胺基。胺基可以是伯胺、仲胺、叔胺,或它们的混合物。胺基可以是环的部分或者它们可以是无环的。其实施例包括但不限于聚乙烯亚胺、聚丙烯胺、聚乙烯胺、聚烯丙基胺、聚二烯丙基胺、聚酰氨基胺、聚异丁烯酸胺基烷基酯、聚赖氨酸以及它们的混合物。
聚阳离子组分也可为一种至少一个胺基被至少一个其它官能团取代的改性聚胺。其实施例包括乙氧基化的和烷氧基化的聚胺和烷基化的聚胺。
两性离子两性离子类可包含带有至少一个季胺化的胺基的两个或多个胺基和至少一个被一个或多个能够负载一个阴离子电荷的部分取代的胺基。
在一个进一步的说明中,两性离子类可包含带有至少一个被能够负载一个阴离子电荷的一个或多个部分取代的胺基的两个或多个胺基。其实施例包括聚胺氧化物、氧化的乙氧基化的聚乙烯亚胺、羧甲基化的聚乙烯亚胺、马来酸酐化聚乙烯亚胺、乙氧基化的聚乙烯亚胺硫酸盐。
聚阴离子聚阴离子组分可包含水溶性阴离子团,其包括但不限于羧化物、磺酸根、硫酸根、磷酸根、膦酸酯,以及它们的混合物。其实施例包括但不限于聚丙烯酸酯、聚甲基丙烯酸酯、聚马来酸酯、聚衣康酸酯、聚天冬氨酸、聚乙醛酸、聚乙烯硫酸酯、聚乙烯磺酸酯、聚苯乙烯磺酸酯、萘磺酸或苯酚磺酸的醛缩合物、包含磺基间苯二酸的共聚酯、包含对苯二酸酯和磺化丙烯基乙氧基化基团的共聚酯、包含二醇磺酸的共聚酯、聚2-丙烯酰胺-2-甲基丙磺酸及其共聚物。
带有强偶极的亲水聚合材料带有一个强偶极的亲水聚合材料可包含带有诸如酰胺基之类的高偶极矩的单体基。其实施例包括但不限于聚乙烯吡咯烷酮、聚丙烯酰胺、聚乙烯基唑啉,以及它们的共聚物。
其它荷电材料除荷电颗粒和/或带有离散电荷的亲水聚合材料之外,可将多价无机盐用于本方法的某些实施方案中。多价无机盐可起到锚定剂的作用或可增强荷电颗粒和/或带有离散电荷在表面上的吸附性。多价无机盐可选自Ca+2、Mg+2、Ba+2、Al+3、Fe+2、Fe+3、Cu+2,以及它们的混合物,其中造当的阴离子被用来平衡电荷。
图1可用来说明根据本发明所述的方法处理的底物的几种非限制性的实施方案。在图1中,底物用参考字母A表示。参考字母B为“底漆”或“底层”。参考字母C可用来指在底层的顶部进行的处理(例如“活性”处理)。底漆或底层可被荷上正电,或荷上负电。处理“C”可被荷上正电或荷上负电。应当理解的是,图1仅仅是示意图,并且通过本发明所述的方法形成的结构不限于形成例如图1所示的间层型排列结构。例如,在某些实施方案中,“层”可以是看不见的。在其它的实施方案中,“层”实际上将由分布在底物表面上和/或内部的很多颗粒构成。在其它的实施方案中,可具有超过图1所示的“层”或处理的数目。
在不同的实施方案中,可将高能处理看作是底层或底漆。可供选择地,底层或底漆可以是荷电颗粒或带有离散电荷的聚合材料。在这些实施方案中,所述处理,参考字母C,可包括荷电颗粒或带有离散电荷的聚合材料。
因此,作为一种两步方法,通过利用颗粒包括诸如LAPONITETM之类的纳米颗粒作为底层或底漆,然后用带有离散电荷的亲水聚合物处理荷负电的表面,可增加表面(或底物)的亲水改性。如果需要,可增加另外的纳米颗粒和带有离散电荷的亲水材料的涂层,例如在包括两步以上的方法中提供相同的交错层。
在其它的实施方案中,例如,已经进行了高能处理的底物可用参考字母A表示。在这样一种实施方案的某一形式中,荷电颗粒可在高能处理过的表面上起底漆/底层(层B)的作用。随后可用带有离散电荷的亲水材料处理以形成层C(例如,氧化铝后面是聚阴离子类)。在这样一种实施方案的另一种形式中,带有离散电荷的亲水聚合物可被用作在高能处理过的表面上(层A)的底漆/底层(层B),其随后用荷电颗粒进行处理以形成“层”C(例如,聚二烯丙基二甲基氯化铵后面是LAPONITETM)。其它的实施方案可使用荷电颗粒和其它荷电亲水类的组合。
LAPONITETM和乙氧基化的、季铵化的低聚胺的顺序分层导致接触角的减小,并且增强了已处理过表面的分片/润湿性。因此,纳米粘土加上带有离散电荷的亲水聚合物的组合物可用来提供用于改变表面的亲水/亲脂特性的新技术。同样,氧化铝和亲水阴离子聚合物的顺序分层导致已处理过的表面的分片/润湿性的增强。因此,无机金属氧化物加上带有电荷的亲水聚合物的组合物可用来提供改变表面的亲水/亲脂特性的新技术。
在其它的实施方案中,在将颗粒施用到表面上之前,可用本文所描述的其它材料,例如带有离散电荷的亲水聚合材料或其它荷电材料,对本发明所描述的任何颗粒进行改性。然后,可将这些改性的颗粒施用到已经进行或没有进行高能处理的表面上。
在用于本文组合物的某些实施方案中,表面活性剂为任选成分。在作为润湿剂的组合物中,表面活性剂对促进颗粒和/或聚合材料散布到表面上是有用的。为了提高组合物的喷射特性并使包括颗粒在内的涂料组合物分布更加均匀,当组合物被用来处理疏水软质表面或者当组合物在一个喷剂分配器中进行应用时,表面活性剂为可选成分。涂料组合物的散开也可使其干燥的更快,以便处理过的材料可更快地投入使用。当将表面活性剂用于组合物中时,其可按有效量添加以促进涂料组合物的应用。合适的表面添加剂可选自以下物质,包括阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂、两性表面活性剂、两性的表面活性剂、两性离子表面活性剂以及它们的混合物。合适的非离子、阴离子、阳离子、两性的、两性离子的和半极性的非离子表面活性剂的实施例公开于美国专利5,707,950和5,576,282中。
荷电颗粒和/或带有离散电荷的一种或多种亲水聚合材料可以任何合适的方式施用到待处理的表面(或底物)上,其包括但不限于将荷电颗粒和/或带有离散电荷的一种或多种亲水聚合材料加入一种组合物中,并将该组合物施用到待处理的表面上。该组合物可呈任何形式,例如液体(含水的或不含水的)、颗粒、糊剂、粉末、喷剂、泡沫、片剂、凝胶等等。
荷电颗粒和/或亲水聚合材料可以任何合适的数量(最高100%)加入这样一种组合物中。例如,在某些实施方案中,该组合物可以亲水聚合材料的纯100%溶液喷射。
该组合物可以任何合适的量施用到待处理的表面上。在将该组合物施用到具有软质表面的材料上的某些实施方案中,该组合物可以按材料重量的约0.05%和约10%范围内的量施用。组合物的量也可属于包括但不限于在约0.1%和约10%之间,在约0.2%和约5%之间和在约0.2%和约2%之间的这样一个范围内的任何较窄的范围之列。
组合物可以以任何合适的方式施用到待处理的表面上,其包括但不限于通过在洗涤和/或漂洗工序添加涂料组合物,通过喷射、浸渍、涂漆、擦拭、印刷或任何其它方式。如果通过喷射将组合物施用到材料上,组合物的粘度应该适于喷射(例如,组合物应该为液体),或者如果组合物呈诸如凝胶之类的某些其它的形式,组合物应该能够被剪切变稀以形成能够进行喷射的液体。组合物可被施用到材料的表面上,并且如果材料是多孔的,其可被施用到材料的内部。
该组合物可以但不必基本均匀地涂敷到其施用的材料上。组合物可完全盖住一个表面或其一部分(例如,连续涂层,其包括在表面上形成薄膜的那些涂层),或者其可以只盖住部分表面,例如烘干后,在表面上的有效区域中露出缝隙的那些涂层(例如,不连续的涂层)。后一种类可包括但不限于在一个颗粒间可具有间隔的表面上,覆盖和未覆盖颗粒的部分和颗粒分布的网络。另外,当本发明所描述的组合物或涂料被描述成施用到一个表面上时,应当理解它们不必施用到或者盖住整个表面。例如,即使只是施用涂料来使表面的一部分改性,其将会被看成是施用到一个表面上。
在不同的实施方案中,本发明所描述的方法可以在很多不同的利用被处理材料的工序阶段执行。例如,本方法可在以下阶段执行在它们形成诸如无纺织物、织成的或编织的纺织织物之类的结构之前在结构组分上(例如纤维等);在完成的结构上(例如,硬质表面、薄膜、无纺织物、织成的或编织的纺织织物等);在将该结构并入一个产品的过程期间(例如用来制造诸如尿布、成人失禁制品和妇女卫生制品之类的一次性吸收制品类型的生产线);或者,在在结构本身上(例如在无纺材料上),或在包含该结构的制品上(例如尿布)。
在一些非限制性的实施方案中,例如适合用在用来制造诸如尿布、成人失禁制品和妇女卫生制品之类的一次性吸收制品类型的高速生产线上的那些实施方案,本方法可在少于30分钟内、或在少于30分钟的任何分钟数内进行。在某些实施方案中,本方法可在约数秒内、包括小于或等于60秒的任何秒数内进行。为加速干燥,可将底物加热到低于其熔化温度的任何温度。
在某些情况下,希望将某些这样的处理应用到软质表面的两侧。另外,可考虑这个任选步骤可以是与应用荷电颗粒和/或带有离散电荷的一种或多种亲水聚合材料到待处理的材料上分开的预处理步骤,或可将这两个步骤结合起来。
如前面所讨论的那样,因高能表面处理产生的部分或全部电荷随时间而耗散,并且维持在纤维性热塑性表面上的部分或全部电荷是一个常见的局限性。然而,在一个非限制性的实施例中,已经发现,可用将电晕处理与荷电颗粒和/或带有离散电荷的一种或多种亲水聚合材料相结合将更耐久的电荷放到材料上,以便在经过一段时间后或在多次流体浸蚀后,水基流体继续被吸引到材料上。使用荷电颗粒和/或带有离散电荷的一种或多种亲水聚合材料与高能表面处理共同作用可将所述处理的瞬时性质转换为更持久的性质。
已经受高能表面处理和具有沉淀在其上的很多荷电颗粒和/或带有离散电荷的一种或多种亲水聚合材料的材料可适用于很多用途,其包括但不限于用来在诸如包含疏水或边界亲水纤维的衣服之类的制品中、在用于擦拭硬质和软质表面的制品中、以及在包括一次性吸收制品在内的吸收制品的各部分中传送液体。用于擦拭硬质或软质表面的制品可包括预润湿擦拭物和干擦拭物。预润湿擦拭物可浸透诸如湿擦拭物之类的一种或多种液体或未完全浸透诸如潮湿擦拭物之类的一种或多种液体。擦拭物可以是一次性的或可重复使用的。擦拭物类型的实施例包括但不限于诸如婴儿擦拭物、妇女擦拭物、肛门擦拭物和面部擦拭物之类的皮肤擦拭物;诸如地板擦拭物、家具擦拭物和浴室擦拭物之类的家庭清洁擦拭物和汽车擦拭物。一次性吸收制品的各部分包括但不限于顶片、捕获层、分配层、芯吸层、贮存层、吸收芯、吸收芯包装和容纳结构。
在某些实施方案中,当根据测试方法一节中的透湿试验进行测试时,在测试液体涌出三次或任何更高的液体浸蚀次数之后,其包括但不限于在测试液体涌出5次之后以及在测试液体涌出10次之后,以这样一种方式处理的材料的液体透湿时间少于或等于约10秒,优选地,小于或等于约6秒,更优选地,小于或等于约3秒。
在散开30秒之后,不管它们是否已经经受高能表面处理,为了使其具有亲水性起见已经用本发明所描述的涂料组合物处理过的材料可产生与水具有小于或等于90°,或小于90°,或小于90°的任何角度,包括但不限于45°的前接触角。
下列实施例旨在说明本发明,而不是旨在限制或限定其范围。除非另有说明,本发明使用的所有的份数、百分数和比率均以百分重量表示。
实施例经过实验室电晕处理器(型号为BD-20AC,由Electro-Technic ProductsInc.,USA制造)处理的SMS聚丙烯无纺材料(13克每平方米)和涂料组合物的透湿结果记录于下表中(其中组合物的余量包含水)。
1Southern Clay Products,Inc.
2Sasol North America,Inc.
3Aldrich,cat# 52,237-6。(材料由供应商标上“很低的分子量”)4Acusol 480N,Rohm & Haas测试方法除非另外声明,所有试验均在标准试验室条件(50%湿度和在73°F(23℃))下进行。
接触角采用First Ten Angstroms,USA制造的FTA200 Dynamic Contact AngleAnalyzer测量动态接触角。在试样底物上滴上一滴测试溶液。当该液滴沿着底物表面渗开时进行数字视频录像,并且FTA200软件测量作为时间函数的液体与底物的接触角。
液体透湿试验利用Lenzing AG,Austria制造的Lister型透湿仪器测量液体透湿时间。试验过程基于标准的EDANA(European Disposables And NonwovensAssociation)法150.3-96,将测试试样放置在由十层滤纸(从EmpiricalManufacturing Co.,Inc.,7616 Reinhold Drive,Cincinnati,OH 45237,USA购买的Ahlstrom Grade 632或者等价物)构成的吸收垫上。在一个典型的实验中,不用换吸收垫,以一分钟的间隔将三次连续涌出的5ml测试液体(0.9%盐水溶液)施用到无纺材料试样上并且记录下各自的透湿时间。
在本说明书中提及的所有专利、专利申请(和针对其公布的任何专利,以及任何相应出版的外国专利申请)和出版物的公开内容均引入本发明以作参考。然而,并未明确地承认引入本文以供参考的任何文献提出或公开了本发明。
尽管已用具体实施方案描述了本发明,但显而易见的是,本领域的技术人员可在不背离本发明的宗旨和保护范围的情况下进行各种变化和修改。另外,尽管在对本发明进行说明时对本发明的某些具体实施方案一同作了说明,但是应当理解,这只是用于举例说明而非限制,本发明的范围仅由所附的权利要求书定义,该范围应为本发明现有技术所允许的最大范围。
权利要求
1.使材料具有亲水性或增加材料的亲水性的方法,所述方法包括以下步骤(a)提供材料;(b)对所述材料进行高能表面处理以形成处理过的材料;和(c)将至少一种亲水聚合材料施用到所述处理过的材料上,所述亲水聚合材料包括至少一种以下材料带有离散电荷的亲水聚合材料;带有强偶极矩的亲水聚合材料;或不同于多糖基材料的亲水聚合材料。
2.权利要求1的方法,其中所述材料包括织物材料。
3.权利要求2的方法,其中所述织物材料包括无纺材料。
4.如权利要求1至3中任一项所述的方法,其中步骤(b)中进行的高能表面处理包括选自下列的处理电晕放电处理;等离子处理;紫外线辐射;离子束处理;电子束处理;和激光处理。
5.如权利要求1至4中任一项所述的方法,其中步骤(b)和(c)顺序地发生。
6.如权利要求1至4中任一项所述的方法,其中步骤(b)和(c)同时发生。
7.如权利要求1至6中任一项所述的方法,其中在步骤(c)之后,所述处理过的材料的表面变得具有亲水性并且与水的前接触角小于90°。
8.一种材料,所述材料具有软质表面和在其上的给所述材料提供亲水改性的表面的至少一种亲水聚合材料,所述亲水聚合材料包括至少一种以下材料带有离散电荷的亲水聚合材料;带有强偶极矩的亲水聚合材料;和不同于多糖基材料的亲水聚合材料。
9.如权利要求8所述的可透过的材料,其中根据所述液体透湿试验,在测试液体涌出三次后,所述材料的液体透湿时间小于或等于10秒。
10.如权利要求8或9中任一项所述的吸收性无纺材料。
全文摘要
本发明公开了使具有硬质和软质表面的材料具有亲水性或增强其亲水性的方法。本方法涉及通过将高能处理和荷电颗粒 和/或带有离散电荷的一种或多种亲水聚合材料应用于此类材料上使此类材料具有亲水性。
文档编号B05D3/14GK1625624SQ03802903
公开日2005年6月8日 申请日期2003年1月17日 优先权日2002年1月30日
发明者罗纳德·D·克拉默, 罗伯特·H·罗尔博, 约翰·D·卡特, 卡尔·E·瑟米尔 申请人:宝洁公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1